25

T (b) spaces generated by an extreme symbol b

In this chapter, we study the specific properties of 7 (b) spaces when b is an
extreme point of the closed unit ball of H°. Thus, by Theorem 6.7, we assume

/log(l — |b(e®)?) df = —c.
T

In particular, this happens if b = © isan inner function. In this case, H(b) is
precisely the model space K. Roughly speaking, when b is an extreme point,
the space #(b) looks like the model space Ko .

In Section 25.1, we introduce a unitary operator from L?(p) onto H(b),
where p = 1 — |b|? on T. This unitary operator isimportant, in particular to
computethe norm of functions f € #(b). For example, we do thiscomputation
for f = S*b. In Section 25.2, we prove that a nonzero element of #(b)
cannot be analytically continued across all of T. This fact is used to show
that b ¢ #(b). In contrast to the nonextreme case, we also show that the
space H(b) is not invariant under the forward shift operator S. Despite the
situation for #(b), some elements of 7 (b) can be extended across al of T.
In Section 25.3, we characterize such functions. This characterization is used
to prove that ky € H(b) if and only if b(\) = 0. In Section 25.4, we give a
formula for || X3 f|ls, f € H(b), and show that the defect operator Dy, has
rank one. In Section 25.5, we show that the only function in #(b) that has a
bounded-type meromorphic pseudocontinuation across T to the exterior disk
D, is the zero function. We also prove a similar result for #(b) functions. In
Section 25.6, we exhibit an important orthogonal decomposition of (). We
use this orthogonal decomposition to show, in Section 25.7, that the closure of

H(b) in H(b) isH([b]), where [b] is the outer factor of b. Thisis dramatically
different from the nonextreme case, where we have seen that 7 (b) is always
dense in H(b). Finaly, in Section 25.8, we give a characterization of H(b)
spaces when b is an extreme point. The corresponding result for the nonex-

treme case was given in Section 23.7.

353
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25.1 A unitary map between H.(b) and L?(p)

Werecall that p isthe function
p=1—|b]* € L>=(T)

and K, is the application defined on L?(p) by the formula K,(g) = P+ (pg)
into H? (see Section 13.4). In this situation, we can give further information
about K, and its range.

Theorem 25.1 Let b be an extreme point of the closed unit ball of 77°°. Then
H?(p) = L*(p)

and K, is an isometry from L?(p) onto #(b). If u is the Clark measure asso-
ciated with b, then we also have H? (i) = L2 ().

Proof That H?(p) = L*(p) and H?(;1) = L*(u) were established in Corol-
lary 13.34. According to Theorem 20.1, K, is a partial isometry from L?(p)
onto H(b) and ker K, = (H?(p))*. Since H*(p) = L?(p), we conclude that
K, isinfact an isometry from L?(p) onto H(b). O

Even though in Theorem 25.1 we assumed that b is an extreme point to
deduce that H?(p) = L?(p) and H?(u) = L?(u), we emphasize that the last
two identities occur precisely when b is an extreme point of the closed unit
ball of H°°. Hence, Theorem 25.1 can be rewritten in a proper way to give a
characterization of theidentity H2(p) = L?(p).

Corollary 25.2 Let b be an extreme point of the closed unit ball of #>° and
let f be a function in 7(b). Then there is a unique function g € L2(p) such
that

f=Pi(pg).
Moreover, we have log |pg| & L'(T).

Proof Thefirst part followsimmediately from Theorem 25.1.
For the second part, write

log |pg| = log |gp"/*| + & log p. (25.1)

On the one hand, since b is an extreme point of the closed unit ball of H>°, we
have

/logpdm = —00.
T
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On the other hand, using Jensen’s inequality, we see that

/Tlog\gp”zldm < log (/Tlgp”zldm>
1/2
< log </ |g|20dm> :
T

/log lgp'/?| dm < +oc.
T

Since g € L*(p), we deduce that

Thus, the conclusion follows from (25.1). O
Corollary 25.3 Let b be an extreme point of the closed unit ball of H°°. Then
1565 = 1 — [b(0)[*.

Proof By Theorem 17.8, T;S*b € H(b) and
1S*Bll5 = [1S*BII3 + 1755 bII3- (25.2)

To compute the norm of 73;.S*b in H(b), we use the operator Z,, which was
introduced in Section 8.1. Recall that Z, denotes the operator on L?(p) of
multiplication by the independent variable z, i.e.

(Zpf)(2) = 2f(2),
where z € T and f € L?(p). Hence, by Corollary 13.18, we have

K,Zyxo=S"K,xo = S"Pyp=S"P(1—[b])
= —S*P,|b|? = —S*T;b.

Since S*Ty = T3 S*, we obtain
T;8"b = —K,Z, Xo- (25.3)

Now, using Theorem 25.1 and the fact that Z, is a unitary operator, we can
write

1T557bllp = 1Ko Zpx0lls = 1Z5x0ll22(p) = [Ix0ll220)-
Therefore, (25.2) becomes
157015 = 1570113 + X0l Z2(,)- (25.4)

But it is easy to see that
Ixol22(,) = / pdm = / (1~ b dm =1 — b2
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and, by (8.16), that
1S*bll5 = [Ib]13 — [b(0)[*.

Plug the last two identitiesinto (25.4) to get the result. O

25.2 Analytic continuation of f € #(b)

A nonzero element of #(b) certainly has a singularity somewhere on T. This
fact is stated in the following form.

Theorem 25.4 Let b be an extreme point in the closed unit ball of 7°°, and
let f € H(b). If f can be analytically continued across all of T, then f = 0.

Proof Let f be afunctionin 7 (b) that can be analytically continued across
al of T. Hence, Theorem 5.7 implies that thereisac > 0 such that | f(n)| =
O(e "), asn — +oo. We know from 25.1 that there is a unique function
g € L%*(p) such that f = P, (pg) and log|gp| ¢ L*(T). In particular, the
condition f = P (pg) implies that
f(n)=gp(n)  (n=0).

Put h = gp. We prove that h satisfies the hypotheses of Theorem 4.31. First
note that i belongs to L?(T), since it is the product of the L?(T) function
gp*/? and the L>(T) function p'/2. Moreover, an easy computation shows
that

h(—n) = h(n) = gp(n) = f(n)  (n>0).

Thus, |h(—n)| = O(e™"), asn — +oo. But, since log |h| = log|gp| ¢
LY(T), Theorem 4.31 ensuresthat h = 0. Therefore, f = 0. O

In Corollary 23.9, we saw that, if b is a nonextreme point of the closed unit
ball of H>°,thenb € H(b). But thisisin fact the only case where theinclusion
b € H(b) ispossible.

Corollary 25.5 Let b be a point in the closed unit ball of H°°. Then the
following are equivalent.

(i) b H(b).

(it ( ) is invariant under the forward shift operator S.
(iii) #(b) has a nonzero element that is analytic on .

(i) bis a nonextreme point of the closed unit ball of H°°.

ii°

)
i)
)
)

@‘
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Proof (i) = (ii) According to Theorem 18.22, we have
Xpf =5f={f,50pb  (f € H(D)). (25.5)

Hence, the assumption b € H(b) immediately impliesthat S f € #H(b).

(i) = (i) Take any function f € H(b) such that (f, S*b), # 0. For
instance, one can choose f = S*b € H(b) for which [|S*b||Z # 0. Then
we rewrite (25.5) as
b Sf—X*f

(f,5*b)s
to deduce b € H(b).

(i) = (iii) If b € H(b), then, according to Theorem 17.8, we have T;b €
H(b). Since, by definition, the function (I — 73T} )xo = xo — T3b aso belongs
to H(b), we must have x, € H(b). But the nonzero function , can obviously
be analytically continued across all of T.

(iif) = (iv) Thisfollows from Theorem 25.4.

(iv) = (i) Thiswas aready proved in Corollary 23.9. O

We just saw that, if b isan extreme point of the closed unit ball of H°°, then
H(b) isnot S-invariant. Nevertheless, it could be possible for some functions
f € H(b) that Sf remains in H(b). The following result characterizes this
class of functions.

Corollary 25.6 Let b be an extreme point of the closed unit ball of 7, and
let 4 be a function in #(b). The following are equivalent.

(i) Sh e Hb).
(i) (h, S*b)y = 0.

Proof Remember that
Xph=Sh— (h,S*b)pb.

According to Corollary 25.5, we know that b ¢ H(b). That gives the equiva-
lence. O

25.3 Analytic continuation of f € H(b)

In contrast to the case of #(b), some elements of 7 (b) can be extended across
all of T. These elements are of aspecial form, which is described below.

Theorem 25.7 Let b be an extreme point in the closed unit ball of H°°, and
let f be a function in H?2. Then the following are equivalent.

(i) f € H(b) and can be analytically continued across all of T.
(ii) fisrational and 73 f = 0.
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Proof (i) = (ii) Assumethat f/ € #(b) and can be analytically continued
acrossall of T. Since f can be analytically continued across all of T, Theorem
5.7 ensures that thereare ¢; > 0 and ¢, > 0 such that

f(n)] < cse™@™ (0 2>0). (25.6)

We first show that 73 f can aso be analytically continued across all of T. In
fact, for eachn > 1, we have

T3 (n) = (Tyf, xn)2 = (Py(bf), Xn)2 = (b, Xn)2
= <anf7 b>2 = <P+(X7’nf)a b>2 = <S*7Lf’ b>2
We repeatedly used Lemma 4.8. Therefore,
T3 f(n)] < 1S*" fllz2 1Bl < 15" Fll2 bl oo < 15*" £]2.

But, by (8.16),
15*" fII3 = Z [f(k+n)

Hence, by (25.6),

6—20171

%) %)
||S*nf||3 < ¢y Ze—ch(k—i-n) _ 626—20171 Ze—Qc1k =y

k=0 k=0

1—e 2’

Thus, Z/}j(n) = O(e~“"™) asn — +oo. Another application of Theorem 5.7
impliesthat 73 f can be analytically continued acrossall of T. Since f € H(b),
we have Ty f € H(b) and thus it follows from Theorem 25.4 that T, f = 0,
which meansthat f belongs to the kernel of T;,.

It remains to show that f is arational function. By Theorem 14.10, f isa
cyclic vector for S* if and only if sois 75 f. But, since T3 f = 0, T3 f isnot a
cyclic vector of S*, and thus nor is f. Theorem 8.42 now ensures that f is a
rational function.

(i) = (i) Assumethat f isarational functionin H? that belongsto ker 7.
Then Ty f = 0 € H(b) and Theorem 17.8 impliesthat f € H(b). The fact that
f can beanaytically continued across all of T followsfrom Theorem 5.8. [

Asthe first application, we can characterize the Cauchy kernels that belong
to H(b).

Corollary 25.8 Let b be an extreme point of the closed unit ball of > and
let A € D. Then the following are equivalent:

(1) ky € H(b);
(i) b(\) = 0.
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Proof Theimplication (ii) = (i) is rather obvious since, if b(\) = 0, then
we have k) = k§ € H(b). For the converse, first note that the function k)
can be analytically continued across all of T. Therefore, by Theorem 25.7, k

belongs to the kernel of T5. But, using (12.7), we have T;k\ = b(\)ky and
thus we must have b(\) = 0. O

If bisan extreme point in the closed unit ball of H>° and if f belongs to
H(b) and can be analytically continued across all of T, then || ||, = || f]]2. In
fact, by Theorem 25.7, we must have T3 f = 0. Then, using Theorem 17.8,
we get

IF1IE = 113 + 1T f 11 = 1£13. (25.7)
Thisfact is used to detect the monomialsthat arein H(b).

Corollary 25.9 Let b be an extreme point of the closed unit ball of H°°. Let
m be a nonnegative integer. Then the following assertions are equivalent.

(i) The monomial 2™ belongs to #(b).
(ii) b has a zero of order at least m + 1 at the origin.

Moreover, if z™ € H(b), then ||z, = 1.

Proof According to Theorem 25.7, the function =™ belongs to #(b) if and
only if it belongs to the kernel of 73. But, by (12.4),

Thus, 2™ belongs to # (b) if and only if b(k) = 0,0 < k < m, which means
that b has a zero of order at least m + 1 at the origin. The statement concerning
the norm of 2™ follows directly from (25.7). O

In fact, the above result shows that, if b has a zero of order m + 1 at the
origin, then the set of polynomials at 7 (b) is alinear manifold of dimension
m + 1 spanned by 1, z, ..., 2™. Thisfact is mentioned in more detail in the
following corollary and it showsthat we can add one extraitem to thelist given
in Corollary 25.5.

Corollary 25.10 Let b be in the closed unit ball of H°°. Then the set of
analytic polynomials P is contained in H(b) if and only if b is a nonextreme
point of the closed unit ball of H°°.

Proof In Theorem 23.13, we have already proved that, if b is a nonextreme
point of the closed unit ball of H°°, then the set of analytic polynomials P
is contained in #(b) (in fact, it is even dense in 1 (b)). For the converse, we
argue by absurdity. Assume that the set P is contained in H(b), but b is an
extreme point of the closed unit ball of H°°. Then, by Corollary 25.9, b has

https://doi.org/10.1017/CBO9781139226769.012 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.012

360 ‘H(b) spaces generated by an extreme symbol b

a zero of order infinity at the origin, which is absurd (remember that b is not
aconstant). O

Exercise

Exercise 25.3.1 Let b be an extreme point of the closed unit ball of H>°
and assume further that b is an outer function. Show that, if a function f in
H(b) can be analytically continued across all of T, then f = 0.

Hint: Use Theorems 12.19 and 25.7.

25.4 A formulafor || Xy f||s

In this section, we give a formula for || X, f||», and then easily generalize
it for || X} fl|- The result of this section should be compared with those in
Section 23.5, which were about the nonextreme case.

Theorem 25.11 Let b be an extreme point of the closed unit ball of H°°. Then
we have

XpXo =1~ (k§ ® k),
which implies that
1% f15 = ILFIE = 1£(0)?
for every function f € H(b).
Proof Accordingto (18.15), with f replaced by X, f = S*f, we have
Xy (Xof) = S(S7f) — (Xof, S"b)sb
= f = f(0) = (Xu f, Xpb)yb
= f— f(0) = (f, X3 X},b),.

Hence, we look for a formula for X X,b. Once more, by (18.15) with f =
S*b = Xpb, we obtain

X7 Xpb = X7 (S*D) = SS*b— ||S*b||2b = b — b(0) — ||S*b||2 b.
But we know from Corollary 25.3 that ||5*b||Z = 1 — |b(0)|?, and thus
X{Xyb=b—b(0) — (1 [b(0)[?)b = —b(0)(1 — b(0)b) = —b(0)kE-
Back to thefirst relation above, we can now write
Xy Xof = f = f(0) = (f, Xy Xpb)ub
= f — f(0) +b(0)(f, kg)ub
= f — (£, k0)o + b(O)(f, k)b
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= f — (£, ko)s(1 — b(0)D)
= [ = {f.ko)uke.
The preceding identity is rewritten as
XXy =1~ (ky@kb).
Moreover, from this identity, we get
IX6fllz = (Xof, Xo.f)s
= (£, Xp Xof)o

= (f. [ = FO)kS)e
= I£115 = FO)(f, Kg)s
= || fll; — £ (O).
This completes the proof. O

Thefollowing result should be compared with Corollary 23.16, i.e. the anal-
ogous result in the nonextreme case.

Corollary 25.12 Let b be an extreme point of the closed unit ball of H°°. The
operator Dy, = (I — X; X;)'/? has rank one, its range is spanned by k% and
its nonzero eigenvalue equals || k3|[,.

Proof Thisfollowsimmediately from Theorem 25.11. O

It is straightforward to generalize the preceding formula for || X, |7 to
15 f11-

Corollary 25.13 Let b be an extreme point of the closed unit ball of H°.
Then we have

n—1
X215 = 1411 = 1F (k)P
k=0

for every function f € #(b) and every integer n > 1.

Proof The proof is by induction on the integer n. For n = 1 the equality
is precisely the one proved in Theorem 25.11. Just note that f(0) = f (0).
Assume that the equality holds for some n. Then, using once again Theo-
rem 25.11 and the induction hypothesis, we have

X5 £1IE = 1 X6(XE )l
= IX5 /15 - I(Xz?f)( )

=115 - Zlf * = (X))
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But
(X7 1)(0) = (X3, x0)2 = (S™f, x0)2 = (£, 5"x0)2 = (f. xn)2 = f(n).
The proof is complete. =

Corollary 25.14 Let b be an extreme point of the closed unit ball of H°.
Then, for each function f € H(b), we have

Tim (X5 FI15 = (1£11E — 117113

Proof For each function f € H?, we have
oo n—1
1715 =D 1F k)1 = dim > [ f (k)%
k=0 k=0

Now, let n — oo in the formula given in Corollary 25.13. O

Corollary 25.15 Let b be in the closed unit ball of H°. Then, for every
function f € #H(b), we have

IXofll7 < II£IIF = £(0)[. (25.8)

Moreover, the last inequality is an equality for all f € #(b) if and only if b is
an extreme point of the closed unit ball of H°°.

Proof The inequality (25.8) has already been proved in Theorem 18.28. We
have seenin Theorem 25.11 that (25.8) becomes an equality when b is extreme.
Assume now that b is nonextreme. Then, according to (23.17) we have

X601l = [1bll5 = [6(0)* — [a(0)*[bl5 < [1Bll5 — [b(0)I*.

In other words, when b is nonextreme, then the inequality (25.8) can be
strict. O

25.5 S*-cyclic vectorsin #.(b) and H (b)

The result of Douglas, Shapiro and Shields (Theorem 8.42) completely char-
acterizes the cyclic vectors of S* as an operator on H?2. We saw that #(b) and
H(b) areinvariant under S*. In fact, the restriction of S* on 7 (b) was denoted
by X,. In this section, we characterize the S*-cyclic vectors that are in #(b)
and H(b). The first result says that, except of course for the zero function, all

other elements of #(b) are cyclic vectors for S*.

Theorem 25.16 Let b be an extreme point of the closed unit ball of H°.
Then each f € H(b), f # 0, is a cyclic vector for S*. Hence, the only
function in 7(b) that has a bounded-type meromorphic pseudocontinuation
across T to D, is the zero function.

https://doi.org/10.1017/CBO9781139226769.012 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.012

25.5 S*-cyclic vectors in #(b) and #(b) 363

Proof Fix f € H(b), f # 0. It follows from Corollary 25.2 that there is a
unique function g € L?(p) such that

f="Py(gp) and log|gp| & L'(T).

Denote by M the closed invariant subspace of S* generated by f. In other
words, let

M = Span;(S™f :n>0).

We need to show that M = H?2. Werecall that Z isthe bilateral forward shift
operator on L%(T), i.e.

(Zg)(2) = 29(2) (2 €T, g€ LX(T)).

The closed subspace M & HZ of L*(T) is invariant under Z*. In fact, if
fi € M and f, € H?, then we have

Z(fi+f2)=Zf1+2f2
= P (zf1) + P_(zh1) + Zhs
= S"f1 + P_(zf1) + Zf2,

and S*f, € M (remember, M isinvariant under S*) and P_(zf1)+Zzf2 € 173
Therefore, by Theorems 8.29 and 8.30, either M @ HZ = ©H? with © a
unimodular function in L>°(T), or M @ HZ = xpL*(T) with E a Borel
subset of T.

Let us show that the first case cannot occur. To do so, suppose that there is
aunimodular function © such that M & HZ = © H2. Wefind a contradiction.
Since f € M, thefunction gp = f + P_(gp) belongsto M & HZ, and thus
thereisan h € H? suchthat gp = ©h. Hence, log |gp| = log |©h| = log ||,
which shows that log |h| ¢ L(T). But then Lemma 4.30 impliesthat h = 0,
whichinturnyieldsg = 0 and f = 0. Thisis absurd.

Therefore, for a proper Borel set I/, we have M @ ]73 = xgL*(T). Since
f € M c xgL*(T), we deduce that f = 0 almost everywhereon T \ E.
Then Lemma 4.30 implies that m(T \ E) = 0. Hence, xgL*(T) = L*(T),
or equivaently M & 173 = L*(T). Finally, since M C H?, we must have
M = H?. The second assertion follows immediately from Theorem 8.42. [

While the preceding result saysthat 7 (b) isfilled with cyclic vectors and the
only exception isthe zero function, the space #(b) might have more noncyclic
elements. More explicitly, the noncyclic vectors are precisely the elements
of Ko, where © istheinner part of b.

Theorem 25.17 Let b be an extreme point of the closed unit ball of H°°, and
let f be a function in H2. Then the following are equivalent.
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(i) f € H(b)and f is not a cyclic vector for S*.
(ii) f € H(b) and f has a bounded-type meromorphic pseudocontinuation
across T to D..
(iit) T3f = 0.
(iv) f € Ko, where © is the inner part of b.

Proof (i) <= (ii) Thisfollowsimmediately from Theorem 8.42.

(i) = (iii) Theorem 14.10 implies that 73 f is not a cyclic vector for S*.
But, by Theorem 17.8, T;f € H(b). Hence, Theorem 25.16 implies that
T;f = 0.

(iii) = (i) According to Theorem 17.8, we have f € H(b). Since T; f is
obviously not acyclic vector for S*, it follows once more from Theorem 14.10
that f isnot acyclic vector for S*.

(iii) <= (iv) Thisfollows from Theorem 12.19. O

The above result yields a statement similar to Theorem 25.16 for the
S*-cyclic elements of #H(b), in the case where b is outer.

Corollary 25.18 Let b be outer and an extreme point of the closed unit ball
of H>°. Then each f € H(b), f # 0, is a cyclic vector for S*. Hence, the only
function in #(b) that is pseudocontinuable across T is the zero function.

If we combine Theorem 25.17 and Corollary 18.15, then we get the follow-
ing necessary condition for cyclic vectorsfor X,.

Corollary 25.19 Let b be an extreme point of the closed unit ball of H°°, let
b = ©b, be the factorization of b into its inner part © and its outer part b, and
assume that © and b, are not constant. Let f € H(b). If f is a cyclic vector
for X;, then f ¢ Ko.

25.6 Orthogonal decompositions of # (b)

Remember that, if b; = © isan inner function and b, isafunction in H° and
b = by1bs, then, according to Corollary 18.9, the space #(b) can be decom-
posed as

H(b) = H(O) ® OH(b2),

and the sum is orthogonal. When b is extreme, we can give another orthogonal
decomposition for H(b). In a sense, we can say that the roles of © and b, can
be exchanged.

Theorem 25.20 Letb = bybs, by € H*, ||bs|lco < 1 and by is nonconstant.
Then the following assertions hold.
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(i) The space #(b) decomposes as
H(b) = H(b1) + b (b2). (25.9)

(ii) If by is extreme and by is inner, then the sum in (25.9) is orthogonal, the
inclusion map of H(by) into H(b) is an isometry and the operator Tj,
acts as an isometry from H(b,) into H(b).

(iii) If the sum in (25.9) is orthogonal, then necessarily b, is extreme.

Proof Part (i) has already been proved in Theorem 18.7.
Let us now prove (ii). According to Theorem 18.8, it is sufficient to check
that

H(b2) NH(b1) = {0},

Let f € H(by) N H(by). Onthe one hand, since b, isinner, H(b,) isaclosed
S*-invariant subspace of H?, and thus f cannot be a cyclic vector for S*.
On the other hand, since |b| = |b;| (once again because b, is inner), then b,
is aso an extreme point of the closed unit ball of H°°. It now follows from
Theorem 25.16 that f = 0 and we conclude that H(b2) N H(by) = {0}.
It remains to show that, if b; is nonextreme, then the sum in (25.9) is not
orthogonal. Since b, is nonextreme, then we have

P C H(by) C H(D).

Since b is nonextreme (note that log(1 — |b1]) < log(1 — |b|)), Theorem 23.13
impliesthat P isdensein 7 (b). Therefore, we get that (b, ) isalso densein
H(b). In particular, its orthogonal complement is reduced to {0} and thus the
decomposition (25.9) cannot be orthogonal . O

25.7 Theclosure of (b) in H.(b)

In Theorem 17.9, we saw that the space H(b), for any b, is contractively
contained in 7(b). Then, in Corollary 23.10, we showed that H(b) is a dense
submanifold of #(b) whenever b is a nonextreme point of the closed unit ball
of H°°. The situation in the extreme case is different and is discussed below.

Theorem 25.21 Let b be an extreme point in the closed unit ball of H°° and
let b = ©[b] be its canonical factorization, with © the inner part and [b] the
outer part of b. Then the closure of #(b) in H(b) is H([b]). In particular, #(b)
is dense in 7 (b) if and only if b is an outer function.

Proof First note that, by Lemma Theorem 17.11, we have H(b) = H([b]),
and Theorem 17.9 implies that

H(b) = H([b]) < H([b])-
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But, as a consequence of the orthogonal decomposition given in Theorem
25.20, we know that H ([b]) is aclosed subspace of H (b), whence we conclude
that the closure of #(b) in H(b) is contained in #([b]). Using once more
Theorem 25.20, it only remains to show that every function in #(b) that is
orthogonal to #(b) belongsto [b]H(0).

To continue the argument, let f be afunction in H(b) and assumethat f is
orthogonal to (b). Since f € H(b), by Corollary 20.2, there exists afunction
g € L?(p) such that

Ty f = Kp(9) = Py (pg).
Now, take any function b € H?(p) and let k = K ,(h). Then k € H(b) and it
follows from Theorem 13.21 that

Tyk = Ty K,h = K, (bh).

Using the fact that f is orthogonal to #(b) and applying Theorems 17.8 and
25.1, we obtain

= (f, k)

= (f, k)2 + (I f, Tyk)y

= (f, Py (ph))2 + (K,g, K,(bh));
= (f,ph)2 + (g,0h) 12(,)

= (f,h)12(,) + (gb, h>L2( )

= (f +gb, k) 12(,)-

But, since this relation holds for all functions h € H?(p), and since H?(p) =
L*(p) (Theorem 25.1), we deduce that f + gb = 0 in L?(p). Therefore, we
have

FA—1bP?) +bg(1 —[b*) =
amost everywhere on T, which implies that

L=~ = g =7 — o

because b # 0 almost everywhere on T. The last equality implies that the
function f/b belongsto L?(T) and, by the definition of g, we have

Py (i) = Py (bf) — Pi(pg) = T f — K,g = 0. (25.10)

Since
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the function f/[b] also belongsto L2(T), and since [b] is outer, Corollary 4.28
impliesthat f/[b] isin H2. Then, using (25.10), we get

w()-n (og) - ()

which means that f/[b] belongs to the kernel of Tg. It remains to apply
Theorem 12.19 to deduce that f/[b] € Ko, which meansthat f € [b]Ke. That
concludes the proof of the first assertion.

For the second assertion, note that 7(b) is dense in H(b) if and only if
H([b]) = H(b), which is equivalent by Theorem 25.20 to K¢ = {0}. This
last identity precisely means that © is a constant of modulus one, that is, b is
outer. 0

25.8 A characterization of H(b)

In this section, we study an analog of Theorem 17.24, which characterizes the
spaces H(b) when b is extreme.

Theorem 25.22 Let H be a Hilbert space contained contractively in H?2.
Then the following assertions are equivalent.

(i) M is S*-invariant (and 7" denotes the restriction of S* to 7{), the operator
I —TT* is an operator of rank one and we have

ITfI5 =13 — [FO)>  (f €M) (25.11)

(ii) There is an extreme point b in the closed unit ball of H°, unique up to a
unimodular constant, such that H = H(b).

Proof (i) = (ii) According to Theorem 16.29, we know that # is contained
contractively in H? and, if M denotes its complementary space, then S acts
as a contraction on M. Now the strategy of the proof is quite simple and quite
similar to the strategy of the proof of Theorem 23.22. We show that S acts
as an isometry on M. Then we apply Theorem 17.24 to deduce that there
exists a function b in the closed unit ball of H*° such that M = M(b), and
Corollary 16.27 enables us to conclude that H = H.(b). To show that .S acts as
an isometry, we decompose the proof into several steps, 10 in total.

Step 1: Let K/t be the unique vector in # such that

FO) = (f,kn  (f ).
Then I — T*T = k}t @ kit
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Let f € H. Then, according to Lemma 2.16 and (25.11), we have

feker(I =T'T) <« |Tflwn=Ifln
<~ f(0)=0
— f Lk
whence ker(I — T*T) = (Ckt)*. Thus, we get R(I — T*T) = Ck{t and

I — T*T is a rank-one operator whose range is spanned by k}¢. Since this
operator is positive and self-adjoint, we get

I—T"T = ck} @ ki,

for some positive rea constant c. It remains to show that ¢ = 1. On the one
hand, we have

[I-T°T||= sup [((I=T"T)f, f)ul
FER, N1 flIn<t

= sup (I3~ ITFI3)
FeH, [Iflln<t

sup  [(f, k) wl?
FeH, |Ifln<1

= (13113

and, on the other, we have ||I — T*T|| = ¢||k{t||?, whence ¢ = 1, which ends
the proof of Step 1.

Step 2: Let f, be the unique vector in # such that I — TT* = fo ® fo. Then

<f0’Tk8{>Hk’H
kg -

Tfo =
I1foll%,

Using7*(I —TT*) = (I —T*T)T*, we have
T*fo ® fo = (k)! @ k) T* = kit @ Tk
Thus, for every f € H, we have
(f, fo)uT*fo = (f, Tk{*)aki". (25.12)
In particular, this equality with f = f; gives
1 foll3Tfo = (fo, Tk )wkit,
which concludes the proof of Step 2.

Step 3: If 1 ¢ H, then there exist nonzero constants c¢;,co € C such that
Sfo= 01143(7){ + Co.
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Put oo = (fo, Tkit)ukdt /| foll3,- Then, according to Step 2, we have T*f, =
akjt. Note that o # 0. Indeed, applying (25.12) to f = Tkj! gives

(TEE, fo)yuT*fo = | Tk |15,k5,
whence
(TR, fo)nl® = (T, fo)a(T*fo, kityu = ITK 3,

But, since 1 ¢ H, we have Tk}t # 0, which implies that (Tk}t, fo)2 # 0.
Thus, a # 0.
Now, using (I — TT*) fo = || foll3, fo, we get

(1= foll3) fo = TT*fo = aTk{.

Since aTklt # 0, we necessarily have || fo||# # 1. Hence,

Jo

- (0%
1—1foll%,

wherec; = a/(1 — || fol|3,) # 0. Thus,

Tkt = ¢, TE},

Sfo=5S(a1Tk]')
= SS* (e T
= Clk‘gl — Clk(?)-[(())

= clkg‘ + o,
wherec; # 0 and ¢y = —c1kfH(0) = —c1|[kEH|3, # 0.
Step 4: S acts as an isometry on M (case 1 ¢ H).
Let f € Hand g € M. Write
f=U=TT)f+TT"f = (f, fo)nfo+ TT"f = Mo+ TT"f,
where A = (f, fo)#. Then

g+ fl13 = llg + Mo + TT*f|3
= ||gll3 + |[A o + TT*f|13 + 2R{g, \Mfo + TT*f)o.

But

(9: Mo +TT"f)2 = (g, S"T"f)2 + (g, A fo)2
= (89, T"f)2 + (g, AMfo)2

and, using Step 3, we also have

(g, Mo)2 = (29, A2 fo)2 = (29, A1kt + Aea)a
= (29, A\c1kd)a = (29, Mho)a2,
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with hg = c1k}t € H. Thus,
(9, Mo +TT"f)2 = (29, T*f + Aho)2

and we obtain

lg + FI5 = 129 + T°F + Aholl3 + Mo + TTFI3 = IT°f + Afoll3-
This gives

lg + 115 = 1F11%

= |l2g + T"f + Moll + [Mfo + TTfI13 = IT*F + Aholl3 — || £113-
Now, we prove that

IMfo +TT*FII3 = IT°f + Aholl3 = 15, — IT°f + Mol (25.13)

Using Step 3, we have
fo=25"Sfo=S*(c1kit + c3) = 1Sk} = Thy.

Thus, on the one hand, we have

IAfo +TT*fl[3 = | Tf + Nholl5 = [|T(Aho +T*F)|13 — [\ fo + T3
= [(Aho + T7F)(0)]?,
and, on the other, we also have
13 = IT°f + AhollF, = [IMfo +TT*fI3, — I Tf + Aholl3,
= 1T (Ao + T*H)IF, — Ao + T*F1I3,
= [(Mho + T7)(0) .

The last equality follows from (25.11). This concludes the proof of (25.13).
Hence,

29 + T*f + Mhol|3 — | T*f + Mhol|3,
sup (||zg + |3 — [|2]13,)

heH

=llzglin  (FeH).

This gives |lgl|3, < I|zg]l34, which with Theorem 16.29 implies that S is an
isometry on M.

lg + £112 = 1115

IN

From now on, we assume that 1 € H and n > 1 is such that f, = 21,
with fo € H? and fQ(O) #0.

Step 5: || 1]l = 1 and k}t =
Since 1l € H, using (25.11), we have
T3, = 11113, - 1.
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Hence, ||1]| = 1, because T'1 = 0. But, by Corollary 16.28,
i5()=1 and (1) =0,

where iy (respectively i) denotes the canonical injection of  (respectively
M) into H2. Thus, for each f € H, we get

By the uniqueness of reproducing kernels, we deduce that k}t = 1.
Step 6: We have

T"h = S(h — (h, fo)n fo) (h €H).
Since I — fo® fo =TT*, weget

S(I — fo® fo)h = STT*h = SS*T*Th
=T"h — (T"h)(0) (heH).

But, according to Step 5,

(T*h)(0) = (T*h,1)% = (h, T1)3 = 0.
Thus,

S(I - fo® fo)h=T"h.

Step 7: The function f, belongs to A and
71 = 2"(1 — f5(0) fo). (25.14)
Moreover, if n > 2, we have

T*1=2* (1<k<n-1). (25.15)

Since fo = S*" " fy = T fy, we surely have f, € H. Now, using Step 6,
we have

T1=S(1—-1, fo)ufo)

and

(1, fo)u = fo(0),
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because 1 = k}t. Hence,

71 = 2(1~ [o(0)fo)- (25.16)

If n =1, wehave f, = fo. Thisproves (25.14) inthecase n = 1.

Now, assume that n > 1. We first prove (25.15) by induction. Sincen > 1,
we have fy(0) = 0, and thus, by (25.16), we get 7*1 = z. Assume that
T*k1 = 2*, for somek < n — 1. Thus, using Step 6, we obtain

T 01 = 7728 = 2(2% — (2%, fo)ufo)
=2 - <Zk7f0>7-12f0-
But
(2%, fo)a = (T**1, fo)r = (1, T* fo)n = (T% f)(0)
and
T* fo = 8™ fo = Py (22" fo) = Py (z"* 7 fo) = 2" 7F 1 fo.
Hence, (T* fo)(0) = 0, becausen — k — 1 > 0, and then
pr(k+1)] — Jk+1
Therefore,
T*1=2F (QA<k<n-1).
Using Step 6 once more, we have
T =T*2" "1 = 2" — (2" fo)wzfo
=z" = (2", fo)nz" fo
=2"(1— (""", fo)ufo)-

It just remains to note that

("7 fodw = (T, fodw = (LT foyu = (1, fo)u = fo(0).

Step 8: 2" ' € H and (g, 2" "), = 0, for every g € M.

According to (25.15), we have z* € H, for every 0 < k < n — 1. Moreover,
|2¥(|3, = 1. Indeed, thisis true for k& = 0 by Step 5. Assume that, for some
0 <k <n-—1,|z*|3 = 1. Hence, considering (25.11), we get

12413, = T3, = 1125113, = 1.

By induction, we then have ||2*||3 = 1, forevery 0 < k < n — 1. It follows
from Corollary 16.28 that i%,(z"~1) = 2"~ and i%,(2"~!) = 0. Hence, if
g € M, we have

(g,2" M2 = (im(g), 2" N2 = (g, i3 (2" )M = 0.
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Step 9: .S acts as an isometry on M (case 1 € H).

Let f € Hand g € M. Argue asin Step 4, and write f = A\ fy + TT*f, with
A= (f, fo)n- Then

lg + flI5 = llg + Mo+ TT*f|I3
= |lgl13 + [\ fo + TT*f||3 + 2 R(g, A fo + TT*f)2.

But

(g, Mo +TT"f)2 = (g, \fo)2 + (Sg, T"f)2.

Write h = — fo(0)(~)7T*"1. According to Step 6, we have

h=—fo(0) V2" 4 2" fy = — fo(0) V2" + 2 .

Hence,

(29, Ah)2 = —Jo(0) " A(zg.2")2 + (29, Azfo)2 = (g, M),
because (zg, 2")s = (g, 2" 1)2 = 0, according to Step 8. Therefore,
(9: Mo +TT"f)2 = (29, Ah)2 + (29, T"f)2 = (29, Ab + T"f ).
We thus get
lg + £1I3 = llzg + A+ T*fI3 + [Mfo + TTfII3 — [N+ T7F |3,

and then

g+ f113 — 1 £1I5
= |lzg + A+ T2 + [[Afo + TT*FI2 — |Ah+ TFI12 — I 112,

Now, we prove that
IAfo+ TT*f||3 — | T*f + AR|13 = | Mo + TT*f|[3, — [IT*F + Ahlf3,.

Denote the right-hand side by A and the left-hand side by B. Then, using
Step 6, we obtain

= I£1I13 = lI2(f = Mo — Mo(0) V2" + Afo)la

= I£13 = If = Afo(0) V2|2

= 113 = (IF13 + AL 2 = 2R(Fo(0) ™ (f, 2" 1))
= AP 0)] 72 + 2R fo(0) (£, Do),
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Moreover, using (25.11), we have

B = ||fl3, — IIT*f + Ahl3,
= || fII5, = ITT*f + NTh||3, — [(T*f)(0) + Ah(0)].

But (T*f)(0) = h(0) =0 and Th = S*h = — fo(0)("V 2"~ + fy. Hence,

TT*f + XTh = TT*f + Ao — Mo (0)"Y "=,

which gives

B=|f3 = If = AMo(0) V2713,
= 1713 — LIFIZ + NP1 0) 21" 12,
—2R(fo(0) (f.2" a0)]
= —ARo(0)[ 7%+ 2R(Fo(0) (£, 2" 1),

Considering

we deduce that A = B. Thisrevealsthat
llg + FlI3 = 1113, = llzg + b+ T*fll2 — [|IAh + T*F |13,

< sup(lzg +ul3 = full3,)
uEH

=lzglia  (fEH).
This gives ||g||3, < ||zg|lA,, which, in the light of Theorem 16.29, ensures
g llm M

that S is an isometry on M.

Step 10: There is an extreme point b in the closed unit ball of H°°, unique up
to a unimodular constant, such that H = H(b).

According to Steps 4 and 9, S acts as an isometry on M. Therefore,
Theorem 17.24 implies that there exists a function b in the closed unit ball of
H*®° such that M = M(b). Now, Corollary 16.27 implies that H = H(b).
Finaly, b is an extreme point of the closed unit ball of H°°, since I — T*T'is
an operator of rank one. Remember that, according to Theorem 23.14, if bisa
nonextreme point of the closed unit ball of H°, then the operator I — 77" is
of rank two.

That finishes the proof of the implication (i) = (ii).
(i) = (i) Thisfollows from Corollary 18.23 and Theorem 25.11.
This compl etes the proof of Theorem 25.22. O
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Notes on Chapter 25

Section 25.1

The formula for the norm ||S*b||;, that appears in Corollary 25.3 is due to
Sarason [160]. However, the proof presented here comes from [166].

Section 25.2

Theorem 25.4 isdueto Lotto and Sarason [123, theorem 5.1]. The equivalence
between (i) and (iv) in Corollary 25.5 is due to Sarason [160] and the equiva-
lence of (i) and (ii) is due to de Branges and Rovnyak [65]. Corollary 25.6 is
dueto Lotto and Sarason [123, lemma 8.1].

Section 25.3

Theorem 25.7 comes from Sarason’s book [166], but the immediate corollary
that is presented in Exercise 25.3.1 isdue to Lotto and Sarason [123, corollary
5.2]. Corollaries 25.9 and 25.10 appear in a paper of Sarason [160], but the
proofs come from his book.

Section 25.4

The determination of the defect operator of the contraction X, made in
Theorem 25.11 and Corollary 25.12 follows Sarason [160]. In that paper,
he identifies the characteristic function (in the language of Sz.-Nagy and
Foias) of X},; see also [139]. Corollaries 25.13 and 25.14 are due to Lotto and
Sarason [123].

Corollary 25.15 is due to de Branges and Rovnyak [65, theorem 16]. More
precisely, they proved that (25.8) is an equdlity if and only if b ¢ H(b), and
we know this condition is equivalent to b being an extreme point of the closed
unit ball of H*°. See also Nikolskii and Vasyunin [139, corollary 8.8] for a
generalization of this result in the vector-valued situation.

Asaready mentioned, de Branges called (25.8) theinequality for difference
quotients.

Section 25.5

Theorem 25.16 has been proved by L otto and Sarason [123, theorem 5.3], who
applied thisto the problem of multipliers of (). See Section 26.2 for results
in this direction. It should be noted that Suarez [181] described the invariant
subspaces of X, but, as already mentioned, the problem of determining the
cyclic vector of X, (in the extreme case) is an open problem. Corollary 25.18
isalso due to Lotto and Sarason [123, theorem 5.4].
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Section 25.6
Theorem 25.20 is a slight generalization of aresult of Lotto and Sarason [123,
theorem 6.1].

Section 25.7

Theorem 25.21 has been proved by Lotto and Sarason [123, theorem 6.2].

Section 25.8

The characterization of the #(b) spacesin the extreme case obtained in Theo-
rem 25.22 is due to de Branges and Rovnyak [64, appdx, theorem 6] and [65,
theorem 15]. The proof of de Branges and Rovnyak is based on the construc-
tion of an auxiliary Hilbert space of analytic functions. Our proof here is
different and is inspired by the analogous result in the nonextreme case due
to Guyker [96]; see Theorem 23.22.
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