ON THE EXTENSIONS OF SOME CLASSICAL DISTRIBUTIONS*

by A. SRI RANGA and J. H. McCABE

(Received 13th December 1988)

Abstract

Some properties of polynomials associated with strong distribution functions are given, including conditions for the polynomials to satisfy a three term recurrence relation. Strong distributions that are extensions to the four classical distributions are given as examples.

1980 Mathematics subject classification (1985 Revision): 30B70, 33A65

1. Introduction

We consider distribution functions whose moments exist for positive and negative values. That is functions $\psi(t)$ which are bounded and non-decreasing in $(-\infty, \infty)$ and for which the moments

$$
\mu_{n}=\int_{-\infty}^{\infty} t^{n} d \psi(t)
$$

are finite for $n=0, \pm 1, \pm 2, \ldots$. Such functions have been described as strong distribution functions because they arise as solutions of strong moment problems (see [1,2$]$). The distribution is called symmetric if all the odd order moments are zero and is called a positive half distribution if all the points of increase are on the positive real axis.

The Hankel determinants are defined by

$$
H_{r}^{(m)}=\left|\begin{array}{cccc}
\mu_{m} & \mu_{m+1} & \cdots & \mu_{m+r-1} \\
\mu_{m+1} & \mu_{m+2} & \cdots & \mu_{m+r} \\
\vdots & \vdots & & \vdots \\
\mu_{m+r-1} & \mu_{m+r} & & \mu_{m+2 r-2}
\end{array}\right| .
$$

for all positive and negative m and $r \geqq 1$, with

[^0]
A. SRI RANGA AND J. H. McCABE

$$
H_{-1}^{(m)}=0 \quad \text { and } \quad H_{0}^{(m)}=1 .
$$

For any strong distribution

$$
H_{r}^{(2 m)}>0, \quad r \geqq 0, \quad m=0, \pm 1, \pm 2, \ldots .
$$

In the case of a positive half distribution we also have

$$
H_{r}^{(2 m+1)}>0, \quad r \geqq 0, \quad m=0, \pm 1, \pm 2, \ldots,
$$

while for symmetric distributions

$$
H_{2 r+1}^{(2 m+1)}=0 \quad \text { and } \quad(-1)^{r} H_{2 r}^{(2 m+1)}>0, \quad r \geqq 0, \quad m=0, \pm 1, \pm 2, \ldots .
$$

The first of these latter results is because the columns of $H_{j}^{(k)}$ are linearly dependent if both j and k are odd. The second follows from the well known Jacobi identity

$$
\left\{H_{r}^{(m)}\right\}^{2}-H_{r}^{(m-1)} H_{r}^{(m-1)}+H_{r+1}^{(m-1)} H_{r-1}^{(m+1)}=0 .
$$

2. Polynomials related to strong distributions

Given a strong distribution function $\psi(t)$ we define the polynomials $\left\{Q_{n}(z)\right\}_{0}^{\infty}$ by

$$
\begin{array}{rlrl}
\int_{-\infty}^{\infty} t^{-2[n / 2]+s} Q_{n}(t) d \psi(t) & =0 & & 0 \leqq S \leqq n-1 \\
& =\gamma_{n}, & s=n \tag{2.1}
\end{array}
$$

for $n \geqq 1$, with $Q_{0}(z)=1$, and $[x]$ denotes integer part of x.
In monic form the polynomials can be expressed as

$$
\begin{aligned}
& Q_{2 n}(z)=\frac{1}{H_{2 n}^{(-2 n)}}\left|\begin{array}{cccc}
\mu_{-2 n} & \ldots & \mu_{0} \\
\vdots & & \vdots \\
\mu_{-1} & & \ldots & \mu_{2 n-1} \\
1 & z & \ldots & z^{2 n}
\end{array}\right| . \\
& Q_{2 n+1}=\frac{1}{H_{2 n+1}^{(-2 n)}}\left|\begin{array}{llll}
\mu_{-2 n} & \ldots & \mu_{1} \\
\vdots & & \vdots \\
\mu_{0} & \ldots & \mu_{2 n-1} \\
1 & z & \ldots & z^{2 n+1}
\end{array}\right|
\end{aligned}
$$

and, further,

$$
\gamma_{2 n}=H_{2 n+1}^{(-2 n)} / H_{2 n}^{(-2 n)}, \quad \gamma_{2 n+1}=H_{2 n+2}^{(-2 n)} / H_{2 n+1}^{(-2 n)} .
$$

The existence of the polynomials is guaranteed by the positivity of $H_{r}^{(2 m)}, r \geqq 0, m=$ $0, \pm 1, \ldots$, and clearly all γ_{k} are positive. It is not difficult to show that the zeros of $Q_{n}(z)$ are real and distinct, for all values of $n \geqq 1$.

A second sequence of polynomials is then defined in the usual way by

$$
\begin{equation*}
P_{n}(z)=\int_{-\infty}^{\infty} \frac{Q_{n}(z)-Q_{n}(t)}{z-t} d \psi(t), \quad n \geqq 0 \tag{2.2}
\end{equation*}
$$

and clearly $P_{n}(z)$ is a polynomial of degree $n-1$ with leading coefficient μ_{0}.
Strong positive half distributions and strong symmetric distributions belong to those distribution functions for which the following result holds.

Theorem. Let $\psi(t)$ be a strong distribution function such that

$$
H_{2 n}^{(-2 n+1)} \neq 0, \quad n \geqq 0
$$

The polynomials $Q_{n}(z)$ and $P_{n}(z)$ each satisfy the three term recurrence relations

$$
\begin{gather*}
R_{2 n}(z)=\left(z-\beta_{2 n}\right) R_{2 n-1}(z)-\alpha_{2 n} R_{2 n-2}(z) \\
R_{2 n+1}(z)=\left\{\left(1+\alpha_{2 n+1}\right) z-\beta_{2 n+1}\right\} R_{2 n}(z)-\alpha_{2 n+1} z^{2} R_{2 n-1}(z) \tag{2.3}
\end{gather*}
$$

for $n \geqq 1$ with $Q_{0}(z)=1, Q_{1}(z)=z-\mu_{1} / \mu_{0}, P_{0}(z)=0$ and $P_{1}(z)=\mu_{0}$. The coefficients are given by

$$
\begin{gathered}
\alpha_{2 n}=\left\{\frac{H_{2 n}^{(-2 n+1)}}{H_{2 n-1}^{(-2 n+2)}}\right\}^{2} \frac{H_{2 n-2}^{(-2 n+2)}}{H_{2 n}^{(-2 n)}}, \quad \beta_{2 n}=\frac{H_{2 n}^{(-2 n+1)} H_{2 n-1}^{(-2 n+1)}}{H_{2 n-1}^{(-2 n+2)} H_{2 n}^{(-2 n)}} \\
\alpha_{2 n+1}=\frac{H_{2 n+1}^{(-2 n)} H_{2 n-1}^{(-2 n+2)}}{\left\{H_{2 n}^{(-2 n+1)}\right\}^{2}}, \quad \beta_{2 n+1}=\frac{H_{2 n+1}^{(-2 n+1)} H_{2 n}^{(-2 n)}}{H_{2 n+1}^{(-2 n)} H_{2 n}^{(-2 n+1)}}
\end{gathered}
$$

for $n \geqq 1$.

Proof. First for the odd index, write

$$
A(z)=\left\{Q_{2 n+1}(z)-z Q_{2 n}(z)\right\}-\alpha_{2 n+1} z\left\{Q_{2 n}(z)-z Q_{2 n-1}(z)\right\},
$$

a polynomial of degree $2 n$ at most, as

$$
A(z)=-\beta_{2 n+1} Q_{2 n}(z)+B(z),
$$

where $B(z)$ is some polynomial of degree $2 n-1$ at most. Hence from (2.1) it follows that

$$
\int_{-\infty}^{\infty} t^{s} B(t) d \psi(t)= \begin{cases}0, & s=-2 n,-2 n+1, \ldots,-2 \\ -\gamma_{2 n}-\alpha_{2 n+1}\left(\gamma_{2 n}-\gamma_{2 n-1}\right) & s=-1\end{cases}
$$

Since $H_{2 n}^{(-2 n)}$ is non zero, then choosing $\alpha_{2 n+1}$ such that

$$
\gamma_{2 n}+\alpha_{2 n+1}\left(\gamma_{2 n}-\gamma_{2 n-1}\right)=0
$$

means that $B(z)$ is identically zero. This gives the required three term relation. Further, as $\gamma_{2 n}$ is positive, choosing $\alpha_{2 n+1}$ in this way is possible only if $\gamma_{2 n}-\gamma_{2 n-1} \neq 0$. Expressing $\gamma_{2 n}$ and $\gamma_{2 n-1}$ in terms of the Hankel determinants and using the Jacobi identity we find that $\gamma_{2 n}-\gamma_{2 n-1} \neq 0$ if $H_{2 n}^{(-2 n+1)} \neq 0$. In this case $\alpha_{2 n+1}$ can be given as in the theorem. With this choice of $\alpha_{2 n+1}$ the value of $\beta_{2 n+1}$ can be found by considering the integral equation

$$
\int_{-\infty}^{\infty} t^{-2 n-1} A(z) d \psi(t)=-\beta_{2 n+1} \int_{-\infty}^{\infty} t^{-2 n-1} Q_{2 n}(z) d \psi(t)
$$

The expression for the even index is verified in a similar fashion by considering

$$
Q_{2 n}(z)-z Q_{2 n-1}(z)=-\beta_{2 n} Q_{2 n-1}(z)-\alpha_{2 n} Q_{2 n-2}(z)+B(z)
$$

where $B(z)$ is some polynomial of degree $2 n-3$ at most.
Having established the recurrence relations for the $Q_{n}(z)$, we then use the definition (2.2) of $P_{n}(z)$ to show that they also satisfy the relations.

The above recurrence relations indicate that the ratios $P_{n}(z) / Q_{n}(z)$ are, for $n=1,2,3, \ldots$, the successive convergents of the continued fraction.

$$
\frac{\mu_{0}}{z-\beta_{1}}-\frac{\alpha_{2}}{z-\beta_{2}}-\frac{\alpha_{3} z^{2}}{\left(1+\alpha_{3}\right) z-\beta_{3}}-\frac{\alpha_{4}}{z-\beta_{4}}-\frac{\alpha_{5} z^{2}}{\left(1+\alpha_{5}\right) z-\beta_{5}}-\frac{\alpha_{6}}{z-\beta_{6}}-\cdots
$$

From the definition of $P_{n}(z)$ we see that

$$
\frac{P_{n}(z)}{Q_{n}(z)}=\int_{-\infty}^{\infty} \frac{1}{z-t} d \psi(t)-\frac{1}{Q_{n}(z)} \int_{-\infty}^{\infty} \frac{Q_{n}(t)}{z-t} d \psi(t)
$$

Expanding the integrand in the second integral in inverse powers of z and using the orthogonality properties of $Q_{n}(z)$ yields

$$
\frac{P_{2 n}(z)}{Q_{2 n}(z)}=\int_{-\infty}^{\infty} \frac{1}{z-t} d \psi(t)+O\left(\frac{1}{z^{2 n+1}}\right) \quad n \geqq 1
$$

and

$$
\frac{P_{2 n+1}(z)}{Q_{2 n+1}(z)}=\int_{-\infty}^{\infty} \frac{1}{z-t} d \psi(t)+O\left(\frac{1}{z^{2 n+3}}\right) \quad n \geqq 0
$$

The symbol $O\left(1 / z^{r}\right)$ denotes a power series in inverse powers of z starting with $1 / z^{r}$.
Since

$$
Q_{2 n}(0)=\frac{H_{2 n}^{(-2 n+1)}}{H_{2 n}^{(-2 n)}}
$$

then under the condition of the above theorem, $Q_{2 n}(0) \neq 0$. On the other hand $Q_{2 n+1}(0)$ may be zero, but, if it is, we can show from the linear system of equations yielded by (2.1) that $Q_{2 n+1}^{\prime}(0) \neq 0$. With these results we can expand the ratio $P_{n}(z) / Q_{n}(z)$ in powers of z and obtain

$$
\begin{equation*}
\frac{P_{2 n}(z)}{Q_{2 n}(z)}=\int_{-\infty}^{\infty} \frac{1}{z-t} d \psi(t)+O\left(z^{2 n}\right) \quad n \geqq 1 \tag{2.5}
\end{equation*}
$$

and

$$
\frac{P_{2 n+1}(z)}{Q_{2 n+1}(z)}=\int_{-\infty}^{\infty} \frac{1}{z-t} d \psi(t)+O\left(z^{2 n-1}\right) \quad n \geqq 0
$$

3. Examples

1. The strong Tchebycheff distribution. We first consider the distribution function $\psi_{T}(t)$ given by

$$
\begin{aligned}
d \psi_{T}(t) & =\frac{|t|}{\sqrt{b^{2}-t^{2}} \sqrt{t^{2}-a^{2}}}, & & t \in B \equiv[-b,-a] \cup[a, b] \\
& =0, & & t \notin B
\end{aligned}
$$

with $0<a<b<\infty$.
In the limit as $a \rightarrow 0$ and $b \rightarrow 1$ the distribution becomes the Tchebycheff distribution and so we may view it as an extension to this distribution. Further, since $a>0$, the function has finite moments of negative order and thus we refer to $\psi_{T}(t)$ as a strong Tchebycheff distribution. We have the following result.

Theorem. For the strong Tchebycheff distribution function $\psi_{T}(t)$ defined above the polynomials $Q_{n}(z)$ and $P_{n}(z)$ satisfy the three term recurrence relation (2.3) with α_{n} and β_{n} given by

$$
\begin{array}{lll}
\beta_{n}=0, & \alpha_{2 n}=\gamma, & n \geqq 1, \\
\alpha_{3}=\frac{1}{2} \frac{\lambda^{2}}{\gamma}, & \alpha_{2 n+1}=\frac{1}{4} \frac{\lambda^{2}}{\gamma}, & n \geqq 2,
\end{array}
$$

where $\gamma=a b$ and $\lambda=(b-a)$.
Proof. Consider the continued fraction

$$
\begin{equation*}
\frac{\mu_{0}^{T}}{z}-\frac{a_{2}}{z}-\frac{2 a_{1} z^{2}}{\left(1+2 a_{1}\right) z}-\frac{a_{2}}{z}-\frac{a_{1} z^{2}}{\left(1+a_{1}\right) z}-\frac{a_{2}}{z}-\cdots \tag{3.1}
\end{equation*}
$$

in which $a_{2}=\gamma$ and $a_{1}=\lambda^{2} /(4 \gamma)$.
As the coefficients of (3.1) are bounded then the continued fraction coverges uniformly to an analytic function over every bounded closed region in the upper half plane $\operatorname{Im}(\mathrm{z})>0$. See [4, Theorem 9]. Denoting this function by $F(z)$ then

$$
F(z)=\frac{\mu_{0}^{T}}{z}-\frac{a_{2}}{z}-\frac{2 a_{1} z^{2}}{\left(1+2 a_{1}\right) z}-f(z)
$$

where $f(z)$ is a 2-periodic continued fraction which can be written as

$$
f(z)=\frac{a_{2}}{z}-\frac{a_{1} z^{2}}{\left(1+a_{1}\right) z}-f(z) .
$$

Solving for $f(z)$ yields

$$
f(z)=\frac{\left(z^{2}+a_{2}\right) \pm \sqrt{\left(z^{2}+a_{2}\right)^{2}-4 a_{2}\left(1+a_{1}\right) z^{2}}}{2 z}
$$

If we now choose

$$
a=\sqrt{a_{2}}\left\{\sqrt{1+a_{1}}-\sqrt{a_{1}}\right\}
$$

and

$$
b=\sqrt{a_{2}}\left\{\sqrt{1+a_{1}}+\sqrt{a_{1}}\right\}
$$

then clearly $a_{2}=\gamma$ and $a_{1}=\lambda^{2} /(4 \gamma)$ and we have

$$
f(z)=\frac{1}{2 z}\left\{\left(z^{2}+a b\right) \pm \sqrt{z^{2}-b^{2}} \sqrt{z^{2}-a^{2}}\right\} .
$$

The function $f(z)$ has two values but only one of them is appropriate since $F(z)$ must take one value only. We note that $\operatorname{Im} F(z)<0$ whenever $\operatorname{Im}(z)>0$, see [4]. Consequently

$$
f(z)=\frac{1}{2 z}\left\{\left(z^{2}+a b\right)-\sqrt{z^{2}-b^{2}} \sqrt{z^{2}-a^{2}}\right\}
$$

and

$$
\begin{equation*}
F(z)=\mu_{0}^{T} z /\left\{\sqrt{z^{2}-b^{2}} \sqrt{z^{2}-a^{2}}\right\} \tag{3.2}
\end{equation*}
$$

The function $F(z)$ can be written alternatively as

$$
F(z)=\frac{\mu_{0}^{T}}{\pi} \int_{B} \frac{1}{z-t} \frac{|t|}{\sqrt{\left(b^{2}-t^{2}\right)} \sqrt{\left(t^{2}-a^{2}\right)}} d t
$$

a result given in Van Assche [5].
We can show that $\mu_{0}^{T}=\pi$ and hence

$$
\begin{equation*}
F(z)=\int_{-\infty}^{\infty} \frac{1}{z-t} d \psi_{T}(t) \tag{3.3}
\end{equation*}
$$

Hence the continued fraction converges to the Stieltjes function of the strong Tchebycheff distribution. Using results given in [3] we can then show that the convergents $P_{n}(z) / Q_{n}(z)$ of (3.1) satisfy (2.4) and (2.5) for this distribution. It is then easy to show that $Q_{n}(z)$ and $P_{n}(z)$ satisfy (2.1) and (2.2) respectively, see [2]. This completes the proof.

We can express a and b in terms of γ and λ,

$$
b=\frac{\gamma}{a}=\lambda+\frac{\gamma}{\lambda}+\frac{\gamma}{\lambda}+\frac{\gamma}{\lambda}+\cdots .
$$

Also, by expanding the right hand side of (3.2) we see that the moments of $\psi_{T}(t)$ satisfy

$$
\begin{gathered}
\mu_{2 n}^{T}=\frac{\pi}{4^{n}} \sum_{j=0}^{n} \sigma_{j} \sigma_{n-j}\left(a^{2}\right)^{j}\left(b^{2}\right)^{n-j}, \\
\mu_{-2 n-1}^{T}=\mu_{2 n+1}^{T}=0, \quad \mu_{-2 n-2}^{T}=\mu_{2 n /}^{T} /(a b)^{2 n+1},
\end{gathered}
$$

for $n \geqq 0$, where $\sigma_{j}=(2 j)!/(j!)^{2}$.
2. The strong Legendre distribution. Next we consider

$$
\begin{aligned}
d \psi_{\mathrm{Le}}(t) & =d t, & & t \in B \equiv[-b,-a] \cup[a, b] \\
& =0, & & t \notin B
\end{aligned}
$$

again with $0<a<b<\infty$.
The moments $\mu_{n}^{L e}, n=0, \pm 1, \pm 2, \ldots$ of this distribution are easily found. As $\psi_{L e}(t)$ is a symmetric distribution function the polynomials $Q_{n}(z)$ and $P_{n}(z)$ each satisfy (2.3). Numerical evidence suggests that

$$
\begin{equation*}
\beta_{n}=0, \quad \alpha_{2 n}=\gamma, \quad \alpha_{2 n+1}=\frac{\lambda^{2}}{\gamma} \cdot \frac{n^{2}}{4 n^{2}-1}, \quad n \geqq 1, \tag{3.4}
\end{equation*}
$$

where $\gamma=a b$ and $\lambda=(b-a)$.
The coefficients of the continued fraction

$$
\frac{\mu_{0}^{L e}}{z}-\frac{\alpha_{2}}{z}-\frac{\alpha_{3} z^{2}}{\left(1+\alpha_{3}\right) z}-\frac{\alpha_{4}}{z}-\frac{\alpha_{5} z^{2}}{\left(1-\alpha_{5}\right) z}-\cdots
$$

are bounded and hence the continued fraction converges uniformly over every bounded closed domain in the upper half plane $\operatorname{Im}(z)>0$. (See [4]). Hence, if the values in (3.4) are correct then the continued fraction converges to

$$
\int_{B} \frac{1}{z-t} d \psi_{L e}(t) .
$$

In the case when $z=i$ we would then have

$$
\tan ^{-1}\left(\frac{\lambda}{1+\gamma}\right)=\frac{\lambda}{1}+\frac{a_{2}}{1}+\frac{a_{3}}{1}+\frac{a_{4}}{1}+\cdots
$$

where

$$
\begin{gathered}
a_{2 n+2}=\frac{\gamma^{2}\left(4 n^{2}-1\right)}{\left(\lambda^{2}+4 \gamma\right) n^{2}-\gamma}, \quad n \geqq 0 \\
a_{2 n+1}=-\frac{\lambda^{2} n^{2}}{\left(\lambda^{2}+4 \gamma\right) n^{2}-\gamma}, \quad n \geqq 1 .
\end{gathered}
$$

Taking the even contraction leads, after some manipulation, to the well known expansion

$$
\tan ^{-1} x=\frac{x}{1}+\frac{1^{2} x^{2}}{3}+\frac{2^{2} x^{2}}{5}+\frac{3^{2} x^{2}}{7}+\cdots
$$

A second result in support of (3.4) is the asymptotic behaviour of α_{n}. From an analysis similar to that given in Van Assche [5], of the three term recurrence relation (2.3), we find that

$$
\begin{aligned}
& \sqrt{\alpha_{2 n}}\left\{\sqrt{1+\alpha_{2 n+1}}-\sqrt{\alpha_{2 n+1}}\right\} \rightarrow a \\
& \sqrt{\alpha_{2 n}}\left\{\sqrt{1+\alpha_{2 n+1}}+\sqrt{\alpha_{2 n+1}}\right\} \rightarrow b
\end{aligned}
$$

and clearly the expressions in (3.4) are compatible with these limits.
3. The strong Hermite Distribution. Thirdly we set

$$
d \psi_{H}(t)=e^{-\left(t^{2}+a^{2} / t^{2}\right) / 2} d t-\infty<t<\infty
$$

with $0<a<\infty$. In this case the moments μ_{n}^{H} satisfy

$$
\begin{gathered}
\mu_{0}^{H}=\sqrt{2 \pi} / e^{a}, \quad \mu_{-2 n-1}^{H}=\mu_{2 n+1}^{H}=0 \\
\mu_{-2 n-2}^{H}=\mu_{2 n}^{H} / a^{2 n+1} \\
\mu_{2 n+2}^{H}=(2 n+1) \mu_{2 n}^{H}+a^{2} \mu_{2 n-2}^{H}
\end{gathered}
$$

for $n \geqq 1$. We can also give $\mu_{2 n}^{H}$ explicitly as

$$
\mu_{2 n}^{H}=\frac{\sqrt{2 \pi}}{2^{3 n} e^{a}} \sum_{r=0}^{n}\binom{2 n+1}{2 r+1} \sum_{s=0}^{r}\binom{r}{s}(8 a)^{s} \frac{(2 n-2 s)!}{(n-s)!}, \quad n \geqq 0 .
$$

The distribution function $\psi_{H}(t)$ is symmetric and hence the associated polynomials $Q_{n}(z)$ and $P_{n}(z)$ satisfy (2.3). Here computational evidence seems to suggest that

$$
\beta_{n}=0, \quad \alpha_{2 n}=a \quad \text { and } \quad \alpha_{2 n+1}=\frac{n}{a}, \quad n \geqq 1 .
$$

Again we do not have any analytic proof of this result. However as before, we are able to conjecture that it is true.

If the result is correct then

$$
\int_{-\infty}^{\infty} \frac{1}{z-t} d \psi_{H}(t)=\frac{\mu_{0}^{H}}{z}-\frac{a}{z}-\frac{(1 / a) z^{2}}{(1+1 / a) z}-\frac{a}{z}-\frac{(2 / a) z^{2}}{(1+2 / a) z}-\frac{a}{z}-\cdots .
$$

This continued fraction is uniformly convergent over all bounded closed regions in the half plane $\operatorname{Im}(z)>0$. (See [4, Theorem 9]). Hence, by taking the even part of this continued fraction, we find

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1}{z-t} d \psi_{H}(t)=\frac{\mu_{0}^{H}}{z^{2}-a}-\frac{z^{2}}{z^{2}-a}-\frac{2 z^{2}}{z^{2}-a}-\frac{3 z^{2}}{z^{2}-a}-\cdots \tag{3.5}
\end{equation*}
$$

A. SRI RANGA AND J. H. McCABE

Then substituting $z /\left(z^{2}-a\right)= \pm i$, we get

$$
1-\sqrt{\pi / 2}\left\{\int_{0}^{\infty} \frac{1}{1+t^{2}} e^{-\frac{1}{t} t^{2}} d t\right\}=\frac{1}{1}+\frac{2}{1}+\frac{3}{1}+\frac{4}{1}+\cdots
$$

This expansion is correct, and can also be obtained from the J-fraction expansion of

$$
\int_{-\infty}^{\infty} e^{-t^{2} / 2} d t /(z-t),
$$

by letting $z=i$.
4. A strong Laguerre distribution. Finally we consider

$$
\begin{aligned}
d \psi_{L a}(t) & =t^{-\frac{1}{2}} e^{-\left(t+a^{2} / t\right) / 2} d t, & & 0<t<\infty \\
& =0, & & -\infty<t \leqq 0
\end{aligned}
$$

with $0<a<\infty$.
This is a positive half distribution and hence the polynomials $Q_{n}(z)$ and $P_{n}(z)$ do satisfy (2.3). It appears that

$$
\begin{array}{ll}
\beta_{2 n-1}=2 n-1+a, & \\
\beta_{2 n}=a, \\
\alpha_{2 n-1}=(2 n-2) / a, & \alpha_{2 n}=(2 n-1) a,
\end{array}
$$

for $n \geqq 1$.
These results essentially follow from the strong Hermite case. Substituting $z^{2}=z$ and $t^{2}=u$ in (3.5) yields an M-fraction expansion for

$$
\int_{0}^{\infty} t^{-1 / 2} e^{-1 / 2\left(t+a^{2} / t\right)} d t /(z-1) .
$$

The coefficients of this M fraction can then be used to derive the α_{j} and β_{j}.
The moments $\mu_{n}^{L a}$ of this distribution function satisfy

$$
\mu_{n}^{L a}=\mu_{2 n}^{H}
$$

for all positive and negative n.

REFERENCES

1. W. B. Jones, O. Njastad and W. J. Thron, Laurent Polynomials and the strong Hamburger moment problem, J. Math. Anal. Appl. 98 (1984), 528-554.
2. W. B. Jones, W. J. Thron and H. Waadeland, A strong Stieltjes moment problem, Trans. Amer. Math. Soc. 261 (1980), 503-528.
3. A. Sri Ranga, J-fractions and the strong moment problems, in Analytic Theory of Continued Fractions (Proceedings (W. J. Thron, Ed), Pitlochry, Scotland, 1985; Lectures Notes in Mathematics, 1199, Springer-Verlag, 1986).
4. A. Sri Ranga, Convergence properties of a class of J-fractions, J. Comput. Appl. Math. 19 (1987), 331-342.
5. W. Van Assche, Asymptotic properties of orthogonal polynomials from their recurrence formula, I, J. Approx. Theory 44 (1985), 258-276.

ICMSC-University of Sao Paulo Sao Carlos, SP
Brazil

Department of Mathematical Sciences
University of St Andrews
St Andrews, Fife
Scotland

[^0]: *This work was supported by a grant from FAPESP of Brazil.

