
25

H(b) spaces generated by an extreme symbol b

In this chapter, we study the specific properties of H(b) spaces when b is an
extreme point of the closed unit ball of H∞. Thus, by Theorem 6.7, we assume∫

T

log(1− |b(eiθ)|2) dθ = −∞.

In particular, this happens if b = Θ is an inner function. In this case, H(b) is
precisely the model space KΘ. Roughly speaking, when b is an extreme point,
the spaceH(b) looks like the model space KΘ.

In Section 25.1, we introduce a unitary operator from L2(ρ) onto H(b̄),
where ρ = 1 − |b|2 on T. This unitary operator is important, in particular to
compute the norm of functions f ∈ H(b). For example, we do this computation
for f = S∗b. In Section 25.2, we prove that a nonzero element of H(b̄)
cannot be analytically continued across all of T. This fact is used to show
that b �∈ H(b). In contrast to the nonextreme case, we also show that the
space H(b) is not invariant under the forward shift operator S. Despite the
situation for H(b̄), some elements of H(b) can be extended across all of T.
In Section 25.3, we characterize such functions. This characterization is used
to prove that kλ ∈ H(b) if and only if b(λ) = 0. In Section 25.4, we give a
formula for ‖Xbf‖b, f ∈ H(b), and show that the defect operator DXb

has
rank one. In Section 25.5, we show that the only function in H(b̄) that has a
bounded-type meromorphic pseudocontinuation across T to the exterior disk
De is the zero function. We also prove a similar result for H(b) functions. In
Section 25.6, we exhibit an important orthogonal decomposition of H(b). We
use this orthogonal decomposition to show, in Section 25.7, that the closure of
H(b̄) in H(b) is H([b]), where [b] is the outer factor of b. This is dramatically
different from the nonextreme case, where we have seen that H(b̄) is always
dense in H(b). Finally, in Section 25.8, we give a characterization of H(b)
spaces when b is an extreme point. The corresponding result for the nonex-
treme case was given in Section 23.7.
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354 H(b) spaces generated by an extreme symbol b

25.1 A unitary map between H(b̄) and L2(ρ)

We recall that ρ is the function

ρ = 1− |b|2 ∈ L∞(T)

and Kρ is the application defined on L2(ρ) by the formula Kρ(g) = P+(ρg)

into H2 (see Section 13.4). In this situation, we can give further information
about Kρ and its range.

Theorem 25.1 Let b be an extreme point of the closed unit ball of H∞. Then

H2(ρ) = L2(ρ)

and Kρ is an isometry from L2(ρ) onto H(b̄). If μ is the Clark measure asso-
ciated with b, then we also have H2(μ) = L2(μ).

Proof That H2(ρ) = L2(ρ) and H2(μ) = L2(μ) were established in Corol-
lary 13.34. According to Theorem 20.1, Kρ is a partial isometry from L2(ρ)

onto H(b̄) and kerKρ = (H2(ρ))⊥. Since H2(ρ) = L2(ρ), we conclude that
Kρ is in fact an isometry from L2(ρ) ontoH(b̄).

Even though in Theorem 25.1 we assumed that b is an extreme point to
deduce that H2(ρ) = L2(ρ) and H2(μ) = L2(μ), we emphasize that the last
two identities occur precisely when b is an extreme point of the closed unit
ball of H∞. Hence, Theorem 25.1 can be rewritten in a proper way to give a
characterization of the identity H2(ρ) = L2(ρ).

Corollary 25.2 Let b be an extreme point of the closed unit ball of H∞ and
let f be a function in H(b̄). Then there is a unique function g ∈ L2(ρ) such
that

f = P+(ρg).

Moreover, we have log |ρg| �∈ L1(T).

Proof The first part follows immediately from Theorem 25.1.
For the second part, write

log |ρg| = log |gρ1/2|+ 1
2 log ρ. (25.1)

On the one hand, since b is an extreme point of the closed unit ball of H∞, we
have ∫

T

log ρ dm = −∞.
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On the other hand, using Jensen’s inequality, we see that∫
T

log |gρ1/2| dm ≤ log

(∫
T

|gρ1/2| dm
)

≤ log

(∫
T

|g|2 ρ dm
)1/2

.

Since g ∈ L2(ρ), we deduce that∫
T

log |gρ1/2| dm < +∞.

Thus, the conclusion follows from (25.1).

Corollary 25.3 Let b be an extreme point of the closed unit ball of H∞. Then

‖S∗b‖2b = 1− |b(0)|2.

Proof By Theorem 17.8, Tb̄S
∗b ∈ H(b̄) and

‖S∗b‖2b = ‖S∗b‖22 + ‖Tb̄S
∗b‖2b̄ . (25.2)

To compute the norm of Tb̄S
∗b in H(b̄), we use the operator Zρ, which was

introduced in Section 8.1. Recall that Zρ denotes the operator on L2(ρ) of
multiplication by the independent variable z, i.e.

(Zρf)(z) = zf(z),

where z ∈ T and f ∈ L2(ρ). Hence, by Corollary 13.18, we have

KρZ
∗
ρχ0 = S∗Kρχ0 = S∗P+ρ = S∗P+(1− |b|2)

= −S∗P+|b|2 = −S∗Tb̄b.

Since S∗Tb̄ = Tb̄S
∗, we obtain

Tb̄S
∗b = −KρZ

∗
ρχ0. (25.3)

Now, using Theorem 25.1 and the fact that Zρ is a unitary operator, we can
write

‖Tb̄S
∗b‖b̄ = ‖KρZ

∗
ρχ0‖b̄ = ‖Z∗

ρχ0‖L2(ρ) = ‖χ0‖L2(ρ).

Therefore, (25.2) becomes

‖S∗b‖2b = ‖S∗b‖22 + ‖χ0‖2L2(ρ). (25.4)

But it is easy to see that

‖χ0‖2L2(ρ) =

∫
T

ρ dm =

∫
T

(1− |b|2) dm = 1− ‖b‖22
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356 H(b) spaces generated by an extreme symbol b

and, by (8.16), that

‖S∗b‖2b = ‖b‖22 − |b(0)|2.

Plug the last two identities into (25.4) to get the result.

25.2 Analytic continuation of f ∈ H(b̄)

A nonzero element of H(b̄) certainly has a singularity somewhere on T. This
fact is stated in the following form.

Theorem 25.4 Let b be an extreme point in the closed unit ball of H∞, and
let f ∈ H(b̄). If f can be analytically continued across all of T, then f ≡ 0.

Proof Let f be a function in H(b̄) that can be analytically continued across
all of T. Hence, Theorem 5.7 implies that there is a c > 0 such that |f̂(n)| =
O(e−cn), as n −→ +∞. We know from 25.1 that there is a unique function
g ∈ L2(ρ) such that f = P+(ρg) and log |gρ| /∈ L1(T). In particular, the
condition f = P+(ρg) implies that

f̂(n) = ĝρ(n) (n ≥ 0).

Put h = gρ. We prove that h satisfies the hypotheses of Theorem 4.31. First
note that h belongs to L2(T), since it is the product of the L2(T) function
gρ1/2 and the L∞(T) function ρ1/2. Moreover, an easy computation shows
that

ĥ(−n) = ̂̄h(n) = ĝρ(n) = f̂(n) (n ≥ 0).

Thus, |ĥ(−n)| = O(e−cn), as n −→ +∞. But, since log |h| = log |gρ| /∈
L1(T), Theorem 4.31 ensures that h ≡ 0. Therefore, f ≡ 0.

In Corollary 23.9, we saw that, if b is a nonextreme point of the closed unit
ball of H∞, then b ∈ H(b). But this is in fact the only case where the inclusion
b ∈ H(b) is possible.

Corollary 25.5 Let b be a point in the closed unit ball of H∞. Then the
following are equivalent.

(i) b ∈ H(b).
(ii) H(b) is invariant under the forward shift operator S.

(iii) H(b̄) has a nonzero element that is analytic on D̄.

(ii) b is a nonextreme point of the closed unit ball of H∞.
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Proof (i) =⇒ (ii) According to Theorem 18.22, we have

X∗
b f = Sf − 〈f, S∗b〉bb (f ∈ H(b)). (25.5)

Hence, the assumption b ∈ H(b) immediately implies that Sf ∈ H(b).
(ii) =⇒ (i) Take any function f ∈ H(b) such that 〈f, S∗b〉b �= 0. For

instance, one can choose f = S∗b ∈ H(b) for which ‖S∗b‖2b �= 0. Then
we rewrite (25.5) as

b =
Sf −X∗f

〈f, S∗b〉b
to deduce b ∈ H(b).

(i) =⇒ (iii) If b ∈ H(b), then, according to Theorem 17.8, we have Tb̄b ∈
H(b̄). Since, by definition, the function (I−Tb̄Tb)χ0 = χ0−Tb̄b also belongs
toH(b̄), we must have χ0 ∈ H(b̄). But the nonzero function χ0 can obviously
be analytically continued across all of T.

(iii) =⇒ (iv) This follows from Theorem 25.4.
(iv) =⇒ (i) This was already proved in Corollary 23.9.

We just saw that, if b is an extreme point of the closed unit ball of H∞, then
H(b) is not S-invariant. Nevertheless, it could be possible for some functions
f ∈ H(b) that Sf remains in H(b). The following result characterizes this
class of functions.

Corollary 25.6 Let b be an extreme point of the closed unit ball of H∞, and
let h be a function inH(b). The following are equivalent.

(i) Sh ∈ H(b).
(ii) 〈h, S∗b〉b = 0.

Proof Remember that

X∗
b h = Sh− 〈h, S∗b〉bb.

According to Corollary 25.5, we know that b �∈ H(b). That gives the equiva-
lence.

25.3 Analytic continuation of f ∈ H(b)

In contrast to the case ofH(b̄), some elements ofH(b) can be extended across
all of T. These elements are of a special form, which is described below.

Theorem 25.7 Let b be an extreme point in the closed unit ball of H∞, and
let f be a function in H2. Then the following are equivalent.

(i) f ∈ H(b) and can be analytically continued across all of T.
(ii) f is rational and Tb̄f = 0.
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Proof (i) =⇒ (ii) Assume that f ∈ H(b) and can be analytically continued
across all of T. Since f can be analytically continued across all of T, Theorem
5.7 ensures that there are c1 > 0 and c2 > 0 such that

|f̂(n)| ≤ c2e
−c1n (n ≥ 0). (25.6)

We first show that Tb̄f can also be analytically continued across all of T. In
fact, for each n ≥ 1, we have

T̂b̄f(n) = 〈Tb̄f, χn〉2 = 〈P+(b̄f), χn〉2 = 〈b̄f, χn〉2
= 〈χ−nf, b〉2 = 〈P+(χ−nf), b〉2 = 〈S∗nf, b〉2.

We repeatedly used Lemma 4.8. Therefore,

|T̂b̄f(n)| ≤ ‖S∗nf‖2 ‖b‖2 ≤ ‖S∗nf‖2 ‖b‖∞ ≤ ‖S∗nf‖2.

But, by (8.16),

‖S∗nf‖22 =

∞∑
k=0

|f̂(k + n)|2.

Hence, by (25.6),

‖S∗nf‖22 ≤ c2

∞∑
k=0

e−2c1(k+n) = c2e
−2c1n

∞∑
k=0

e−2c1k = c2
e−2c1n

1− e−2c1
.

Thus, T̂b̄f(n) = O(e−c1n) as n −→ +∞. Another application of Theorem 5.7
implies that Tb̄f can be analytically continued across all of T. Since f ∈ H(b),
we have Tb̄f ∈ H(b̄) and thus it follows from Theorem 25.4 that Tb̄f = 0,
which means that f belongs to the kernel of Tb̄.

It remains to show that f is a rational function. By Theorem 14.10, f is a
cyclic vector for S∗ if and only if so is Tb̄f . But, since Tb̄f = 0, Tb̄f is not a
cyclic vector of S∗, and thus nor is f . Theorem 8.42 now ensures that f is a
rational function.

(ii) =⇒ (i) Assume that f is a rational function in H2 that belongs to kerTb̄.
Then Tb̄f = 0 ∈ H(b̄) and Theorem 17.8 implies that f ∈ H(b). The fact that
f can be analytically continued across all of T follows from Theorem 5.8.

As the first application, we can characterize the Cauchy kernels that belong
toH(b).

Corollary 25.8 Let b be an extreme point of the closed unit ball of H∞ and
let λ ∈ D. Then the following are equivalent:

(i) kλ ∈ H(b);
(ii) b(λ) = 0.
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Proof The implication (ii) =⇒ (i) is rather obvious since, if b(λ) = 0, then
we have kλ = kbλ ∈ H(b). For the converse, first note that the function kλ
can be analytically continued across all of T. Therefore, by Theorem 25.7, kλ
belongs to the kernel of Tb̄. But, using (12.7), we have Tb̄kλ = b(λ)kλ and
thus we must have b(λ) = 0.

If b is an extreme point in the closed unit ball of H∞ and if f belongs to
H(b) and can be analytically continued across all of T, then ‖f‖b = ‖f‖2. In
fact, by Theorem 25.7, we must have Tb̄f = 0. Then, using Theorem 17.8,
we get

‖f‖2b = ‖f‖22 + ‖Tb̄f‖2b̄ = ‖f‖22. (25.7)

This fact is used to detect the monomials that are inH(b).

Corollary 25.9 Let b be an extreme point of the closed unit ball of H∞. Let
m be a nonnegative integer. Then the following assertions are equivalent.

(i) The monomial zm belongs toH(b).
(ii) b has a zero of order at least m+ 1 at the origin.

Moreover, if zm ∈ H(b), then ‖zm‖b = 1.

Proof According to Theorem 25.7, the function zm belongs to H(b) if and
only if it belongs to the kernel of Tb̄. But, by (12.4),

Tb̄ z
m =

m∑
k=0

b̂(k)zm−k.

Thus, zm belongs to H(b) if and only if b̂(k) = 0, 0 ≤ k ≤ m, which means
that b has a zero of order at least m+1 at the origin. The statement concerning
the norm of zm follows directly from (25.7).

In fact, the above result shows that, if b has a zero of order m + 1 at the
origin, then the set of polynomials at H(b) is a linear manifold of dimension
m + 1 spanned by 1, z, . . . , zm. This fact is mentioned in more detail in the
following corollary and it shows that we can add one extra item to the list given
in Corollary 25.5.

Corollary 25.10 Let b be in the closed unit ball of H∞. Then the set of
analytic polynomials P is contained in H(b) if and only if b is a nonextreme
point of the closed unit ball of H∞.

Proof In Theorem 23.13, we have already proved that, if b is a nonextreme
point of the closed unit ball of H∞, then the set of analytic polynomials P
is contained in H(b) (in fact, it is even dense in H(b)). For the converse, we
argue by absurdity. Assume that the set P is contained in H(b), but b is an
extreme point of the closed unit ball of H∞. Then, by Corollary 25.9, b has
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a zero of order infinity at the origin, which is absurd (remember that b is not
a constant).

Exercise

Exercise 25.3.1 Let b be an extreme point of the closed unit ball of H∞

and assume further that b is an outer function. Show that, if a function f in
H(b) can be analytically continued across all of T, then f ≡ 0.
Hint: Use Theorems 12.19 and 25.7.

25.4 A formula for ‖Xbf‖b

In this section, we give a formula for ‖Xbf‖b, and then easily generalize
it for ‖Xn

b f‖b. The result of this section should be compared with those in
Section 23.5, which were about the nonextreme case.

Theorem 25.11 Let b be an extreme point of the closed unit ball of H∞. Then
we have

X∗
bXb = I − (kb0 ⊗ kb0),

which implies that

‖Xbf‖2b = ‖f‖2b − |f(0)|2

for every function f ∈ H(b).

Proof According to (18.15), with f replaced by Xbf = S∗f , we have

X∗
b (Xbf) = S(S∗f)− 〈Xbf, S

∗b〉bb
= f − f(0)− 〈Xbf,Xbb〉bb
= f − f(0)− 〈f,X∗

bXbb〉bb.

Hence, we look for a formula for X∗
bXbb. Once more, by (18.15) with f =

S∗b = Xbb, we obtain

X∗
bXbb = X∗

b (S
∗b) = SS∗b− ‖S∗b‖2bb = b− b(0)− ‖S∗b‖2b b.

But we know from Corollary 25.3 that ‖S∗b‖2b = 1− |b(0)|2, and thus

X∗
bXbb = b− b(0)− (1− |b(0)|2)b = −b(0)(1− b(0)b) = −b(0)kb0.

Back to the first relation above, we can now write

X∗
bXbf = f − f(0)− 〈f,X∗

bXbb〉bb
= f − f(0) + b(0)〈f, kb0〉bb
= f − 〈f, kb0〉b + b(0)〈f, kb0〉bb

https://doi.org/10.1017/CBO9781139226769.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139226769.012


25.4 A formula for ‖Xbf‖b 361

= f − 〈f, kb0〉b(1− b(0)b)

= f − 〈f, kb0〉bkb0.

The preceding identity is rewritten as

X∗
bXb = I − (kb0 ⊗ kb0).

Moreover, from this identity, we get

‖Xbf‖2b = 〈Xbf,Xbf〉b
= 〈f,X∗

bXbf〉b
= 〈f, f − f(0)kb0〉b
= ‖f‖2b − f(0)〈f, kb0〉b
= ‖f‖2b − |f(0)|2.

This completes the proof.

The following result should be compared with Corollary 23.16, i.e. the anal-
ogous result in the nonextreme case.

Corollary 25.12 Let b be an extreme point of the closed unit ball of H∞. The
operator DXb

= (I −X∗
bXb)

1/2 has rank one, its range is spanned by kb0 and
its nonzero eigenvalue equals ‖kb0‖b.

Proof This follows immediately from Theorem 25.11.

It is straightforward to generalize the preceding formula for ‖Xbf‖2b to
‖Xn

b f‖2b .

Corollary 25.13 Let b be an extreme point of the closed unit ball of H∞.
Then we have

‖Xn
b f‖2b = ‖f‖2b −

n−1∑
k=0

|f̂(k)|2

for every function f ∈ H(b) and every integer n ≥ 1.

Proof The proof is by induction on the integer n. For n = 1 the equality
is precisely the one proved in Theorem 25.11. Just note that f(0) = f̂(0).
Assume that the equality holds for some n. Then, using once again Theo-
rem 25.11 and the induction hypothesis, we have

‖Xn+1
b f‖2b = ‖Xb(X

n
b f)‖2b

= ‖Xn
b f‖2b − |(Xn

b f)(0)|2

= ‖f‖2b −
n−1∑
k=0

|f̂(k)|2 − |(Xn
b f)(0)|2.
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But

(Xn
b f)(0) = 〈Xn

b f, χ0〉2 = 〈S∗nf, χ0〉2 = 〈f, Snχ0〉2 = 〈f, χn〉2 = f̂(n).

The proof is complete.

Corollary 25.14 Let b be an extreme point of the closed unit ball of H∞.
Then, for each function f ∈ H(b), we have

lim
n→∞

‖Xn
b f‖2b = ‖f‖2b − ‖f‖22.

Proof For each function f ∈ H2, we have

‖f‖22 =

∞∑
k=0

|f̂(k)|2 = lim
n→∞

n−1∑
k=0

|f̂(k)|2.

Now, let n −→∞ in the formula given in Corollary 25.13.

Corollary 25.15 Let b be in the closed unit ball of H∞. Then, for every
function f ∈ H(b), we have

‖Xbf‖2b ≤ ‖f‖2b − |f(0)|2. (25.8)

Moreover, the last inequality is an equality for all f ∈ H(b) if and only if b is
an extreme point of the closed unit ball of H∞.

Proof The inequality (25.8) has already been proved in Theorem 18.28. We
have seen in Theorem 25.11 that (25.8) becomes an equality when b is extreme.
Assume now that b is nonextreme. Then, according to (23.17) we have

‖Xbb‖2b = ‖b‖2b − |b(0)|2 − |a(0)|2‖b‖2b < ‖b‖2b − |b(0)|2.

In other words, when b is nonextreme, then the inequality (25.8) can be
strict.

25.5 S∗-cyclic vectors in H(b) and H(b̄)

The result of Douglas, Shapiro and Shields (Theorem 8.42) completely char-
acterizes the cyclic vectors of S∗ as an operator on H2. We saw thatH(b) and
H(b̄) are invariant under S∗. In fact, the restriction of S∗ onH(b) was denoted
by Xb. In this section, we characterize the S∗-cyclic vectors that are in H(b)
and H(b̄). The first result says that, except of course for the zero function, all
other elements ofH(b̄) are cyclic vectors for S∗.

Theorem 25.16 Let b be an extreme point of the closed unit ball of H∞.
Then each f ∈ H(b̄), f �≡ 0, is a cyclic vector for S∗. Hence, the only
function in H(b̄) that has a bounded-type meromorphic pseudocontinuation
across T to De is the zero function.
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Proof Fix f ∈ H(b̄), f �≡ 0. It follows from Corollary 25.2 that there is a
unique function g ∈ L2(ρ) such that

f = P+(gρ) and log |gρ| �∈ L1(T).

Denote by M the closed invariant subspace of S∗ generated by f . In other
words, let

M = SpanH2(S∗nf : n ≥ 0).

We need to show that M = H2. We recall that Z is the bilateral forward shift
operator on L2(T), i.e.

(Zg)(z) = zg(z) (z ∈ T, g ∈ L2(T)).

The closed subspace M ⊕ H2
0 of L2(T) is invariant under Z∗. In fact, if

f1 ∈M and f2 ∈ H2
0 , then we have

Z∗(f1 + f2) = z̄f1 + z̄f2

= P+(z̄f1) + P−(z̄h1) + z̄h2

= S∗f1 + P−(z̄f1) + z̄f2,

and S∗f1 ∈M (remember, M is invariant under S∗) and P−(z̄f1)+z̄f2 ∈ H2
0 .

Therefore, by Theorems 8.29 and 8.30, either M ⊕ H2
0 = ΘH2 with Θ a

unimodular function in L∞(T), or M ⊕ H2
0 = χEL

2(T) with E a Borel
subset of T.

Let us show that the first case cannot occur. To do so, suppose that there is
a unimodular function Θ such that M ⊕H2

0 = ΘH2. We find a contradiction.
Since f ∈ M , the function gρ = f + P−(gρ) belongs to M ⊕ H2

0 , and thus
there is an h ∈ H2 such that gρ = Θh̄. Hence, log |gρ| = log |Θh̄| = log |h|,
which shows that log |h| �∈ L1(T). But then Lemma 4.30 implies that h ≡ 0,
which in turn yields g ≡ 0 and f ≡ 0. This is absurd.

Therefore, for a proper Borel set E, we have M ⊕ H2
0 = χEL

2(T). Since
f ∈ M ⊂ χEL

2(T), we deduce that f ≡ 0 almost everywhere on T \ E.
Then Lemma 4.30 implies that m(T \ E) = 0. Hence, χEL

2(T) = L2(T),
or equivalently M ⊕ H2

0 = L2(T). Finally, since M ⊂ H2, we must have
M = H2. The second assertion follows immediately from Theorem 8.42.

While the preceding result says thatH(b̄) is filled with cyclic vectors and the
only exception is the zero function, the spaceH(b) might have more noncyclic
elements. More explicitly, the noncyclic vectors are precisely the elements
of KΘ, where Θ is the inner part of b.

Theorem 25.17 Let b be an extreme point of the closed unit ball of H∞, and
let f be a function in H2. Then the following are equivalent.
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364 H(b) spaces generated by an extreme symbol b

(i) f ∈ H(b) and f is not a cyclic vector for S∗.

(ii) f ∈ H(b) and f has a bounded-type meromorphic pseudocontinuation
across T to De.

(iii) Tb̄f = 0.

(iv) f ∈ KΘ, where Θ is the inner part of b.

Proof (i)⇐⇒ (ii) This follows immediately from Theorem 8.42.
(i) =⇒ (iii) Theorem 14.10 implies that Tb̄f is not a cyclic vector for S∗.

But, by Theorem 17.8, Tb̄f ∈ H(b̄). Hence, Theorem 25.16 implies that
Tb̄f = 0.

(iii) =⇒ (i) According to Theorem 17.8, we have f ∈ H(b). Since Tb̄f is
obviously not a cyclic vector for S∗, it follows once more from Theorem 14.10
that f is not a cyclic vector for S∗.

(iii)⇐⇒ (iv) This follows from Theorem 12.19.

The above result yields a statement similar to Theorem 25.16 for the
S∗-cyclic elements ofH(b), in the case where b is outer.

Corollary 25.18 Let b be outer and an extreme point of the closed unit ball
of H∞. Then each f ∈ H(b), f �≡ 0, is a cyclic vector for S∗. Hence, the only
function inH(b) that is pseudocontinuable across T is the zero function.

If we combine Theorem 25.17 and Corollary 18.15, then we get the follow-
ing necessary condition for cyclic vectors for Xb.

Corollary 25.19 Let b be an extreme point of the closed unit ball of H∞, let
b = Θbo be the factorization of b into its inner part Θ and its outer part bo and
assume that Θ and bo are not constant. Let f ∈ H(b). If f is a cyclic vector
for Xb, then f /∈ KΘ.

25.6 Orthogonal decompositions of H(b)

Remember that, if b1 = Θ is an inner function and b2 is a function in H∞ and
b = b1b2, then, according to Corollary 18.9, the space H(b) can be decom-
posed as

H(b) = H(Θ)⊕ΘH(b2),

and the sum is orthogonal. When b is extreme, we can give another orthogonal
decomposition for H(b). In a sense, we can say that the roles of Θ and b2 can
be exchanged.

Theorem 25.20 Let b = b1b2, b
 ∈ H∞, ‖b
‖∞ ≤ 1 and b
 is nonconstant.
Then the following assertions hold.
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(i) The spaceH(b) decomposes as

H(b) = H(b1) + b1H(b2). (25.9)

(ii) If b1 is extreme and b2 is inner, then the sum in (25.9) is orthogonal, the
inclusion map of H(b1) into H(b) is an isometry and the operator Tb1

acts as an isometry fromH(b2) intoH(b).
(iii) If the sum in (25.9) is orthogonal, then necessarily b1 is extreme.

Proof Part (i) has already been proved in Theorem 18.7.
Let us now prove (ii). According to Theorem 18.8, it is sufficient to check

that

H(b2) ∩H(b̄1) = {0}.

Let f ∈ H(b2) ∩ H(b̄1). On the one hand, since b2 is inner, H(b2) is a closed
S∗-invariant subspace of H2, and thus f cannot be a cyclic vector for S∗.
On the other hand, since |b| = |b1| (once again because b2 is inner), then b2
is also an extreme point of the closed unit ball of H∞. It now follows from
Theorem 25.16 that f ≡ 0 and we conclude that H(b2) ∩ H(b̄1) = {0}.
It remains to show that, if b1 is nonextreme, then the sum in (25.9) is not
orthogonal. Since b1 is nonextreme, then we have

P ⊂ H(b1) ⊂ H(b).

Since b is nonextreme (note that log(1− |b1|) ≤ log(1− |b|)), Theorem 23.13
implies that P is dense in H(b). Therefore, we get that H(b1) is also dense in
H(b). In particular, its orthogonal complement is reduced to {0} and thus the
decomposition (25.9) cannot be orthogonal.

25.7 The closure of H(b̄) in H(b)

In Theorem 17.9, we saw that the space H(b̄), for any b, is contractively
contained in H(b). Then, in Corollary 23.10, we showed that H(b̄) is a dense
submanifold of H(b) whenever b is a nonextreme point of the closed unit ball
of H∞. The situation in the extreme case is different and is discussed below.

Theorem 25.21 Let b be an extreme point in the closed unit ball of H∞ and
let b = Θ[b] be its canonical factorization, with Θ the inner part and [b] the
outer part of b. Then the closure ofH(b̄) inH(b) isH([b]). In particular,H(b̄)
is dense inH(b) if and only if b is an outer function.

Proof First note that, by Lemma Theorem 17.11, we have H(b̄) = H([b]),
and Theorem 17.9 implies that

H(b̄) = H([b]) ⊂ H([b]).
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But, as a consequence of the orthogonal decomposition given in Theorem
25.20, we know thatH([b]) is a closed subspace ofH(b), whence we conclude
that the closure of H(b̄) in H(b) is contained in H([b]). Using once more
Theorem 25.20, it only remains to show that every function in H(b) that is
orthogonal toH(b̄) belongs to [b]H(Θ).

To continue the argument, let f be a function in H(b) and assume that f is
orthogonal toH(b̄). Since f ∈ H(b), by Corollary 20.2, there exists a function
g ∈ L2(ρ) such that

Tb̄f = Kρ(g) = P+(ρg).

Now, take any function h ∈ H2(ρ) and let k = Kρ(h). Then k ∈ H(b̄) and it
follows from Theorem 13.21 that

Tb̄k = Tb̄Kρh = Kρ(b̄h).

Using the fact that f is orthogonal to H(b̄) and applying Theorems 17.8 and
25.1, we obtain

0 = 〈f, k〉b
= 〈f, k〉2 + 〈Tb̄f, Tb̄k〉b̄
= 〈f, P+(ρh)〉2 + 〈Kρg,Kρ(b̄h)〉b̄
= 〈f, ρh〉2 + 〈g, b̄h〉L2(ρ)

= 〈f, h〉L2(ρ) + 〈gb, h〉L2(ρ)

= 〈f + gb, h〉L2(ρ).

But, since this relation holds for all functions h ∈ H2(ρ), and since H2(ρ) =

L2(ρ) (Theorem 25.1), we deduce that f + gb = 0 in L2(ρ). Therefore, we
have

f(1− |b|2) + bg(1− |b|2) = 0

almost everywhere on T, which implies that

f

b
= b̄f − (1− |b|2)g = b̄f − ρg,

because b �= 0 almost everywhere on T. The last equality implies that the
function f/b belongs to L2(T) and, by the definition of g, we have

P+

(
f

b

)
= P+(b̄f)− P+(ρg) = Tb̄f −Kρg = 0. (25.10)

Since
f

[b]
=

f

b
Θ,
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the function f/[b] also belongs to L2(T), and since [b] is outer, Corollary 4.28
implies that f/[b] is in H2. Then, using (25.10), we get

TΘ̄

(
f

[b]

)
= P+

(
Θ̄

f

[b]

)
= P+

(
f

b

)
= 0,

which means that f/[b] belongs to the kernel of TΘ̄. It remains to apply
Theorem 12.19 to deduce that f/[b] ∈ KΘ, which means that f ∈ [b]KΘ. That
concludes the proof of the first assertion.

For the second assertion, note that H(b̄) is dense in H(b) if and only if
H([b]) = H(b), which is equivalent by Theorem 25.20 to KΘ = {0}. This
last identity precisely means that Θ is a constant of modulus one, that is, b is
outer.

25.8 A characterization of H(b)

In this section, we study an analog of Theorem 17.24, which characterizes the
spacesH(b) when b is extreme.

Theorem 25.22 Let H be a Hilbert space contained contractively in H2.
Then the following assertions are equivalent.

(i) H is S∗-invariant (and T denotes the restriction of S∗ toH), the operator
I − TT ∗ is an operator of rank one and we have

‖Tf‖2H = ‖f‖2H − |f(0)|2 (f ∈ H). (25.11)

(ii) There is an extreme point b in the closed unit ball of H∞, unique up to a
unimodular constant, such thatH � H(b).

Proof (i) =⇒ (ii) According to Theorem 16.29, we know thatH is contained
contractively in H2 and, ifM denotes its complementary space, then S acts
as a contraction onM. Now the strategy of the proof is quite simple and quite
similar to the strategy of the proof of Theorem 23.22. We show that S acts
as an isometry on M. Then we apply Theorem 17.24 to deduce that there
exists a function b in the closed unit ball of H∞ such thatM � M(b), and
Corollary 16.27 enables us to conclude thatH � H(b). To show that S acts as
an isometry, we decompose the proof into several steps, 10 in total.

Step 1: Let kH0 be the unique vector inH such that

f(0) = 〈f, kH0 〉H (f ∈ H).

Then I − T ∗T = kH0 ⊗ kH0 .
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368 H(b) spaces generated by an extreme symbol b

Let f ∈ H. Then, according to Lemma 2.16 and (25.11), we have

f ∈ ker(I − T ∗T ) ⇐⇒ ‖Tf‖H = ‖f‖H
⇐⇒ f(0) = 0

⇐⇒ f ⊥ kH0 ,

whence ker(I − T ∗T ) = (CkH0 )⊥. Thus, we get R(I − T ∗T ) = CkH0 and
I − T ∗T is a rank-one operator whose range is spanned by kH0 . Since this
operator is positive and self-adjoint, we get

I − T ∗T = ckH0 ⊗ kH0 ,

for some positive real constant c. It remains to show that c = 1. On the one
hand, we have

‖I − T ∗T‖ = sup
f∈H, ‖f‖H≤1

|〈(I − T ∗T )f, f〉H|

= sup
f∈H, ‖f‖H≤1

(‖f‖2H − ‖Tf‖2H)

= sup
f∈H, ‖f‖H≤1

|〈f, kH0 〉H|2

= ‖kH0 ‖2H,

and, on the other, we have ‖I − T ∗T‖ = c‖kH0 ‖2, whence c = 1, which ends
the proof of Step 1.

Step 2: Let f0 be the unique vector inH such that I − TT ∗ = f0 ⊗ f0. Then

T ∗f0 =
〈f0, TkH0 〉H
‖f0‖2H

kH0 .

Using T ∗(I − TT ∗) = (I − T ∗T )T ∗, we have

T ∗f0 ⊗ f0 = (kH0 ⊗ kH0 )T ∗ = kH0 ⊗ TkH0 .

Thus, for every f ∈ H, we have

〈f, f0〉HT ∗f0 = 〈f, TkH0 〉HkH0 . (25.12)

In particular, this equality with f = f0 gives

‖f0‖2HT ∗f0 = 〈f0, TkH0 〉HkH0 ,

which concludes the proof of Step 2.

Step 3: If 1 �∈ H, then there exist nonzero constants c1, c2 ∈ C such that
Sf0 = c1k

H
0 + c2.
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Put α = 〈f0, TkH0 〉HkH0 /‖f0‖2H. Then, according to Step 2, we have T ∗f0 =

αkH0 . Note that α �= 0. Indeed, applying (25.12) to f = TkH0 gives

〈TkH0 , f0〉HT ∗f0 = ‖TkH0 ‖2HkH0 ,

whence

|〈TkH0 , f0〉H|2 = 〈TkH0 , f0〉H〈T ∗f0, k
H
0 〉H = ‖TkH0 ‖2H.

But, since 1 �∈ H, we have TkH0 �= 0, which implies that 〈TkH0 , f0〉H �= 0.
Thus, α �= 0.

Now, using (I − TT ∗)f0 = ‖f0‖2Hf0, we get

(1− ‖f0‖2H)f0 = TT ∗f0 = αTkH0 .

Since αTkH0 �= 0, we necessarily have ‖f0‖H �= 1. Hence,

f0 =
α

1− ‖f0‖2H
TkH0 = c1Tk

H
0 ,

where c1 = α/(1− ‖f0‖2H) �= 0. Thus,

Sf0 = S(c1Tk
H
0 )

= SS∗(c1Tk
H
0 )

= c1k
H
0 − c1k

H
0 (0)

= c1k
H
0 + c2,

where c1 �= 0 and c2 = −c1kH0 (0) = −c1‖kH0 ‖2H �= 0.

Step 4: S acts as an isometry onM (case 1 �∈ H).

Let f ∈ H and g ∈M. Write

f = (I − TT ∗)f + TT ∗f = 〈f, f0〉Hf0 + TT ∗f = λf0 + TT ∗f,

where λ = 〈f, f0〉H. Then

‖g + f‖22 = ‖g + λf0 + TT ∗f‖22
= ‖g‖22 + ‖λf0 + TT ∗f‖22 + 2�〈g, λf0 + TT ∗f〉2.

But

〈g, λf0 + TT ∗f〉2 = 〈g, S∗T ∗f〉2 + 〈g, λf0〉2
= 〈Sg, T ∗f〉2 + 〈g, λf0〉2

and, using Step 3, we also have

〈g, λf0〉2 = 〈zg, λzf0〉2 = 〈zg, λc1kH0 + λc2〉2
= 〈zg, λc1kH0 〉2 = 〈zg, λh0〉2,
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370 H(b) spaces generated by an extreme symbol b

with h0 = c1k
H
0 ∈ H. Thus,

〈g, λf0 + TT ∗f〉2 = 〈zg, T ∗f + λh0〉2
and we obtain

‖g + f‖22 = ‖zg + T ∗f + λh0‖22 + ‖λf0 + TT ∗f‖22 − ‖T ∗f + λf0‖22.

This gives

‖g + f‖22 − ‖f‖2H
= ‖zg + T ∗f + λh0‖22 + ‖λf0 + TT ∗f‖22 − ‖T ∗f + λh0‖22 − ‖f‖2H.

Now, we prove that

‖λf0 + TT ∗f‖22 − ‖T ∗f + λh0‖22 = ‖f‖2H − ‖T ∗f + λh0‖2H. (25.13)

Using Step 3, we have

f0 = S∗Sf0 = S∗(c1k
H
0 + c2) = c1S

∗kH0 = Th0.

Thus, on the one hand, we have

‖λf0 + TT ∗f‖22 − ‖T ∗f + λh0‖22 = ‖T (λh0 + T ∗f)‖22 − ‖λf0 + T ∗‖22
= |(λh0 + T ∗f)(0)|2,

and, on the other, we also have

‖f‖2H − ‖T ∗f + λh0‖2H = ‖λf0 + TT ∗f‖2H − ‖T ∗f + λh0‖2H
= ‖T (λh0 + T ∗f)‖2H − ‖λh0 + T ∗f‖2H
= |(λh0 + T ∗f)(0)|2.

The last equality follows from (25.11). This concludes the proof of (25.13).
Hence,

‖g + f‖22 − ‖f‖2H = ‖zg + T ∗f + λh0‖22 − ‖T ∗f + λh0‖2H
≤ sup

h∈H
(‖zg + h‖22 − ‖h‖2H)

= ‖zg‖2M (f ∈ H).

This gives ‖g‖2M ≤ ‖zg‖2M, which with Theorem 16.29 implies that S is an
isometry onM.

From now on, we assume that 1 ∈ H and n ≥ 1 is such that f0 = zn−1f̃0,
with f̃0 ∈ H2 and f̃0(0) �= 0.

Step 5: ‖1‖H = 1 and kH0 = 1.

Since 1 ∈ H, using (25.11), we have

‖T1‖2H = ‖1‖2H − 1.

https://doi.org/10.1017/CBO9781139226769.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139226769.012


25.8 A characterization ofH(b) 371

Hence, ‖1‖H = 1, because T1 = 0. But, by Corollary 16.28,

i∗H(1) = 1 and i∗M(1) = 0,

where iH (respectively iM) denotes the canonical injection ofH (respectively
M) into H2. Thus, for each f ∈ H, we get

〈f, 1〉H = 〈iH(f), 1〉H
= 〈f, i∗H(1)〉2
= 〈f, 1〉2 = f(0)

= 〈f, kH0 〉H.

By the uniqueness of reproducing kernels, we deduce that kH0 = 1.

Step 6: We have

T ∗h = S(h− 〈h, f0〉Hf0) (h ∈ H).

Since I − f0 ⊗ f0 = TT ∗, we get

S(I − f0 ⊗ f0)h = STT ∗h = SS∗T ∗Th

= T ∗h− (T ∗h)(0) (h ∈ H).

But, according to Step 5,

(T ∗h)(0) = 〈T ∗h, 1〉H = 〈h, T1〉H = 0.

Thus,

S(I − f0 ⊗ f0)h = T ∗h.

Step 7: The function f̃0 belongs toH and

T ∗n1 = zn(1− f̃0(0)f̃0). (25.14)

Moreover, if n ≥ 2, we have

T ∗k1 = zk (1 ≤ k ≤ n− 1). (25.15)

Since f̃0 = S∗n−1f0 = Tn−1f0, we surely have f̃0 ∈ H. Now, using Step 6,
we have

T ∗1 = S(1− 〈1, f0〉Hf0)

and

〈1, f0〉H = f0(0),
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because 1 = kH0 . Hence,

T ∗1 = z(1− f0(0)f0). (25.16)

If n = 1, we have f0 = f̃0. This proves (25.14) in the case n = 1.
Now, assume that n > 1. We first prove (25.15) by induction. Since n > 1,

we have f0(0) = 0, and thus, by (25.16), we get T ∗1 = z. Assume that
T ∗k1 = zk, for some k < n− 1. Thus, using Step 6, we obtain

T ∗(k+1)1 = T ∗zk = z(zk − 〈zk, f0〉Hf0)

= zk+1 − 〈zk, f0〉Hzf0.

But

〈zk, f0〉H = 〈T ∗k1, f0〉H = 〈1, T kf0〉H = (T kf0)(0)

and

T kf0 = S∗kf0 = P+(z̄
kzn−1f0) = P+(z

n−k−1f0) = zn−k−1f0.

Hence, (T kf0)(0) = 0, because n− k − 1 > 0, and then

T ∗(k+1)1 = zk+1.

Therefore,

T ∗k1 = zk (1 ≤ k ≤ n− 1).

Using Step 6 once more, we have

T ∗n1 = T ∗zn−1 = zn − 〈zn−1, f0〉Hzf0

= zn − 〈zn−1, f0〉Hznf̃0

= zn(1− 〈zn−1, f0〉Hf̃0).

It just remains to note that

〈zn−1, f0〉H = 〈T ∗n−11, f0〉H = 〈1, Tn−1f0〉H = 〈1, f̃0〉H = f̃0(0).

Step 8: zn−1 ∈ H and 〈g, zn−1〉2 = 0, for every g ∈M.

According to (25.15), we have zk ∈ H, for every 0 ≤ k ≤ n − 1. Moreover,
‖zk‖H = 1. Indeed, this is true for k = 0 by Step 5. Assume that, for some
0 ≤ k ≤ n− 1, ‖zk‖H = 1. Hence, considering (25.11), we get

‖zk+1‖2H = ‖Tzk+1‖2H = ‖zk‖2H = 1.

By induction, we then have ‖zk‖H = 1, for every 0 ≤ k ≤ n − 1. It follows
from Corollary 16.28 that i∗H(zn−1) = zn−1 and i∗M(zn−1) = 0. Hence, if
g ∈M, we have

〈g, zn−1〉2 = 〈iM(g), zn−1〉2 = 〈g, i∗M(zn−1)〉M = 0.
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Step 9: S acts as an isometry onM (case 1 ∈ H).

Let f ∈ H and g ∈ M. Argue as in Step 4, and write f = λf0 + TT ∗f , with
λ = 〈f, f0〉H. Then

‖g + f‖22 = ‖g + λf0 + TT ∗f‖22
= ‖g‖22 + ‖λf0 + TT ∗f‖22 + 2�〈g, λf0 + TT ∗f〉2.

But

〈g, λf0 + TT ∗f〉2 = 〈g, λf0〉2 + 〈Sg, T ∗f〉2.

Write h = −f̃0(0)(−1)T ∗n1. According to Step 6, we have

h = −f̃0(0)(−1)zn + znf̃0 = −f̃0(0)(−1)zn + zf0.

Hence,

〈zg, λh〉2 = −f̃0(0)
−1

λ̄〈zg, zn〉2 + 〈zg, λzf0〉2 = 〈g, λf0〉2,

because 〈zg, zn〉2 = 〈g, zn−1〉2 = 0, according to Step 8. Therefore,

〈g, λf0 + TT ∗f〉2 = 〈zg, λh〉2 + 〈zg, T ∗f〉2 = 〈zg, λh+ T ∗f〉2.

We thus get

‖g + f‖22 = ‖zg + λh+ T ∗f‖22 + ‖λf0 + TT ∗f‖22 − ‖λh+ T ∗f‖22,

and then

‖g + f‖22 − ‖f‖2H
= ‖zg + λh+ T ∗f‖22 + ‖λf0 + TT ∗f‖22 − ‖λh+ T ∗f‖22 − ‖f‖2H.

Now, we prove that

‖λf0 + TT ∗f‖22 − ‖T ∗f + λh‖22 = ‖λf0 + TT ∗f‖2H − ‖T ∗f + λh‖2H.

Denote the right-hand side by A and the left-hand side by B. Then, using
Step 6, we obtain

A = ‖f‖22 − ‖z(f − λf0 − λf̃0(0)
(−1)zn + λf0)‖2

= ‖f‖22 − ‖f − λf̃0(0)
(−1)zn)‖2

= ‖f‖22 − (‖f‖22 + |λ|2|f̃0(0)|−2 − 2�(λ̄f̃0(0)
−1〈f, zn−1〉2))

= −|λ|2|f̃0(0)|−2 + 2�(λ̄f̃0(0)
−1〈f, zn−1〉2).
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Moreover, using (25.11), we have

B = ‖f‖2H − ‖T ∗f + λh‖2H
= ‖f‖2H − ‖TT ∗f + λTh‖2H − |(T ∗f)(0) + λh(0)|.

But (T ∗f)(0) = h(0) = 0 and Th = S∗h = −f̃0(0)(−1)zn−1 + f0. Hence,

TT ∗f + λTh = TT ∗f + λf0 − λf̃0(0)
(−1)zn−1,

which gives

B = ‖f‖2H − ‖f − λf̃0(0)
(−1)zn−1‖2H

= ‖f‖2H − [ ‖f‖2H + |λ|2|f̃0(0)|−2‖zn−1‖2H
−2�(λ̄f̃0(0)

−1〈f, zn−1〉H) ]

= −|λ|2|f̃0(0)|−2 + 2�(λ̄f̃0(0)
−1〈f, zn−1〉H).

Considering

〈f, zn−1〉H = 〈iH(f), zn−1〉H
= 〈f, i∗H(zn−1)〉2
= 〈f, zn−1〉2,

we deduce that A = B. This reveals that

‖g + f‖22 − ‖f‖2H = ‖zg + λh+ T ∗f‖2 − ‖λh+ T ∗f‖2H
≤ sup

u∈H
(‖zg + u‖22 − ‖u‖2H)

= ‖zg‖2M (f ∈ H).

This gives ‖g‖2M ≤ ‖zg‖2M, which, in the light of Theorem 16.29, ensures
that S is an isometry onM.

Step 10: There is an extreme point b in the closed unit ball of H∞, unique up
to a unimodular constant, such thatH � H(b).

According to Steps 4 and 9, S acts as an isometry on M. Therefore,
Theorem 17.24 implies that there exists a function b in the closed unit ball of
H∞ such that M � M(b). Now, Corollary 16.27 implies that H � H(b).
Finally, b is an extreme point of the closed unit ball of H∞, since I − T ∗T is
an operator of rank one. Remember that, according to Theorem 23.14, if b is a
nonextreme point of the closed unit ball of H∞, then the operator I − T ∗T is
of rank two.

That finishes the proof of the implication (i) =⇒ (ii).

(ii) =⇒ (i) This follows from Corollary 18.23 and Theorem 25.11.

This completes the proof of Theorem 25.22.
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Notes on Chapter 25

Section 25.1

The formula for the norm ‖S∗b‖b that appears in Corollary 25.3 is due to
Sarason [160]. However, the proof presented here comes from [166].

Section 25.2

Theorem 25.4 is due to Lotto and Sarason [123, theorem 5.1]. The equivalence
between (i) and (iv) in Corollary 25.5 is due to Sarason [160] and the equiva-
lence of (i) and (ii) is due to de Branges and Rovnyak [65]. Corollary 25.6 is
due to Lotto and Sarason [123, lemma 8.1].

Section 25.3

Theorem 25.7 comes from Sarason’s book [166], but the immediate corollary
that is presented in Exercise 25.3.1 is due to Lotto and Sarason [123, corollary
5.2]. Corollaries 25.9 and 25.10 appear in a paper of Sarason [160], but the
proofs come from his book.

Section 25.4

The determination of the defect operator of the contraction Xb made in
Theorem 25.11 and Corollary 25.12 follows Sarason [160]. In that paper,
he identifies the characteristic function (in the language of Sz.-Nagy and
Foiaş) of Xb; see also [139]. Corollaries 25.13 and 25.14 are due to Lotto and
Sarason [123].

Corollary 25.15 is due to de Branges and Rovnyak [65, theorem 16]. More
precisely, they proved that (25.8) is an equality if and only if b /∈ H(b), and
we know this condition is equivalent to b being an extreme point of the closed
unit ball of H∞. See also Nikolskii and Vasyunin [139, corollary 8.8] for a
generalization of this result in the vector-valued situation.

As already mentioned, de Branges called (25.8) the inequality for difference
quotients.

Section 25.5

Theorem 25.16 has been proved by Lotto and Sarason [123, theorem 5.3], who
applied this to the problem of multipliers ofH(b). See Section 26.2 for results
in this direction. It should be noted that Suárez [181] described the invariant
subspaces of Xb but, as already mentioned, the problem of determining the
cyclic vector of Xb (in the extreme case) is an open problem. Corollary 25.18
is also due to Lotto and Sarason [123, theorem 5.4].
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Section 25.6

Theorem 25.20 is a slight generalization of a result of Lotto and Sarason [123,
theorem 6.1].

Section 25.7

Theorem 25.21 has been proved by Lotto and Sarason [123, theorem 6.2].

Section 25.8

The characterization of theH(b) spaces in the extreme case obtained in Theo-
rem 25.22 is due to de Branges and Rovnyak [64, appdx, theorem 6] and [65,
theorem 15]. The proof of de Branges and Rovnyak is based on the construc-
tion of an auxiliary Hilbert space of analytic functions. Our proof here is
different and is inspired by the analogous result in the nonextreme case due
to Guyker [96]; see Theorem 23.22.
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