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FACTORING IDEALS INTO SEMIPRIME IDEALS 

N. H. VAUGHAN AND R. W. YEAGY 

Let D be an integral domain with 1 ^ 0 . We consider "proper ty S P " in D, 
which is t ha t every ideal is a product of semiprime ideals. (A semiprime ideal 
is equal to its radical.) I t is natural to consider property SP after s tudying 
Dedekind domains, which involve factoring ideals into prime ideals. We prove 
tha t a domain D with property SP is almost Dedekind, and we give an example 
of a nonnoetherian almost Dedekind domain with proper ty SP. 

T h e authors thank Raymond C. Hei tmann for his assistance. A large par t 
of Section 2 is his work. 

1. I n t r o d u c t i o n . In general we use the notation and terminology of [11; 
12]. In part icular C denotes containment , while < denotes proper contain­
ment . T o say t ha t A is a proper ideal of D means (0) < A < D. 

A domain is called Priifer if the quot ient ring DP is a valuation ring for each 
proper prime ideal P. See [1 ; 7]. Also D is an almost Dedekind domain provided 
each Dp is a rank one discrete valuat ion ring (i.e., a valuat ion ring which is a 
Dedekind domain) . See [4; 5]. T h e domain D is said to have dimension n if 
there is a strictly increasing chain of n proper prime ideals bu t no such chain 
of n + 1 proper prime ideals. In this case, we write dim D = n. 

LEMMA 1.1. If domain D has property SP, then so do the domains DP and 
D/P for every proper prime ideal P of D. 

Proof. Firs t consider DP. If 5 is a semiprime ideal of D, then SDP = \/SPP = 
\/SDP [6, p. 34, Theorem 3.4(6)], so SDP is a semiprime ideal of DP. If B is an 
ideal of DP, then B = ADP for some ideal A of D. Since A = I T ^ i St where 
Si = V ^ z for each i, we have B = I l ^ i (StDP), a product of semiprime ideals. 

Now consider D = D/P, and let 5" be a semiprime ideal of D containing P. 
Then VSTF = VS/P = S/P by [11, p. 148, (16)]. If B is an ideal of D/P, 
then B = A/P for some ideal A of D containing P. When A = Yln

i==i Si where 
each Si is a semiprime ideal of D containing P, and B = I T ^ i (Si/P) 
[11, p. 148, (13)], a product of semiprime ideals. 

2. Domains with property SP. 

LEMMA 2.1. If D is a domain with property SP and if the ascending chain 
condition for prime ideals holds in D, then D is almost Dedekind. 
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Proof. W e first show t h a t pr imary ideals of D are prime powers wi thout 

using the ascending chain condition for prime ideals. Suppose Q is a pr imary 

ideal with radical P and Q < P. Then Q = Yln
i=i St with \ / S ^ = St for each i. 

Also by [11, p . 147, (8)], we have 

P =VQ= 4 / FI St = n VSi C Su for each i. 

However from P > Q = Hn
i=i Su we conclude t h a t P D Sj and hence P = Sf 

for some j . We may suppose t h a t Si, . . . , Sn are arranged so t h a t P = St for 
1 ^ i £ k and P < S z for i > £. Then Q = P* I T ^ * S< and Ç C PA'. If 
Pk ÇL Q, then YLi>kSi C P , since Ç is P -p r imary . Hence S^ C P for some 
7 > k, implying P = S7, a contradict ion. T h u s P* C Q, so PÂ" = Ç-

Since pr imary ideals are prime powers and since the ascending chain con­
dition for prime ideals holds in D, it follows from [3, Corollary 4] t h a t D is a 
Prufer domain. Let P be a proper prime ideal of D. We will show t h a t DP is a 
Dedekind domain. By Lemma 1.1 every ideal of DP is a product of semiprime 
ideals. However DP is a valuat ion ring, so semiprime ideals of DP are prime 
[9, p. 135, 5.10(1)]. T h u s DP is a Dedekind domain, so D is almost Dedekind. 

LEMMA 2.2. Suppose D has property SP and a unique invertible maximal ideal 
M. Then dim D = 1. 

Proof. Suppose the conclusion is false. Then there would exist a nonzero 
prime ideal P < M. Let x G P \ { 0 } . We have (x) = I T U S7 where VS~t = St 

for each i. Then P D 11^=1 S u so P contains St for some i. Say P D Si. If 
A - M-lSu an ideal of D, then Si = AM.ll A = D, then Si = M > P , a 
contradict ion. Therefore A C M, so Si = AM D ^42. Since Si is semiprime, 
we have Si D A. Hence SXM D AM = Su so Si = S i M , and 

( x ) M = M 5 i . . . 5 n = Si . . . Sn = (x). 

Choose m Ç i f such t h a t xm = x. Then x ( l — m) = 0 , bu t 1 — m is a uni t 
of D, so x = 0, a contradict ion. Therefore dim Z>. = 1. 

L E M M A 2.3. / / D has property SP, then a minimal prime of a nonzero principal 
ideal is minimal in D. 

Proof. Let d Ç Z^>\{0} and let P be a minimal prime of (d). Since \/dDP is 
the intersection of all primes of DP which contain dDP [9, p . 43, 2.14], it follows 
t h a t \/'dDP = PDP. Then dDP is a p r imary ideal of DP by [11, p . 153, Corol­
lary 1]. Since DP has proper ty SP by Lemma 1.1, we conclude t h a t dDP is a 
power of PDP, since we showed in the proof of Lemma 2.1 t ha t pr imary ideals 
are prime powers in a domain with proper ty SP. Then PDP is invertible by 
[11, p . 272, L e m m a 4], so dim DP = 1 by Lemma 2.2. T h u s P is minimal in D. 

T H E O R E M 2.4. A domain D ivith property SP is almost Dedekind. 

Proof. By Lemma 2.1 we need only show t h a t D has dimension one. Suppose 
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dim D > 1. Then D has a maximal ideal M which is not minimal. Let P i be a 
nonzero prime ideal properly contained in M and choose x Ç P i \ { 0 } . We know 
tha t P i contains a minimal prime P of the ideal (x), [6, pp. 43, 44]. Pick 
m (z M\Pi and let Q be a minimal prime in M of the ideal P + (m). For an 
ideal A of J9, let Ae denote the extension of A to the quot ient ring DQ. Since P 
is a minimal prime of D by Lemma 2.3, it follows t ha t Pe is a minimal prime of 
DQ. Also Q6 is a minimal prime of the ideal Pe + wZ)Q. 

I t follows from Lemma 1.1 t ha t DQ and DQ = DQ/Pe have proper ty SP . 
T h u s by Lemma 2.3, Q — Qe/Pe is a minimal prime of D, so dim D = 1. Then 
Lemma 2.1 tells us t ha t 5 is an almost Dedekind domain. Since D has a unique 
maximal ideal Q, we conclude tha t 5 is a rank one discrete valuation ring. 
T h u s in D, (0) = PiST=i (?ra. From [3, Theorem 1] we know t h a t 
Pe C Pln=i ((?')", and hence P* = p|"=i ((?')". Then by [3, Theorem 3] it 
follows t h a t each prime ideal of DQ is contained in Ve. However Pe is a minimal 
prime of DQ, so dim DQ = 2. But then by Lemma 2.1, I2Q is almost Dedekind 
and dim DQ = 1, a contradiction. Therefore dim D = 1. 

3. A n e x a m p l e . In Section 2 we showed tha t a domain must be almost 
Dedekind if every proper ideal is a product of semiprime ideals. Clearly every 
Dedekind domain has proper ty SP. In this section we s tudy an example of a 
domain which has proper ty SP bu t is not Dedekind. We let N, Z denote the 
sets of natura l numbers and integers, respectively. 

First let D be any almost Dedekind domain with quot ient field K, and let 
Jé(D) denote the set of maximal ideals of D. If A ^ (0) is a fractional ideal of 
D, and if P ^Jé(D), then for some q £ Z we have ADP = (PDP)Q. We 
indicate this fact by the notat ion v(P, A) = q. In case x Ç i£ \{0} , we write 
v(P, x) instead of v(P, (x)) . Then v(P, • ) is the P-adic valuat ion on K. 

LEMMA 3.1. Let A, 13 be nonzero fractional ideals of D. 

(i) v(P,A) = min {v(P,a)\a G A { 0 } } . 
(ii) w(P, AB) = v(P, A) + v(P, B) and v(P, A") = q • v(P,A), q G Z . 

(iii) A = H {P» ( P , A ) |P £<Jf(D)}. 

Proof. These assertions are evident. Pa r t (iii) follows since 

A = r)pzji(D)ADP 

[6, p . 42, 3.10(3)]. 

LEMMA 3.2. Let D be an almost Dedekind domain. Then an ideal S ^ (0) is 
semiprime if and only if v(P, S) = 0 or 1 for all P G ^(D). 

Proof. If S 9e (0) is semiprime, then so is SDP for every P G <JÏ{D), as we 
showed in the proof of Lemma 1.1. Since DP is a rank one discrete valuat ion 
ring, we either have SDP = DP and v(P, S) = 0, or else SDP = PDP and 
v(P,S) = 1. 
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If v(P,S) = Oor 1 for every P £- / / (£>) , then S = H {P'<P-5>|P G - # ( P ) Î , 

an intersection of prime ideals. T h u s \/S = S, so S is semiprime. 

The example to be studied is given by Heinzer and Ohm in [8, pp. 276-278] . 

We will review the construction. Let G denote the set of all integer-valued 

infinite sequences which are eventual ly cons tan t ; i.e., 

G= { / = (f (1), f (2),... )\f:N-*Z andlJÇ N 3 j > J => 

JU) = / 0 " + D i -

For / G G, let / ( G O ) denote the eventual cons tant value of / and let 
Nœ = N U {GO}. T h e following definitions make G into a latt ice ordered 
group. T h e operation is component-wise addit ion, and order is defined thus : 
/ ^ g if f(i) ^ g{i) for all i G AG A proper subset 2 of G+ = {g G G\g ^ 0} is 
called a segment of G if a G 2 and b ^ a implies b G 2 and if (/, /; G 2 implies 
inf {a, />} G 2 . A segment 2 is called prime if the complement G + \ 2 is closed 
under addit ion. For each i G 7Vœ, the set 2 f = {/|/ G G, / ( i ) > 0} is a prime 
segment of G, and there are no others. 

Using the method of Jaffard [10], Heinzer and Ohm construct a domain D 
with quot ient field K which has G as its group of divisibility. T h u s there exists 
a function 0 from 7v\{0} onto G such t ha t <f>(ab) = <t>(a) + 0(^) for all a, 
b G 7£\{0}, and cj)(D\{0\) = G+. The proper prime ideals of D are the sets 
P • = </>_1(22-), i G 7VOT. For each i G AGo, if 77 ̂  is the subgroup of G generated 
by G+\2Z-, then there is an isomorphism i/'; : G/Ht -^ Z.li rji : G —> G/Hi is the 
canonical homomorphism then the function 1/̂77 ?:c/> : 7£\{0} —•> Z is the 7Vad ic 
valuat ion ^(7^ , • ). T h u s D is almost Dedekind. Fur the rmore for each 
a G 7£\{0}, the sequence v(P\, a), v(P2} a), . . . is eventual ly constant , and the 
eventual cons tant value is v(Pm, a). 

LEMMA 3.3. Let U\, u2, . . . be a bounded sequence of nonnegative integers and 
set B = C^i£NP?li {in the above domain). Then for each j G N, v(Pjy B) = uj 

and v(Pm, B) = lim sup i^Niii. 

Proof. Choose j G AG If u = lim sup^ i Vz^, then there exists 7 G N~ such tha t 
i > I implies ut ^ u. We know t h a t there exists x G D such t ha t 

4>{x) = (uu u2, • . . , Uj, . . . , u, u, u, . . . ) ; 

i.e., 4>(x)(i) = ut if i ^ max {j, 7} and <j>(x)(i) = u if i > max {j, 7}. Then 
x G Piii for each i G N, so x G P . Since z>(Pj, ^) = " j > w e have v(Ph B) ^ ut 

by Lemma 3.1, i. However B = C\iç.NP^ C P / ' , so ^(7^-, 73) ^ ?/.,. Com­
bining the inequalities yields v(Pj} B) = Uj. 

Now we consider v(Pcn, B). For any j , if x is chosen as above, we have 
v(Pœi x) = u, so v(Pm, B) ^ u, by L e m m a 3.1, i. For the reverse inequal i ty , 
take b G P \ { 0 } . Since it = lim sup^^u7- = lim s u p t - € ^ ( P 1 , P ) , we know tha t 
there must be an infinite sequence iu i2, . . . from N such t h a t v(Pik, B) = « 
for every k £ N. T h u s v(Pik, b) ^ ẑ  for each &, and so the eventual cons tant 
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value of v(Pu /;), i G N, cannot be less than u. Thus v(Pœ1 b) ^ n, and 
v(PœJ B) ^ u by Lemma 3.1, i. Therefore v(Pœ, B) = u. 

T H E O R E M 3.4. / / D is the almost Dedekind domain of Heinzer and Ohm, then 
every proper ideal of D is a product of semiprime ideals. 

Proof. Let A be a proper ideal of D. By Lemma 3.1, i, we see t ha t the set 
{v(Pi, A)\i G Nœ] is bounded above by max [v{Pu a)\i G Nœ} for any 
a G ^4\{0}, and so the set {v(Pu A)\i G Nm\ is finite. Let w1 < w2 < . . . < wn 

be its elements, and let w0 = 0. For j G {1, 2, . . . , n) let 

Xj = {i\v(P{,A) ^ w*}-

Observe tha t Xi Z) X2 Z) . . . Z) Xn. Now consider the product of semiprime 
ideals 

n I \wj—wj-i 

^i = n ( n p J 
By Lemma 3.1, iii, we can prove A = A\ by showing tha t v(Pk, A) = v(Pk,Ai) 
for each k G Nœ. 

Suppose k G N. We have v(Pk, A) = wj(0) for some j ( 0 ) . Suppose j > j ( 0 ) . 
Then wy > ^ i ( 0 ) and & G ^ y , so y(P^, Pi ZGXJ ^ \ ) = 0 by Lemma 3.3. On the 
other hand, j ^ j(0) implies k G X jHndv(Pk, C\i^XjPi) = 1. Thus by Lemma 
3.1, ii, 

.7(0) 

v(Pk, Ai) = ^2 (wj - wj-x) = wm = v(Pk} A). 

Consider v(Pm, A^. We have lim supi(:Nv(Pi} A) = wj{i) for some j ( l ) , 
and so there exists I £ N such tha t i > I implies v(Pit A) ^ ^-(i)- So, if 
7 > j ( l ) and i G X7-, then v{P{, A) ^ Wj > w i (i) and i ^ I. Therefore if 
j > i ( l ) , then J j is a finite set and in this case v(Pœ, DiexjPt) = 0 by 
Lemma 3.3. On the other hand X ^D is an infinite set since Wj^ must occur 
infinitely often in the sequence v(Pi, A), v(P2, A), . . . . Since 

Xi Z) X2 Z) . • • Z) Xj(D, 

all these sets are infinite, and so v(Pœ, HI^XJ Pi) = 1 if j ^ j(l) by Lemma 
3.3. Therefore 

3d) 

viP^Ai) = J^ (WJ ~ w3-i) = wJ(i) = \imsupv(Pt,A) = v(Pm,A), 
J = I iex 

by Lemma 3.3. Thus A = Ai, and so A is a product of semiprime ideals. 

One might wonder if there exist almost Dedekind domains wi thout property 
SP. In [13] there is a necessary and sufficient condition for a domain which is 
the union of a tower of Dedekind domains to have this property. Wi th this 
condition the author of [13] exhibits an almost Dedekind domain which does 
not have proper ty SP. 
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