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ON THE PONTRJAGIN ALGEBRA OF A CERTAIN CLASS OF 
FLAGS OF FOLIATIONS 

BY 

F. J. CARRERAS AND A. M. NAVEIRA 

ABSTRACT. Let (M,g) be a Riemannian manifold and let T,, T2, T3 

be mutually orthogonal distributions on M of dimensions p{, pi,P3 such that 
P\ + Pi + p* = dim M. We assume that Y, and Y, 0 Y2 are integrable and 
that all the geodesies of M with initial tangent vector in Y2 remain tangent 
to Y2. Then, we prove that PontA(Y2 © Y3) = 0 for k > p2 + 2/?3, where 
Pont*(Y2 0 Y3) is the subspace of the Pontrjagin algebra of Y2 0 Y3 

generated by forms of degree k. 

1. Introduction. Let (M, g) be a Riemannian manifold and Y a distribution on M. 
If T is integrable, then Bott's theorem [1] says that Pont^T1) = 0 for k > 2 dim ( T 1 ) , 
where Pont*(T x) is the subspace of the Pontrjagin algebra of T 1 generated by forms 
of degree k. On the other hand, Pasternack [7] has proved that if Y is integrable and 
the metric is bundle-like with regard to the corresponding foliation, then Pont^CT1) = 
0 for k > dim (Y1). In this paper we prove a result on flags of two foliations that turns 
out to be a generalization of the foregoing ones. In fact, let T,, Y2, Y3 be mutually 
orthogonal distributions of dimensions px, p2, p3 on (M, g), such that the tangent bundle 
TM = Ti © Y2 0 Y3, where we identify each distribution with the vector bundle 
determined by it. We assume that Yx and Yx © Y2 are integrable and that Y2 is a totally 
geodesic distribution, in the sense that any geodesic of M with initial tangent vector in 
T2 remains tangent to T2. Then, Pont''(T2) Pontj(Y3) = 0 for j > 2/?3 or i+ j> p2 

+ 2p3. This condition is stronger than the one obtained by L. A. Cordero and X. Masa 
in [2] for flags of two foliations (subfoliations) without the additional hypothesis on Y2. 
In [2] an extensive study of the characteristic classes of subfoliations is also carried out. 
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2. The generalized second connection. In order to find a suitable expression for the 
Pontrjagin polynomials of the bundle Y2 © T3, we define what we call the generalized 
second connection V. Since its construction is valid for an arbitrary number of distribu­
tions, we shall consider, within this section, k mutually orthogonal distributions Yl9 

. . . , Yk on a Riemannian manifold (M,g) such that Yx © . . . © Y* = TM. 
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If v, is the projector of TM onto Yh 1 < / < k, and V is the Levi-Civita connection, 
we set 

VAiBt = Vi(VA.Bi) for 1 < / < it 

and 

V .̂£7 = V/IA,^] for 1 < /, 7 < A: and / ^ 7. 

Throughout the paper the subscripts of the vector fields, if any, indicate the distribu­
tion to which they belong. 

It is clear that V is a well-defined connection on TM which satisfies 
(0 For all /, 1 < / < k, Vv, = 0, or, equivalently, the restriction of V to each T, 

is a connection in ¥,. 
(//) A,(g(£„ C^) = g(VAiBi, Ci) + g(Bi, VAjCi)y since the %'s are mutually orthog­

onal and Vg = 0. 
(Hi) If T is the torsion tensor of V, i.e., T(M,N) = VMN - VNM - [M,N] for all 

M,N <E X(M), then g(T(Al,M),Bl) = 0 for all M E X(M) and A„ Bt E T„ 1 < i 
< &, as a consequence of the symmetry of V. 

Furthermore, we have 

THEOREM 1. Let (M,g) be a Riemannian manifold andYx, . . . , Yk mutually orthog­
onal distributions on M such that Y{ 0 . . . 0 Yk — TM. There exists a unique 
connection in TM satisfying (/), (//) and (Hi). 

PROOF. Only uniqueness has to be proved. Assume V* is such a connection in TM 
and let T* be its torsion tensor; then, for any A,-, Bh C} with / =£ j , we have 

0 = g(T*(An Q), Bi) = g{V*Cj - V^Ai - [A^CjlBi) 

= ~g(V^Ai + vz[A„ Cjl Bi), 

and since B{ is an arbitrary vector field in ¥,, we get 

V*A, = -v,[A ;, Cj] = VCA,. 

On the other hand, 

g(T*(AnBt), Ci) = 0 

implies 

V*£, - V*A, = Vi[Ai, Bi]. 

Now, the Riemannian connection satisfies 

2g(VABn C,) = A,(g(£„ C,)) + Bi(g(An d)) - C-^A,-, B,)) 

+ £([C„ A,], £,) + g([C„ £,], A,) + g([An Bil C) . 

and a substitution in this formula gives g(VAjBi, C,) = g(V *.#,-, Ci), whence 

V*£, = v,(V^,) = VAiBi. II 
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It is easily seen that the semicanonical connection defined by Vaisman [9] satisfies 
the conditions of theorem 1, so that both connections are the same. 

Let S be the curvature tensor of V, i.e. 

S(L, M, N, O) = g(VMVLN - VLVMN + W[LM]N, O) 

for all L, M, N, O G £(M). 
As a consequence of properties (/), (//) and (///) of V, we have 

PROPOSITION 2. Let (M9g) be a Riemannian manifold and Yu . . . , Yk mutually 
orthogonal distributions on M such that Y{ © . . . © Yk = TM. If S is the curvature 
tensor ofV, then, for i 4= j : 

(a) S(M, N, Ah Bj) = S(M, N, BJ9 At) = 0, 

(b) S(Ai9 Bi9 Cj, Dj) = -g([Ai9 vj[Bh Cj]], Dj) + g([Bi9 Vj[Ai9 C j ] , Dj) 

+ gWcjvM,, B,]9 Dj) + g([[An Bil Cj], Dj), 

(c) S(Ai9 Bh Cj9 DJ) - S(Ai9 Cj, Bh Dj) = - 2 g([vh[Bn C,], A;], Dt)9 

(d) S(Ah Bi9 Ci9 DÙ + S(An Bi9 Di9 C,) = 2 g(vh[An B(], VCiDi + VD,C,), 

(e) S S(Ah B„ C„ D{) = 0. // 
AhBhC, 

COROLLARY 3. If one of the three following conditions is satisfied for i =£ j 
(a) Yi is integrable, 
(b) 0 ^ , Yh is integrable, 

(c) For every h =É j , Yh © T, is integrable; 

then, 

S(Ah Bh Cj, Dj) = S(An Cj, BJ, DJ). // 

COROLLARY 4. IfY{ is integrable, then 

(a) S(Ah Bh C„ D,) = -S(Ah Bh Dh Q) 

(b) S(Ai9 Bh Ch A ) = R'(Ai9 Bi9 Ci9 A ) 

where R' is the curvature tensor of the Levi-Civita connection of the leaves ofYh 

If, further, there exists j , i =£ j , such that 
(1) ®h*j °^h is integrable, or 
(2) for every h, h =/= j , T, © Yh is integrable, 

then, 

(c) S(Ai9 Bi9 CJ9 Dj) = 0. // 

Henceforth, we will consider an additional condition on one of the distributions, 
namely, 
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DÉFINITION [3], [6]. A distribution Y will be said to be of type D\ if{VA v)A = Ofor 
all A in Y ; where v is the orthogonal projection onto Y'. 

THEOREM 5. A p-dimensional distribution Y in an n-dimensional Riemannian man­
ifold (M, g) is of type D\ if and only if every geodesic of M with initial tangent vector 
in Y remains tangent to Y. 

PROOF. Let a be a curve in M, and let a = à be its tangent vector field, which is 
a curve in TM. Then, CT is a geodesic if and only if a is an integral curve of the spray 
£ associated to V. Let {£ , , . . . , £„}bea local frame defined in an open set U of M such 
that E\, . . . , Ep E T and Ep+\, . . . , £ „ E Y. This frame defines a trivialization TU 
= U x M". Under this identification the field £ can be written as 

£ = 2 p%- 2 />ye*(V£|.E,-) — 
/.M dpk 

where the/?"s (1 < / < n) are the standard coordinates on IR", and {6*} is the dual frame 
of £,, . . . , E„. On the other hand, the condition of Y being of type D, is clearly 
equivalent to the fact that, for all a, b — 1, . . . , p and u = p + 1, . . . , n, 

(*) e"(V£flEfr) + G"(V£/£J = 0. 

Further, the subbundle of TM, determined by T, which will be eqally denoted by T , 
is a regular submanifold of TM, and a tangent vector to TM is tangent to T if and only 
if it is a linear combination of £,, . . . , Ep, d/dp\ . . . , d/dpp (under the above 
identification). So, (*) is equivalent to the fact that the restriction of £ to Y be tangent 
to T; in other words, the fact that the integral curves of £ with initial values in T be 
contained in T , whence the result follows. // 

Notice that if 9̂  is a foliation in (M, g), then 2F is of type D, if and only if the metric 
is bundle-like [6], and thus, theorem 5 generalizes Reinhart's result about geodesies in 
a foliated manifold with bundle-like metric [8]. 

EXAMPLE. Consider the sphere s4"+3 and the Hopf fibration onto the quaternionic 
n-space 54"+3 —» H". Let Y be the distribution determined by the vector spaces tangent 
to the fibres, and let 3€ = Y1. On the other hand, consider Sr x U[, where r + t = 
Am + 3 for some integer m. As an orientable hypersurface in IR4w+4, Sr x Ul has a 
global normal vector field N. If Ju J2, Ji are the three canonical almost-complex 
structures on U4m+4 = HT, then 7,7V, J2N, J^N are vector fields tangent to Sr x R' which 
span a 3-dimensional distribution T ' . Then, on 54w+3 x Sr x [Rr, ^ © T ' is a 
non-integrable distribution of type D,, whose orthogonal complement is not integrable. 
For more details and further examples, see [5]. 

PROPOSITION 6. //¥,- is of type D,, then 
(a) S(M, N, An Bi) = S(M, N, Bh A,) 
(b) The curvature tensors S andR ofV and V, respectively, agree when acting upon 

arguments ofYj if and only ifY( is integrable with totally geodesic leaves. 
The proof follows by computation from properties (/), (//), {Hi) and the following. 
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LEMMA 7. IfY, is of type D, and M E ©/,*,-¥/,, then 

M(g(Ai9 B,)) = g([M, Au B>) + g(Ah [M, £,]), 

or, equivalently, 

&Mg){A„ Bi) = 0 // 

where £6 denotes the Lie derivative. // 

COROLLARY 8. / / T , w of type Dx and if further one of conditions (a), (b), (c) o/ 
corollary 3 is satisfied, then S(Ah Bi9 Ch D,) = 0. // 

3. The obstruction theorem. Let £ be a vector bundle on M, which we can assume 
as a subbundle of TM, with fibre W and D a connection in E. If we consider the 
associated principal bundle we have the Weyl homomorphism [4] 

w: I(G\(r, R ) ) -> / / * ( i l , R) 

where /(Gl(r, R)) (= 2 /*(Gl(r, R))) is the graded algebra of ad-Gl(r, R)-invariant 
polynomials on <?€(r, R), the Lie algebra of Gl(r, R). The image of this homo­
morphism is the algebra of characteristic classes of E and will be denoted by Pont (E). 
For each k, w(/*(Gl(r, R))) is the space of characteristic classes of degree 2k, and will 
be denoted by Pont2*(£). 

The algebra Pont (E) is spanned by the classes w(f0), w(f), . . . , w(f2m) with r = 
2m or 2m + 1, where/0,/i, . . . ,fr are ad-Gl(r, R)-invariant polynomials on %£(r, R), 
defined by 

det (\/r - -î-x) = S fk(X)V-k 

for all X E <j€(r, R), where /r is the identity matrix of dimension r x r. For each /: E 
{0, . . . , m} the class w(/2jt) E HU(M, R) is the fc-th Pontrjagin class /?*(£) of the 
bundle £. 

From the relations between the curvature tensor S and the curvature form ft of D, 
it follows that if/is an invariant homogeneous polynomial of degree k, then there exists 
a representative a in w(f) such that, if {};})•= i r is a local orthonormal frame of £ 
and X\, . . ., X2* are linearly independent vector fields on M, then a(Xi, . . . , X2k) is 
a homogeneous polynomial of degree k in the variables {5(Xj, Xm, Yh Yj)}, i, j E 
{1, . . . , r}, m, 1 E {1, . . . , 2k}, so that, within each monomial, the first two arguments 
of each factor perform a permutation of Xu . . . , X2k. 

Now, let (M,g) be a Riemannian manifold and let T,, T2, T3 be three orthogonal 
distributions on M of dimensions p\, p2,p?>, respectively, such that Yx © Y2 © T3 — 
TM, Y{ and Yx © Y2 are integrable, and, v,- being the projector of TM onto ¥, , 
(i = 1,2,3) 

(V,2v2)A2 = 0 

for all A2 E Y2, where V is the Levi-Civita connection. 
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Then, we have 

LEMMA 9. 

S(A],BU C2,D2) = S(A],B], C},D3) 

= S(AX, B2, C2, D2) 

= S(AUB2, C3, D3) = 0. 

PROOF. It follows from corollary 4(c), that S(Au Bx, C3, D3) = 0. From proposition 
2(b), and the integrability of T, 0 T2, we get 5(A,, 5, , C2, D2) = 0. S(A]9 B2, C2, 
D2) = 0 follows from proposition 2(c), and 6(a). Finally, 

S(A„ fl2, C3, D3) = #([v,[A,, £2] , C3], D3) + £([v2[A„ £2] , C3], D3) 

+ #([£2, v3[A„ C3]], D3) - g([Al9 Vs[B2, C3]], D3) 

+ g([[Ai9 B2], C3], D3) - g([v3[A„ 52] , C3], D3) = 0 

by the integrability of T, © Y2 and the Jacobi identity. // 
From this lemma and the preceding remarks, we have 

THEOREM 10. 

Pont' (T2) Pont7 (T3) = 0 for j > 2/?3 or / + j > p2 + 2/?3. 

PROOF. If w2 and vv3 are forms representing elements of Pont' (T2) and Pont7 (T3), 
respectively, with i + j > p2 + 2p3, then vv2 A w3 decomposes as a sum of monomials, 
each of which vanishes due to the saturation of the exterior products of curvature forms 
that, according to lemma 9, are not zero. // 

Observe that if p2 — 0 (resp. /?3 = 0), Bott (resp. Pasternack) theorem is obtained 
[1] (resp. [7]). 
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