FACTORING IDEALS INTO SEMIPRIME IDEALS

N. H. VAUGHAN AND R. W. YEAGY

Let D be an integral domain with $1 \neq 0$. We consider "property SP" in D, which is that every ideal is a product of semiprime ideals. (A semiprime ideal is equal to its radical.) It is natural to consider property SP after studying Dedekind domains, which involve factoring ideals into prime ideals. We prove that a domain D with property $S P$ is almost Dedekind, and we give an example of a nonnoetherian almost Dedekind domain with property SP'.

The authors thank Raymond C. Heitmann for his assistance. A large part of Section 2 is his work.

1. Introduction. In general we use the notation and terminology of [11; 12]. In particular \subset denotes containment, while $<$ denotes proper containment. To say that A is a proper ideal of D means $(0)<A<D$.

A domain is called Prüfer if the quotient ring D_{P} is a valuation ring for each proper prime ideal P. See $[\mathbf{1 ; 7}]$. Also D is an almost Dedekind domain provided each D_{P} is a rank one discrete valuation ring (i.e., a valuation ring which is a Dedekind domain). See $[\mathbf{4} ; \mathbf{5}]$. The domain D is said to have dimension n if there is a strictly increasing chain of n proper prime ideals but no such chain of $n+1$ proper prime ideals. In this case, we write $\operatorname{dim} D=n$.

Lemma 1.1. If domain D has property $S P$, then so do the domains D_{P} and D / P for every proper prime ideal P of D.

Proof. First consider D_{P}. If S is a semiprime ideal of D, then $S D_{P}=\sqrt{S} P_{P}=$ $\sqrt{S D_{P}}\left[\mathbf{6}, \mathrm{p} .34\right.$, Theorem 3.4(6)], so $S D_{P}$ is a semiprime ideal of D_{P}. If B is an ideal of D_{P}, then $B=A D_{P}$ for some ideal A of D. Since $A=\prod_{i=1}^{n} S_{i}$ where $S_{i}=\sqrt{S_{i}}$ for each i, we have $B=\prod_{i=1}^{n}\left(S_{i} D_{P}\right)$, a product of semiprime ideals.

Now consider $\bar{D}=D / P$, and let S be a semiprime ideal of D containing P. Then $\sqrt{S / P}=\sqrt{S} / P=S / P$ by [11, p. 148, (16)]. If B is an ideal of D / P, then $B=A / P$ for some ideal A of D containing P. When $A=\prod_{i=1}^{n} S_{i}$ where each S_{i} is a semiprime ideal of D containing P, and $B=\prod_{i=1}^{n}\left(S_{i} / P\right)$ [11, p. 148, (13)], a product of semiprime ideals.

2. Domains with property SP.

Lemma 2.1. If D is a domain with property $S P$ and if the ascending chain condition for prime ideals holds in D, then D is almost Dedekind.

[^0]Proof. We first show that primary ideals of D are prime powers without using the ascending chain condition for prime ideals. Suppose Q is a primary ideal with radical P and $Q<\mathrm{P}$. Then $Q=\prod_{i=1}^{n} S_{i}$ with $\sqrt{S_{i}}=S_{i}$ for each i. Also by [11, p. 147, (8)], we have

$$
P=\sqrt{Q}=\sqrt{\prod_{i=1}^{n} S_{i}}=\bigcap_{i=1}^{n} \sqrt{S_{i}} \subset S_{i}, \text { for each } i .
$$

However from $\mathrm{P}>Q=\prod_{i=1}^{n} S_{i}$, we conclude that $P \supset S_{j}$ and hence $P=S_{j}$ for some j. We may suppose that S_{1}, \ldots, S_{n} are arranged so that $P=S_{i}$ for $1 \leqq i \leqq k$ and $P<S_{i}$ for $i>k$. Then $Q=P^{k} \prod_{i>k} S_{i}$ and $Q \subset P^{k}$. If $P^{k} \not \subset Q$, then $\Pi_{i>k} S_{i} \subset P$, since Q is P-primary. Hence $S_{j} \subset P$ for some $j>k$, implying $P=S_{j}$, a contradiction. Thus $P^{k} \subset Q$, so $P^{k}=Q$.

Since primary ideals are prime powers and since the ascending chain condition for prime ideals holds in D, it follows from [3, Corollary 4] that D is a Prüfer domain. Let P be a proper prime ideal of D. We will show that D_{P} is a Dedekind domain. By Lemma 1.1 every ideal of D_{P} is a product of semiprime ideals. However D_{P} is a valuation ring, so semiprime ideals of D_{P} are prime [9, p. 135, 5.10(1)]. Thus D_{P} is a Dedekind domain, so D is almost Dedekind.

Lemma 2.2. Suppose D has property $S P$ and a unique invertible maximal ideal M. Then $\operatorname{dim} D=1$.

Proof. Suppose the conclusion is false. Then there would exist a nonzero prime ideal $P<M$. Let $x \in P \backslash\{0\}$. We have $(x)=\prod_{i=1}^{n} S_{i}$ where $\sqrt{S_{i}}=S_{i}$ for each i. Then P $\supset \prod_{i=1}^{n} S_{i}$, so P contains S_{i} for some i. Say $P \supset S_{1}$. If $A=M^{-1} S_{1}$, an ideal of D, then $S_{1}=A M$. If $A=D$, then $S_{1}=M>P$, a contradiction. Therefore $A \subset M$, so $S_{1}=A M \supset A^{2}$. Since S_{1} is semiprime, we have $S_{1} \supset A$. Hence $S_{1} M \supset A M=S_{1}$, so $S_{1}=S_{1} M$, and
$(x) M=M S_{1} \ldots S_{n}=S_{1} \ldots S_{n}=(x)$.
Choose $m \in M$ such that $x m=x$. Then $x(1-m)=0$, but $1-m$ is a unit of D, so $x=0$, a contradiction. Therefore $\operatorname{dim} D=1$.

Lemma 2.3. If D has property $S P$, then a minimal prime of a nonzero principal ideal is minimal in D.

Proof. Let $d \in D \backslash\{0\}$ and let P be a minimal prime of (d). Since $\sqrt{d D_{P}}$ is the intersection of all primes of D_{P} which contain $d D_{P}[9$, p. 43, 2.14], it follows that $\sqrt{d D_{P}}=P D_{P}$. Then $d D_{P}$ is a primary ideal of D_{P} by $\lfloor\mathbf{1 1}$, p. 153 , Corollary 1]. Since D_{P} has property SP by Lemma 1.1, we conclude that $d D_{P}$ is a power of $P D_{P}$, since we showed in the proof of Lemma 2.1 that primary ideals are prime powers in a domain with property SP . Then $P D_{P}$ is invertible by [11, p. 272, Lemma 4], so $\operatorname{dim} D_{P}=1$ by Lemma 2.2. Thus P is minimal in D.

Theorem 2.4. A domain D with property $S P$ is almost Dedekind.
Proof. By Lemma 2.1 we need only show that D has dimension one. Suppose
$\operatorname{dim} D>1$. Then D has a maximal ideal M which is not minimal. Let P_{1} be a nonzero prime ideal properly contained in M and choose $x \in P_{1} \backslash\{0\}$. We know that P_{1} contains a minimal prime P of the ideal $(x),[6$, pp. 43,44$]$. Pick $m \in M \backslash P_{1}$ and let Q be a minimal prime in M of the ideal $P+(m)$. For an ideal A of D, let A^{e} denote the extension of A to the quotient ring D_{Q}. Since P is a minimal prime of D by Lemma 2.3, it follows that P^{e} is a minimal prime of D_{Q}. Also Q^{e} is a minimal prime of the ideal $P^{e}+m D_{Q}$.

It follows from Lemma 1.1 that D_{Q} and $\bar{D}_{Q}=D_{Q} / P^{e}$ have property SP . Thus by Lemma 2.3, $\bar{Q}=Q^{e} / P^{e}$ is a minimal prime of \bar{D}, so $\operatorname{dim} \bar{D}=1$. Then Lemma 2.1 tells us that \bar{D} is an almost Dedekind domain. Since \bar{D} has a unique maximal ideal \bar{Q}, we conclude that \bar{D} is a rank one discrete valuation ring. Thus in $\bar{D},(\bar{O})=\bigcap_{n=1}^{\infty} \bar{Q}^{n}$. From [3, Theorem 1] we know that $P^{e} \subset \cap_{n=1}^{\infty}\left(Q^{e}\right)^{n}$, and hence $P^{e}=\bigcap_{n=1}^{\infty}\left(Q^{e}\right)^{n}$. Then by [3, Theorem 3] it follows that each prime ideal of D_{Q} is contained in P^{e}. However P^{e} is a minimal prime of D_{Q}, so $\operatorname{dim} D_{Q}=2$. But then by Lemma 2.1, D_{Q} is almost Dedekind and $\operatorname{dim} D_{Q}=1$, a contradiction. Therefore $\operatorname{dim} D=1$.
3. An example. In Section 2 we showed that a domain must be almost Dedekind if every proper ideal is a product of semiprime ideals. Clearly every Dedekind domain has property SP. In this section we study an example of a domain which has property SP but is not Dedekind. We let N, Z denote the sets of natural numbers and integers, respectively.

First let D be any almost Dedekind domain with quotient field K, and let $\mathscr{M}(D)$ denote the set of maximal ideals of D. If $A \neq(0)$ is a fractional ideal of D, and if $P \in \mathscr{M}(D)$, then for some $q \in Z$ we have $A D_{P}=\left(P D_{P}\right)^{q}$. We indicate this fact by the notation $v(P, A)=q$. In case $x \in K \backslash\{0\}$, we write $v(P, x)$ instead of $v(P,(x))$. Then $v(P, \cdot)$ is the P-adic valuation on K.

Lemma 3.1. Let A, B be nonzero fraciional ideals of D.
(i) $v(P, A)=\min \{v(P, a) \mid a \in A \backslash\{0\}\}$.
(ii) $v(P, A B)=v(P, A)+v(P, B) \quad$ and $\quad v\left(P, A^{q}\right)=q \cdot v(P, A), q \in Z$.
(iii) $A=\cap\left\{P^{v(P, A)} \mid P \in \mathscr{M}(D)\right\}$.

Proof. These assertions are evident. Part (iii) follows since

$$
A=\bigcap_{P \in \mathscr{M}(D)} A D_{P}
$$

[6, p. 42, 3.10(3)].
Lemma 3.2. Let D be an almost Dedekind domain. Then an ideal $S \neq(0)$ is semiprime if and only if $v(P, S)=0$ or 1 for all $P \in \mathscr{M}(D)$.

Proof. If $S \neq(0)$ is semiprime, then so is $S D_{P}$ for every $P \in \mathscr{M}(D)$, as we showed in the proof of Lemma 1.1. Since D_{P} is a rank one discrete valuation ring, we either have $S D_{P}=D_{P}$ and $v(P, S)=0$, or else $S D_{P}=P D_{P}$ and $v(P, S)=1$.

If $v(P, S)=0$ or 1 for every $P \in \mathscr{M}(D)$, then $S=\cap\left\{P^{v(P, S)} \mid P \in \mathscr{M}(D)\right\}$, an intersection of prime ideals. Thus $\sqrt{S}=S$, so S is semiprime.

The example to be studied is given by Heinzer and Ohm in [8, pp. 276-278]. We will review the construction. Let G denote the set of all integer-valued infinite sequences which are eventually constant; i.e.,

$$
\begin{aligned}
& G=\{f=(f(1), f(2), \ldots) \mid f: N \rightarrow Z \text { and } \exists J \in N \ni j>J \Rightarrow \\
&f(j)=f(j+1)\} .
\end{aligned}
$$

For $f \in G$, let $f(\infty)$ denote the eventual constant value of f and let $N_{\infty}=N \cup\{\infty\}$. The following definitions make G into a lattice ordered group. The operation is component-wise addition, and order is defined thus: $f \leqq g$ if $f(i) \leqq g(i)$ for all $i \in N$. A proper subset $\mathbf{\Sigma}$ of $G^{+}=\{g \in G \mid g \geqq 0\}$ is called a segment of G if $a \in \Sigma$ and $b \geqq a$ implies $b \in \Sigma$ and if $a, b \in \Sigma$ implies $\inf \{a, b\} \in \Sigma$. A segment Σ is called prime if the complement $G^{+} \backslash \Sigma$ is closed under addition. For each $i \in N_{\infty}$, the set $\Sigma_{i}=\{f \mid f \in G, f(i)>0\}$ is a prime segment of G, and there are no others.

Using the method of Jaffard $\lfloor\mathbf{1 0}\rfloor$, Heinzer and Ohm construct a domain D with quotient field K which has G as its group of divisibility. Thus there exists a function ϕ from $K \backslash\{0\}$ onto G such that $\phi(a b)=\phi(a)+\phi(b)$ for all a, $b \in K \backslash\{0\}$, and $\phi(D \backslash\{0\})=G^{+}$. The proper prime ideals of D are the sets $P^{\prime}=\phi^{-1}\left(\Sigma_{i}\right), i \in N_{\infty}$. For each $i \in N_{\infty}$, if H_{i} is the subgroup of G generated by $G^{+} \backslash \Sigma_{i}$, then there is an isomorphism $\psi_{i}: G / H_{i} \rightarrow Z$. If $\eta_{i}: G \rightarrow G / H_{i}$ is the canonical homomorphism then the function $\psi_{i} \eta_{i} \phi: K \backslash\{0\} \rightarrow Z$ is the P_{i}-adic valuation $v\left(P_{i}, \cdot\right)$. Thus D is almost Dedekind. Furthermore for each $u \in K \backslash\{0\}$, the sequence $v\left(P_{1}, u\right), v\left(P_{2}, u\right), \ldots$ is eventually constant, and the eventual constant value is $v\left(P_{\infty}, a\right)$.

Lemma 3.3. Let u_{1}, u_{2}, \ldots be a bounded sequence of nonnegative integers and set $B=\bigcap_{i \in N} P_{i}^{u_{i}}$ (in the above domain). Then for cach $j \in N, v\left(P_{j}, B\right)=u_{j}$ and $v\left(P_{\infty}, B\right)=\lim \sup { }_{i \in N} u_{i}$.

Proof. Choose $j \in N$. If $u=\lim \sup _{i \in N} u_{i}$, then there exists $I \in N$ such that $i>I$ implies $u_{i} \leqq u$. We know that there exists $x \in D$ such that

$$
\phi(x)=\left(u_{1}, u_{2}, \ldots, u_{j}, \ldots, u, u, u, \ldots\right) ;
$$

i.e., $\phi(x)(i)=u_{i}$ if $i \leqq \max \{j, I\}$ and $\phi(x)(i)=u$ if $i>\max \{j, I\}$. Then $x \in P_{i}^{u_{i}}$ for each $i \in N$, so $x \in B$. Since $v\left(P_{j}, x\right)=u_{j}$, we have $v\left(P_{j}, B\right) \leqq u_{j}$ by Lemma 3.1, i. However $B=\bigcap_{i \in N} P_{i}{ }_{i} \subset P_{j}{ }_{j}{ }_{i}$, so $v\left(P_{j}, B\right) \geqq u_{j}$. Combining the inequalities yields $v\left(P_{j}, B\right)=u_{j}$.

Now we consider $v\left(P_{\infty}, B\right)$. For any j, if x is chosen as above, we have $v\left(P_{\infty}, x\right)=u$, so $v\left(P_{\infty}, B\right) \leqq u$, by Lemma 3.1, i. For the reverse inequality, take $b \in B \backslash\{0\}$. Since $u=\lim \sup _{i \in N} u_{i}=\lim \sup _{i \in N} v\left(P_{i}, B\right)$, we know that there must be an infinite sequence i_{1}, i_{2}, \ldots from N such that $v\left(P_{i_{k}}, B\right)=u$ for every $k \in N$. Thus $v\left(P_{i_{k}}, b\right) \geqq u$ for each k, and so the eventual constant
value of $v\left(P_{i}, b\right), i \in N$, cannot be less than u. Thus $v\left(P_{\infty}, b\right) \geqq u$, and $v\left(P_{\infty}, B\right) \geqq u$ by Lemma 3.1, i. Therefore $v\left(P_{\infty}, B\right)=u$.

Theorem 3.4. If D is the almost Dedekind domain of Heinzer and Ohm, then cevery proper ideal of D is a product of semiprime ideals.

Proof. Let A be a proper ideal of D. By Lemma 3.1, i, we see that the set $\left\{v\left(P_{i}, A\right) \mid i \in N_{\infty}\right\}$ is bounded above by $\max \left\{v\left(P_{i}, a\right) \mid i \in N_{\infty}\right\}$ for any $a \in A \backslash\{0\}$, and so the set $\left\{v\left(P_{i}, A\right) \mid i \in N_{\infty}\right\}$ is finite. Let $w_{1}<w_{2}<\ldots<w_{n}$ be its elements, and let $w_{0}=0$. For $j \in\{1,2, \ldots, n\}$ let

$$
X_{j}=\left\{i \mid v\left(P_{i}, A\right) \geqq w_{j}\right\} .
$$

Observe that $X_{1} \supset X_{2} \supset \ldots \supset X_{n}$. Now consider the product of semiprime ideals

$$
A_{1}=\prod_{j=1}^{n}\left(\bigcap_{i \in X_{j}} P_{i}\right)^{w_{j}-u u_{j-1}}
$$

By Lemma 3.1, iii, we can prove $A=A_{1}$ by showing that $v\left(P_{k}, A\right)=v\left(P_{k}, A_{1}\right)$ for each $k \in N_{\infty}$.
Suppose $k \in N$. We have $v\left(P_{k}, A\right)=w_{j(0)}$ for some $j(0)$. Suppose $j>j(0)$. Then $w_{j}>w_{j(0)}$ and $k \notin X_{j}$, so $v\left(P_{k}, \cap_{i \in X_{j}} P_{i}\right)=0$ by Lemma 3.3. On the other hand, $j \geqq j(0)$ implies $k \in X_{j}$ and $v\left(P_{k}, \cap_{i \in X_{j}} P_{i}\right)=1$. Thus by Lemma 3.1, ii,

$$
v\left(P_{k}, A_{1}\right)=\sum_{j=1}^{j(0)}\left(w_{j}-w_{j-1}\right)=w_{j(0)}=v\left(P_{k}, A\right) .
$$

Consider $v\left(P_{\infty}, A_{1}\right)$. We have $\lim \sup _{i \in N} v\left(P_{i}, A\right)=w_{j(1)}$ for some $j(1)$, and so there exists $I \in N$ such that $i>I$ implies $v\left(P_{i}, A\right) \leqq w_{j(1)}$. So, if $j>j(1)$ and $i \in X_{j}$, then $v\left(P_{i}, A\right) \geqq w_{j}>w_{j(1)}$ and $i \leqq I$. Therefore if $j>j(1)$, then X_{j} is a finite set and in this case $v\left(P_{\infty}, \cap_{i \in X_{j}} P_{i}\right)=0$ by Lemma 3.3. On the other hand $X_{j(1)}$ is an infinite set since $w_{j(1)}$ must occur infinitely often in the sequence $v\left(P_{1}, A\right), v\left(P_{2}, A\right), \ldots$ Since

$$
X_{1} \supset X_{2} \supset \ldots \supset X_{j(1)}
$$

all these sets are infinite, and so $v\left(P_{\infty}, \bigcap_{i \in X_{j}} P_{i}\right)=1$ if $j \leqq j(1)$ by Lemma 3.3. Therefore

$$
v\left(P_{\infty}, A_{1}\right)=\sum_{j=1}^{j(1)}\left(w_{j}-w_{j-1}\right)=w_{j(1)}=\lim _{i \in N} \sup v\left(P_{i}, A\right)=v\left(P_{\infty}, A\right),
$$

by Lemma 3.3. Thus $A=A_{1}$, and so A is a product of semiprime ideals.
One might wonder if there exist almost Dedekind domains without property SP . In [13] there is a necessary and sufficient condition for a domain which is the union of a tower of Dedekind domains to have this property. With this condition the author of [13] exhibits an almost Dedekind domain which does not have property SP.

References

1. N. Bourbaki, Éléments de mathématique; Algèbre commutative, Chapter 7 (Herman, Paris, 1965).
2. H. S. Butts and R. H. Cranford, Some containment relations between classes of ideals in an integral domain, J. Sci. Hiroshima Univ. Ser A-I 29 (1965), 1-10.
3. H. S. Butts and R. IV. Gilmer, Primary ideals and prime power ideals, Can. J. Math. 18 (1966), 1183-119\%.
4. H. S. Butts and R. C. Phillips, Almost multiplication rings, Can. J. Math. 17 (1965), 267-277.
5. R. W. Gilmer, Integral domains which are almost Dedekind, Proc. Amer. Math. Soc. 15 (1964), 813-818.
6. ———Multiplicative ideal theory I (Queen's University Press, Kingston, Ontario, 1968).
7. R. W. Gilmer and J. Ohm, Primary ideals and cialuation ideals, Trans. Amer. Math. Soc. 117 (1965), 237-250.
8. IV. Heinzer and J. Ohm, Locally noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971), 273-284.
9. M. Larsen and P. McCarthy, Mfultiplicative theory of ideals (Academic Press, New York, 1971).
10. P. Jaffard, Les systèmes d'idéaux (Dunod, Paris, 1960).
11. O. Zariski and P. Samuel, Commutative algebra, vol. I (Van Nostrand, Princeton, New Jersey, 1958).
12. - Commutative algebra, vol. II (Van Nostrand, Princeton, New Jersey, 1960).
13. R. W. Yeagy, Semiprime factorizations in unions of Dedekind domains, submitted for publication.

Stephen F. Austin State University, Nacogdoches, Texas

[^0]: Received August 5,1977 . The work of the second author was supported by a faculty research grant from Stephen F. Austin State University.

