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DISCONTINUITY CONDITIONS ON
TRANSFORMATION GROUPS

BY
D. V. THOMPSON

1. Throughout this paper, (X, T, =) is a topological transformation group [1],
L={x € X:xt=x for some te T—{e}} and 0=X—L is nonempty; standard
topological concepts are used as defined in [2].

The problem to be considered here has been studied in [3] and [6]. In [3], X is
assumed to be a compact metric space, and each ¢ € T satisfies a convergence
condition on certain subsets of X. Under these conditions, Kaul proved that if T’
is equicontinuous on 0, then the group properties of discontinuity, proper dis-
continuity, and Sperner’s condition (see Definition 1) are equivalent.

This paper obtains Kaul’s result, while admitting weaker conditions on X, and
a condition on T which is a generalization of equicontinuity (see Definition 2).

2. DEFINITION 1. (1) T is discontinuous if, for any x €0, all the accumulation
points of xT={xt:t € T} lie in L.

(2) T is properly discontinuous if, for any x €0, there is an open set U in 0
containing x such that U(T—{e}) N U=0.

(3) T satisfies Sperner’s condition if, for any compact subset C of 0,

{teT:Ct nC # 0}
is finite.

DEFINITION 2. (1) T is regular at x if, for any S < T, and any open set V con-

taining xS, there is an open set U containing x such that US < V.
(2) If Y < X, then Tis regular on Y if T is regular at y for each y € Y.

ReMARK. Kaul has proved in [5] that if X is a metric space, then given any
x € X such that xT is compact, T is equicontinuous at x if and only if T is regular

at x.
From the lemma to follow, we easily obtain the desired

THEOREM. If X is a locally compact T, space, and if T is regular on 0, then the

conditions of discontinuity, proper discontinuity, and Sperner’s condition are
equivalent.
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ReMARK. Note that if X is a compact metric space, then for any x € X, xT is
compact; thus by the preceding remark, if T is regular on 0, then T is equi-
continuous on 0. As X is clearly locally compact and Ty, the result quoted in 1 is
a corollary of the theorem to be proved.

3. We prove the required

LemMA. (1) If 0 is Ty and T is properly discontinuous then T is discontinuous.

(2) If X is regular and if T is discontinuous and regular on 0, then T is properly
discontinuous.

(3) If 0 is Ty and locally compact, and if T satisfies Sperner’s condition, then T
is discontinuous.

(4) If X is T, and 0 is locally compact, and if T is discontinuous and regular on 0,
then T satisfies Sperner’s condition.

Proof. (1) If x €0, then for any y €0, by proper discontinuity, there is an
open set U in 0 containing y such that U(T—{e}) N U=0; if there is an se€ T
such that xs € U, then xs(T—{e}) N U=0, which implies that xT N U={xs}.
Because 0 is T3, then, y is not an accumulation point of x7.

We have shown that if x € 0, then for any y € 0, y is not an accumulation point
of xT'; therefore, for any x €0, the accumulation points of x7 lie in L, and T'is
discontinuous.

(2) If T fails to be properly discontinuous at x € 0, then given any open set U,
in 0 containing x, there is an x, € U, and a ¢, € T—{e} with x,t, € U,.

If x is not an accumulation point of xT, then there is an open set ¥ in O con-
taining x such that (V—{x}) N xT'=0; setting F=T—{e}, xF < X—V, which is
closed in X, s0 xF < X—V. Because X is regular, there are disjoint open sets ¥,
and V, containing x and X—V, respectively. Now T is regular at x, and V, is an
open set containing xF, so there is an open set W containing x and lying (w log)
in ¥; N0 such that WF < V,. Because W=U, for some index B, we have
X4ty € Uy; however, t; € F and x, € W, so WF < V, implies that x;t, € V,. As
W N V,=0, we have a contradiction; then x is an accumulation point of xT" lying
in 0.

We have shown that if T fails to be properly discontinuous at x € 0, then T fails
to be discontinuous at x; this completes the proof.

(3) If x €0, then for any y €0, by local compactness, there is an open set U
containing y such that U N 0 is compact; the fact that T satisfies Sperner’s con-
dition then implies that xT'N U N 0 is a finite set. But since 0 is 7}, this implies
that y is not an accumulation point of x.

Therefore, as in (1), T is discontinuous.

https://doi.org/10.4153/CMB-1972-075-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1972-075-3

1972] DISCONTINUITY CONDITIONS ON TRANSFORMATION GROUPS 419

(4) If Sperner’s condition fails, then there is a compact set C in 0 such that
F={t e T:Ct N C#0} is infinite. For any ¢, € F, there is an x, € C such that
x,t, € C; let Co={x,:t,€ F} and let C;={x,t,:t, € F}.

If both C, and C, are finite, then there is an x, € Cy and 1, , f,, € F such that
Xoly =X,l,,; this implies that xa(talt;:)=xa, that is, x,€ L, a contradiction.
Therefore, at least one of C,, C; is infinite.

We can assume (wlog) that C, is infinite; because C, < C, C, admits an
accumulation point x € C.

Let Fy={t, € F:xt, € C}. If F, is infinite then xF, finite implies, as before, that
x € L, a contradiction. However, if xF, is infinite, then xFy < C implies that xF,
admits an accumulation point in C < 0; but then x7" admits an accumulation
point in 0, and T fails to be discontinuous at x, again a contradiction.

If F, is finite, let F,=F— F,; note that because 0 is T3, {x,:¢, € F;} admits x as
an accumulation point.

Because C is compact and 0 is locally compact, C admits open sets U containing
C such that U N 0 is compact.

Assume that, for any such U, Fy(U)={t, € F,:xt, € U} is finite; let F,=F,—
F,(U), and note that because 0 is Ty, {x,:t, € F,} admits x as an accumulation
point. Now xF, < X—U, which is closed in X, so_xF2 < X—U,; further, since X

is T, X—C is an open set containing X— U, (and therefore —3—572). As T is regular
at x, there is an open set ¥ containing x and lying (w log) in U such that VF, <
X—C. But V, being an open set containing x, contains some x, with ¢, € F,. We
have just shown that x,t, € X—C; by the original definition x,, € C, a contra-
diction.

Therefore, there is an open set U containing C such that U N 0 is compact and
F;(U) is infinite. As before, this implies that either x € L or T fails to be discon-
tinuous at x, both of which are contradictions.

Therefore, under the given conditions, if Sperner’s condition fails, we are led
to a contradiction. The proof is complete.

ReMARK. The following result, connecting proper discontinuity and Sperner’s
condition, may be shown in a similar manner:
(5) If 0 is T, and locally compact, and if T satisfies Sperner’s condition, then
T is properly discontinuous.
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