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Abstract. Under the assumption that the inverse square central force law is a good approximation to the 
gravitational force, at least for large distances, the different possibilities for the evolution of the Universe 
are sketched. Several of the' possibilities lead naturally to a dynamical classification of clusters of galaxies 
in an expanding universe. In one of the classifications the galaxies must define configurations which are 
functions of the masses. The virial theorem approach of determining masses of galaxies in a cluster is briefly 
examined. Some tentative statements concerning a dynamical explanation of the local hypothesis for qua­
sars are advanced. Finally, the role of mathematical probability in predicting the behavior of the Universe 
is discussed. 

1. Introduction 

In earlier papers (Saari, 1971a, b to be referred to as Papers 1 and 2) the general qual­
itative and asymptotic behavior as time approaches infinity of all solutions of the 
n-body problem was derived and outlined. Here n is an arbitrary but fixed positive 
integer. That is, in these papers we gave a mathematical description of Newton's 
universe for large values of time. In this talk I would like to review some of these 
results, but attempt to do so in a fashion where the mathematical solutions are related 
to possible astronomical interpretations. That is, we assume that Newton's law is a 
good approximation for the gravitational force, and then we describe the evolution 
of the Universe. 

In the first sections we shall concentrate on giving different possible dynamical 
interpretations for clusters of galaxies. This discussion includes a disintegrating 
system as one type of 'cluster of galaxies'. As a byproduct of this discussion, we shall 
make some brief comments about the related problem of determining masses of the 
clusters via the virial theorem. 

It will turn out that in one classification of clusters of galaxies the galaxies must tend 
toward the vertices of well-defined configurations. These configurations are determin­
ed by the masses of the galaxies. In some settings the fact that these configurations are 
functions of the masses may be exploited to yield a method which would either deter­
mine whether a cluster is complete (and if not, it would give a prediction scheme which 
would indicate possible locations where one would expect to find a member galaxy), or 
determine the masses of the member galaxies up to certain proportionality parameters. 

With a partial solution of the equations of motion at hand, a natural question would 
be to ask if there is anything in the dynamics of the n-body problem comparable to the 
behavior of quasars, namely, can quasars be explained in terms of Newtonian me­
chanics? In Section 4, we Shall offer some extremely tentative statements. 

This classification of motion is the result of a mathematical study of the equations 
of motion of the inverse square central force law for n point masses. However, any 
realistic model for the Universe would include forces other than the gravitational 
attraction between masses. In fact, some of the forces probably would dominate the 
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gravitational force for 'local' distances. Fortunately, the results given here are stable 
respect to perturbations of this type. The conclusions stated here hold equally well 
for any force law which is dominated by the inverse square term for large distances. 
That is, it holds for force laws of the form 

f(r, v, t) = fir ~3r + z(r, v, t), 

where r2|€(r, v, f)|->0 as r->oo, and c( — r, v, t)= — £(r, v, t). 
Notice that for local distances the dominating force could be most anything, even 

a repulsive force law. Indeed, it need not define a conservative system. Also, note that 
we require the forces to start acting like a central force law only for 'large distances'. 
In fact, the results hold with only minor modifications even when the inverse square 
term is changed to an inverse q force law where 1 < q < 3. Consequently, the conclusions 
of this study apply to models which allow for oblateness effects, approximations to 
relativity, and some nongravitational forces. The major requirement is that the 
resulting differential equations have unique solutions which exist for r^O. 

2. Clusters of Galaxies 

It follows from Kepler's equations that one of three things can occur in the two-body 
problem as time approaches infinity: (a) the motion is bounded, (b) the motion is 
parabolic, where the distance between particles separates like t2/3, and (c) the motion is 
hyperbolic, where the distance between particles separates like t. 

To see this, recall that the conservation of energy integral for the two-body problem 
is \2 = 2(fir~1 + h\ where r and v are respectively the position vector and velocity 
vector of the second particle relative to the first. If constant h is negative (elliptic 
motion), then jxr~l + / i ^0 , or r^/z/i"1 . This is conclusion (a). 

Define I = r2. Then /*=2(v2 + r-r). From the conservation of energy integral and 
the equations of motion, this equation can be expressed as 

/ = 2(/xr-1+2/i) = 2 iu/-1 / 2+4/i. 

If constant h is positive (hyperbolic motion), then I^Ah. By integrating both sides 
of this inequality twice we have that I^2ht2 + 0(t2). This means that J=4/i+0(f_ 1) . 
By integrating this last expression twice we obtain r2 = I = 2ht2+0(t Int). This is 
conclusion (c). 

Finally, if h=0 (parabolic motion), then 7 = 2/z/1/2>0. If/ were bounded above for 
all positive time, then we see from this last inequality that I would be bounded below 
by a positive constant. By integrating this new inequality twice, we obtain the contra­
diction that if J is bounded, then it goes to infinity faster than some constant multiple 
of t2. Therefore, we conclude that / is unbounded. However, from the facts that / is 
positive and / is unbounded we can show that J->oo and that after some time I is 
positive. Therefore, by integrating / j = 2ju/~1/27, we see that / 2 = 8/J1/2 + c, where c 
is a constant of integration. Since J->oo and I is positive, this can be expressed as 
//-1/4 _ (8^)1/2 + 0 (1) as *-► oo. Integrating this last expression leads to conclusion (b). 
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In the n-body problem the motion is, as one would expect, more complicated. If any 
two particles are chosen from the n particles, then their mutual distance either behaves 
as described in (a), (b), or (c), or it belongs to two other possible types of motion as 
given in Paper 1. These other types of motion will be discussed in Section 4. However, 
as shown in Papers 1 and 2, the important fact is that all solutions of the n-body problem 
which exist for all positive time (Saari, 1971c) consist of various combinations of these 
five types of motion. This is independent of the value of the total energy of the system! 

For the remainder of this section we will concentrate on those important solutions 
where the motion is a combination of cases (a), (b), and (c). That is, the distance between 
any two particles is bounded, expanding like t2/3, or expanding like t. (In the general 
n-body problem the terms 'parabolic' and 'hyperbolic' seem to be out of place, so we 
drop them and identify the motion via its major characteristic - the distances separate 
respectively like t2/3 or like t) 

While this description is in terms of the behavior of any two particles, it can be 
translated immediately into a discussion of the total system. What happens is that 
several masses may have their mutual distances bounded after some time. These masses 
define, in a natural fashion, a group. Any two particles chosen from different groups 
must separate either like t2/3, or like t. Since the groups remain (by construction) 
relatively bounded entities, it follows that the separation between the two groups in 
question is respectively like t2/3 or like t. The separation can be measured from the 
centers of mass of the groups. Also, since r2/3/t—>0 as t->oo, after some time a clear 
distinction between the two rates of expansion would appear. A restricted case of this 
general picture can be found in Figure 1. 

From these three types of motion there are seven qualitatively different possible 
classes of solutions. They are found from the various possible combinations, and they 
range from the case where the distances between all particles remain bounded for all 
time to the case where all three types of motion occur. The discussion of these cases is 
somewhat similar, and to eliminate repetition only the inclusive solution, which ex­
hibits all three types of motion, will be discussed in detail. A similar discussion would 
follow for the remaining six types of solutions. 

The first problem is to give an interpretation for relatively bounded motion, i.e. a 
group. There are two possibilities, and we accept both of them. The first is that these 
groups correspond to galaxies. Of course, since there are no upper or lower limits 
(other than 1 or n) for the number of particles belonging to a group, some of the groups 
simply may be escaping particles. We shall treat them as 'one-particle galaxies'. 

It is possible that some of the observed clusters of galaxies are bounded. In this case 
some of the groups would correspond to 'bounded clusters of galaxies'. Therefore, a 
circle in Figure 1 could be interpreted as being either galaxies or a bounded cluster 
of galaxies. 

The next motion is where the distance between objects expands like r2/3. That is, 
particles not belonging to the same group will separate like t2'3 (or faster). It is easy to 
show that this separation can be translated to the centers of mass of the groups; 
namely, the centers of mass of the groups separate like t2/3. For purposes of identifica-
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tion we denote motion in this setting as subsystems. It was shown in Paper 1 that in 
subsystems the velocities between the centers of mass of the groups go to zero like t ~1/3. 

If the groups are interpreted as being galaxies, then a second type of cluster of gal­
axies appears. In this case they are galaxies where the distances between them are 
separating like t2/3. That is, in this case the system is disintegrating, and the cluster 
of galaxies is a subsystem of individual galaxies. Since the magnitudes of the velocities 
become very small, it would seem to be observationally difficult, if not impossible, to 
distinguish this case from a 'bounded' cluster of galaxies. 

A more interesting and intriguing case is when one or more of the groups in a sub­
system is a bounded cluster of galaxies. Indeed, we would obtain a cluster of clusters 
of galaxies, or an hierarchical cluster of galaxies. Again, since the velocities between 
the centers of mass of the groups are very small, it would seem to be observationally 
difficult to distinguish this case from a bounded cluster of galaxies. 

Of course, there remains the final possibility that a subsystem has only one bounded 
object. Under the first interpretation of bounded motion, this would yeild a field 
galaxy. Under the second interpretation, this would give an isolated cluster of galaxies. 

The remaining type of motion between particles has the distance between objects 
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Fig. 1. 
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expanding like t. In the same fashion as above, this can be described in terms of the 
centers of mass of the subsystems separating like cf where c is a constant vector whose 
value depends on the choice of the subsystems. Thus, this gives us a description of the 
expansion between clusters of galaxies. Since t2,3/t->0 as t-»oo, even a disintegrating 
cluster of galaxies given by the above subsystem interpretation will, for all time and 
from large distances, remain as an observational entity. As will be seen in the next 
section, even the configuration will remain the same! 

This completes the picture for large values of t. However, for an evolving system 
there is a second possible interpretation for this expansion which is asymptotic to t. 
Quite simply, the system may not be old enough to show the sharp distinctions between 
the different possible types of motion given in Figure 1. That is, since t is 'small', 
t2l3/t is still large' for this particular cluster. Consequently, there remains the possibility 
that a cluster of galaxies is a new system where the rate of expansion of some of the 
galaxies is like t, that is, the bounded motion is separating like t, but the act of disin­
tegration occurred recently. Note that with this interpretation, over long periods of 
time the cluster of galaxies would not remain as an 'observational entity', but it would 
evolve either into new clusters or field galaxies as described above. The time span 
necessary for this to occur is, of course, mAch too large to be of practical 'observational' 
value and hence the use of quotation marks. But it is important in the study of the 
evolution of the system and the 'stability' of clusters of galaxies to distinguish between 
these two types of disintegrating clusters. 

3. Central Configurations and Subsystems 

A surprising fact about subsystems is that the centers of mass of the groups must tend 
toward the vertices of well defined (expanding) configurations which depend on the 
masses of the groups. Thus, clusters of galaxies forming a disintegrating cluster of 
galaxies, or an hierarchical duster of galaxies, would tend to form configurations 
which depend on the masses of the galaxies. 

Assume that we have a subsystem which has p groups. In other words, assume that 
we have p galaxies, p bounded clusters of galaxies or p combinations of these two 
classes. Let Ms be the total mass of the sth group, s = 1, 2,..., p, and let rs be the vector 
position of the center of mass of the sth group relative to the center of mass of the 
subsystem. 

It turns out that the expansion t213 is slow enough to allow the attracting force due 
to the other groups to strongly influence the eventual direction of rs. This forces the 
position vector and the gravitational force vector to tend to line up along the same 
line. In fact, as shown in Paper 2, they tend to do so in such a fashion that if G is the 
gravitational constant, then 

A M 5 r s + £ G M s M k ( r k - r > 2
s = es, s = i , 2 , . . . , p , (1) 

where X is proportionality constant independent of subscript s, and es is an error term 
which goes to zero faster than A|r s-r , | as t->oo. It follows from Paper 2 that A = ft~2 

and es is such that f4/3es->0 as £->oo. 
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Now it turns out that the centers of mass of the groups tend to the vertices of con­
figurations defined by Equation (1) when the error term is set equal to zero. These 
configurations, known as central configurations, are determined by the masses of the 
groups (see Wintner, 1941). That is, this equation shows that the centers of the mass of 
the groups must form an expanding central configuration. For example, if p = 3, then 
the configuration must be either an (expanding) equilateral triangle or one of the 
Euler straight line solutions where the relative distances are determined by the value 
of the masses. The main point is that for clusters of galaxies defined by subsystems of 
individual galaxies, the galaxies must tend to form some central configuration. The same 
statement holds for an hierarchical cluster of galaxies. 

The case p = 3 is misleading by the regularity of the configurations. For p>3 the 
configurations are by no means so regular and obviously recognizable. In fact, only 
some of them are known. 

The fact that the subsystems tend to define configurations could possibly be ex­
ploited in several ways. It could be used (at least theoretically) to distinguish the various 
types of clusters described in the previous section. The problem is to determine some 
way to differentiate between a bounded and disintegrating cluster of galaxies. If the 
masses and the configurations of the groujfs come 'close' to satisfying Equation (1), 
then I suggest that there would be additional reason to suspect that the cluster is 
disintegrating and that the expansion is like t2/3. 

Secondly, if it is known (or suspected) that a cluster of galaxies is defined in terms of 
a subsystem, and if the masses of the galaxies and the configuration they form (in 
three-dimensional space) is known, then by substituting these values into Equation (1) 
it can be determined whether the cluster is complete. If the equation is not satisfied, 
then the cluster is not complete. A computer search scheme could be devised to deter­
mine the necessary location of additional masses needed to satisfy the central con­
figuration equations. 

Finally, if the system is known to be complete, and the configuration formed by the 
groups is known, then in some cases the central configuration equations can be solved 
for the individual masses of the groups up to certain proportionality parameters. 
(Unfortunately, this last approach will not work in all cases. For example, it fails in the 
equilateral triangle case previously cited.) 

The observational difficulty with the above program is that the configuration must 
be known in three dimensional space; whereas, observationally only the projection 
of the configuration can usually be determined. (Because of these and other problems 
I hesitate to even attempt to relate the above to such observed objects as the 'qua­
drangles'.) Also, the number of galaxies in a cluster may be so large as to make this 
theoretical scheme impractical. However, these questions are outside the realm of my 
experience, and I leave them to other investigators. 

4. Hubble's Constant and Quasars 

As in the case with most models of the Universe, the Hubble constant for the n-body 

https://doi.org/10.1017/S0074180900070686 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900070686


DYNAMICS AND CLUSTERS OF GALAXIES 279 

problem assumes a functional form. The function is particularly simple, and it is 
exactly what one would expect from the solution of the two-body problem. In the case 
of subsystems it is, v/r=§ t~1 + 0(t~*) where t is time. The term 0(f~*) denotes error 
terms of magnitude such that rO(f_1)->0 as r->oo. Here v and r are respectively the 
speed and distance between the centers of mass of two groups in a sub-system. Hubble's 
constant for clusters of galaxies, or any other objects where the expansion between 
them is like t, would be v/r = t~1 + 0(f ~2). The term 0(t~2) denotes error terms such 
that t20(t~2) is bounded as £->oo. This functional form for the Hubble constant is in 
terms of the instantaneous values of velocity, distance, and time. The constant is 
obtained by substituting the current 'age of the Universe' into the equation. (The 
reason for the quotation marks about the phrase 'age of the Universe' is that the 
inverse square force law model does not naturally admit, or define, a starting value for 
the birth of the Universe. Unless we restrict attention to a set of initial conditions of 
measure zero (Saari, 1971c), where as we go backward in time we find a point from 
which all particles were expelled - A newtonian 'big bang' - there is no natural point 
on the time scale to assign the origin.) 

Can the Hubble relationship be violated ? Expressed in other words, is there anything 
in the dynamics of the n-body problem which would correspond to quasars, in parti­
cular to the 'local' hypothesis? That is, is there motion where the velocities are so large 
that the value of v/r is much larger than accepted values for Hubble's constant? 
Unfortunately the answer must be in the form - maybe. There is a possible motion in 
the H-body problem, called oscillatory motion, which does satisfy the condition that at 
different times the velocities of some of the bodies may be too large to satisfy a Hubble's 
constant relationship. This may or may not be the dynamical equivalent of quasars. 

There are several problems involved. The first is the very difficult mathematical 
problem of existence. Such motion has been shown to exist (Sitnikov, 1960) in only a 
very specialized setting where the velocities of the particles are nowhere near the 
required magnitudes needed to allow a dynamical explanation for the red shift of 
quasars and a local distance of the object. However, the question of existence is so 
difficult that the Sitnikov example, by its physically timid (but mathematically clever 
and technically difficult) construction, would be expected to yield same results, namely 
low velocities. (It also may be a characteristic of the three-body problem, rather than 
the n-body problem.) Theoretically, other types of oscillatory motion may exist where 
the velocities must be very large. While I have been unable to prove the existence of 
such motion where the velocities are of the required magnitude, I have likewise been 
unable to show that it does not occur! 

Although the existence question still remains open, several properties of this motion 
are known, and they will be presented here. This motion is characterized by an oscil­
lating behavior between particles. Namely, three masses mp mh mk can be found such 
that (i) lim sup (rik + rkj) = oo, (ii) lim sup (rik/rkj)>0, and (iii) lim inf (rik/rkj) = 0. 

Any particle ms with the property that index s can be substituted for one of the 
above indices is said to participate in the same oscillatory motion. 

We distinguish two cases. The first is where there is some distance between particles 
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such that lim sup(rkjt~1)=co. This motion is the cause of the difficult question of 
escape. This motion is also related to the question of non-collision singularities. For 
additional discussion we refer the reader to Saari (1973b). 

The second type of oscillatory motion is where lim sup(rkj/t) = 0 for all particles 
mk, nij participating in the same oscillatory motion. In this case the particles defining 
the same oscillatory motion would appear in the sketch of the evolving Newtonian 
universe in the same way that a subsystem does. The centers of mass of subsystems 
and oscillatory motion would separate like a constant vector multiple of t. Therefore, 
if oscillatory motion did correspond to quasars, then theoretically we would expect 
to find quasars separated from the clusters of galaxies as described in Section 2, that is, 
at least for large values of time. 

Additional research has indicated, but not proved conclusively, that the particles 
with large velocities are associated with larger masses (or clusters of mass). In fact this 
seems to be the mechanism which allows such large velocities to occur at local 
distances. The particles commute between the larger masses, which may be quite far 
apart, picking up velocity with each close passage. Observationally this means that if 
quasars correspond to oscillatory motion, then some of the quasars should be ob­
served near larger objects. 

While the above two paragraphs seem to agree with some of the observed charac­
teristics of quasars (Arp, 1971), there is nothing in this dynamical description which 
would explain the lack of observed blue shifts for quasars. (Personally, I am skeptical 
that this is an explanation for quasars. However, it does yield a model employing 
known physical principles which may [or may not] admit distances much closer 
than those indicated by their red shift and Hubble's constant.) 

A discussion of oscillatory motion in the three- and n-body problems can be found 
in Saari (1973b). It is shown here that in the three-body problem oscillatory motion 
has its expansion bounded above by a constant multiple of r2/3. 

The remaining class of motion is called pulsating motions. Its definition and some 
of its properties can be found in Paper 1. It can be shown that the distances between 
particles separate no faster than 0(f2/3). (This is true also for the second type of oscil­
latory motion.) 

Therefore, if pulsating motion exists, it would play the same role as a group or 
'galaxy' in the above sketch of the Universe. 

5. The Virial Theorem 

For at least the last decade the virial theorem approach to determine the masses of 
galaxies has been under attack. For example, it is known that unstable systems will 
give exaggerated values for the masses. With a partial solution of the w-body problem 
available this statement can be derived in a rigorous fashion, and we do so here. 

Of course, there are other serious difficulties involved in using the virial approach, 
such as the need to use the instantaneous values for U and T rather than their time 
averages. Here T is the kinetic energy of a system and 
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2l/ = XlGAf iM i /ry . 
i J 

(In Paper 2 the assumption that the instantaneous values and the time averages agree 
over a period of time was shown to imply that T= — h and U = — 2h for all time. Here, 
h is the total energy of the system. Furthermore, it is now known (Saari, 1973b) that if 
T and U are equal to constants over a period of time, then the constants must be 
respectively —h and — 2h for all time. Finally, it is conjectured that this implies that 
the motion behaves like a rigid body. It is true for the three-body problem.) 

In studying the effects the dynamics have on the virial theorem approach to mass 
determination, we shall ignore all other approximations. That is, we shall assume that 
all additional approximations leading to the simplification of the problem can be 
made without error. With this assumption the error in the value of the masses intro­
duced by the hypothesis 2T=U will be examined under the different dynamical inter­
pretations of clusters of galaxies. 

Assume first that we have a bounded cluster of galaxies and that the masses in the 
definition of T and U are the masses of the galaxies. Then by Paper 2 and Section 2 
of this note, T — U is eventually negative. Now, the way the masses are determined 
goes as follows. Depending on the technique employed, certain assumptions are 
introduced to obtain the ratios of masses of the galaxies. This reduces the problem to 
a quasi-binary problem. That is, the 'virial' equation is changed from 2T=U to 
2V2 — 2MjR, where V and R are defined as 

V2 = 2T(£MS), R=(£Msf/2U. 
M is the total mass of the system, and it is the unknown. Let M* be the value of the 
total mass obtained from the assumption 2T= U, and let M denote the correct value 
of the total mass. That is M* = 2RV2. 

The same assumptions used in the above reduction apply to the energy relationship 
converting T - U < 0 to V2 - MJR < 0, or M > R V2. That is, M* < 2M. Consequently, 
if the system is bounded, then the error introduced by the assumption 2T=U is 
bounded above by a factor of 2. 

The situation changes if the cluster of galaxies is defined by the subsystem descrip­
tion. It was shown in Paper 1 that in this case the energy relationship assumes the 
form T-U-+0. That is, V2-M/R->0 or M* = 2RV2-+2M. Hence the error intro­
duced by 2T = U in this setting is approaching a factor of 2. 

Finally, if a cluster of galaxies is defined by an expansion like r, or a mixture of 
expansions of the type r2/3 and f, then T — U approaches a positive constant. Hence, 
V2-M/R->2H/M>0. In this setting, M* = 2RV2^>2M + 2HR/M. Since R expands 
like t, it follows that the error in the computed value M* will become at least twice as 
large as the correct value M. Actually the error will become arbitrarily large with the 
actual value of the error depending on the value of H and the age of the system. 

6. Improbability of Certain Motions 

In dynamical astronomy and celestial mechanics there are several statements to the 
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effect that the set of initial conditions leading to a certain type of behavior has measure 
zero. That is, in a measure-theoretic sense it is mathematically improbable that such 
motion will occur. Statements of this type include collisions in the n-body problem 
(Saari, 1971c, 1973a), capture and escape (Chazy, 1922; Hopf, 1930), and motion which 
includes t2/3 expansions in the two- and three-body problems. The next step is to 
assert that such motion probably does not occur in the Universe; consequently, it 
can be ignored. 

While this last step is well understood to be incorrect, the argument periodically 
reappears in the literature. Therefore, we outline here some of the objections to this 
statement. The ideas advanced here are strongly motivated by a paper by Schwarz 
(1962) aptly titled The Pernicious Influence of Mathematics on Science'. 

For the above assertion to be correct there remains the important step and basic 
problem of showing how the mathematical probability of an event corresponds to the 
observational (or experimental) probability of the same event. They need not be the 
same! The major problem is, of course, that while for technical reasons the Lebesgue 
measure is a natural measure to use in the study of the n-body problem, there is no 
reason to believe that nature is laboring under the same technical constraints. She 
may be fooling us with a different distribution function. 

Even if the Lebesgue measure is the proper measure, the Universe may exhibit 
prejudices for certain initial conditions which are imposed upon it by different physical 
constraints due to conditions of its creation, etc. To illustrate this further, recall that in 
the w-body problem the set of initial conditions corresponding to zero angular mo­
mentum has measure zero. However, if the Universe does date its birth from some sort 
of'big bang', then as the position vectors are traced backwards in time (t-+0) to their 
common origin we have a mathematical collapse of the system, and all the position 
vectors tend to zero. This means that the total angular momentum is zero. Thus the 
motion is contained in a set of measure zero. (This could be viewed as a 'collision' at 
some past time. Again this means that we are restricted to a set of measure zero.) Now, 
phenomena peculiar to zero angular momentum would be mathematically improb­
able but they may be observationally and physically abundant. (Indeed, we should be 
using conditional probability.) 

In other words, the constraints given by the creation of the Universe, if simply its 
survival to the present date, may actually restrict the initial conditions of the mathe­
matical model to sets of measure zero or lower dimensional manifolds. Consequently, 
certain motions cannot be ruled out of the real world simply by mathematical proba­
bilistic statements, they can only be ruled out by observational evidence proving that 
such predicted behavior does not, has not, and will not occur. Hence in dynamical 
astronomy the problems of capture, collision, etc. are solved in a mathematical 
probabilistic sense, but they must be considered open questions in a physical proba­
bilistic sense! (The collision problem uses point masses, hence it would not apply for 
this reason alone.) 
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7. Comments 

The above description given in Sections 2-5 depends on the behavior of solutions of 
the n-body problem for large values of time. Clearly our Universe has not reached 
that advanced age where all particles (stars or galaxies) have committed themselves 
or displayed their future course of expansion. Some clusters of galaxies may have 
only recently begun the process of disintegration, and they would not show the clear 
distinction between the different rates of expansion as indicated in Figure 1. Some 
groups of particles may at some future time evolve into several galaxies, and each of 
these might separate from each other. All of this leads to a far more complicated 
picture than the one indicated in Sections 2 and 3. 

Of course, certain characteristics of the expansion would begin to manifest them­
selves at an earlier stage of the evolution, however, not with the same distinction as 
will eventually be the case. For example, the configurations discussed in Section 3 
depend on the rate of expansion and the masses of the groups. If certain groups are 
separating from each other like £2/3, then we would expect these groups to start to 
form central configurations. (The error of deviation from the correct configuration 
would be much larger than will be the case in the future.) This is independent of the 
fact that at some time in the future some gathering of particles may separate into two 
or more smaller groups with separations like t2'3 or t. This is because the force law 
which gives these configurations, depends on the present location of accumulations 
of mass - not some future location or future behavior of the masses nor current veloci­
ties within the groups. 

So although the Universe may be quite young, certain characteristics of the above 
description may already be displayed, and the above discussion may be of value in 
interpreting present observations. 

Of course, the above is predicated on the unproved assumption that the inverse 
square force law is a valid approximation to the gravitational forces which governs 
the motion of the Universe. As was stated in the introduction, the force law used in this 
note can be quite general, and it is permitted to run the spectrum between the inverse 
force law and the inverse cube force law with fairly large perturbations permitted. All 
of this causes only minor modifications in the above discussion. The question still 
remains, can the gravitational force be approximated by these force laws? While we 
cannot answer this question, we can at least offer the following corollary. / / it can be 
shown that the dynamics of the Universe cannot now or ever in the future be described 
in terms of the above qualitative discussion, then it follows that any inverse force law 
between the inverse and the inverse cube force laws is not dominant for large distances. 

Finally, using the fact that the model allows for fairly large perturbations of the 
gravitational force, a prejudice among some investigators of dynamical astronomy 
against parabolic orbits, or in our setting, against motion separating like r2/3, will be 
examined. The argument for their position usually centers around two points. The 
first is that the motion may be improbable in a measure-theoretic sense. The second 
is that 'small' perturbations disrupt this motion into expansions such as f, or into 
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bounded motion. Hence, due to their sensitive nature, they would not, in general, 
survive. That is, one would not expect such motion to exist in the real universe. 

The first statement was examined in a more general setting in the previous section. 
If the second holds, it can have some interesting consequences. As was previously 
noted, the actual central force law employed can deviate from the theoretical inverse 
square law by 'almost' as much as the law itself. Viewing these deviations as perturba­
tions of the system, we have that perturbations which do not allow for this expansion 
are in reality quite significant forces, as significant as the inverse square term itself. If 
these forces do occur in nature, then they must be studied and understood for they 
significantly alter our understanding of gravitational forces! (In the same sense, if 
approximation schemes such as numerical integration cannot obtain these orbits, 
then the errors introduced must be considered as being quite large in a qualitative 
sense.) 

It may be that oscillatory motion, t2/3 expansion, or other motions discussed in this 
note do not occur in the universe; however, this is outside the realm of theory, and it 
must be observationally determined. 

Acknowledgement 

This research was partially supported by NSF contract GP-32116. 

References 

Ambartsumian, V. A.: 1961, Astron. J. 66, 536-41. 
Arp, H.: 1971, Science 174, 1189-2000. 
Chazy, J.: 1922, Ann. Sci. Ecole Norm. 39, 29-130. 
Hopf, E.: 1930, Math. Ann. 103, 710-19. 
Saari, D. G.: 1971a, Trans. Am. Math. Soc. 156, 219-40. 
Saari, D. G.: 1971b, Astrophys. J. 165, 399^07. 
Saari, D. G.: 1971c, Trans. Am. Math. Soc. 162, 267-71. 
Saari, D. G.: 1973a, Trans. Am. Math. Soc. 181, 351-368. 
Saari, D. G.: 1973b, / . Diff. Eq. 14, 275-292. 
Saari, D. G.: 1974, SI AM J. Appl. Math. 5. 
Schwarz, J.: 1962, in E. Nagel, P. Suppes, and A. Tarski (eds.), Logic, Methodology and Philosophy of Science, 

Stanford University Press, Stanford, Calif., pp. 356-60. 
Sitnikow, K.: 1960, Dokl. Akad. Nauk SSR 133, 303-06. 
Wintner, A.: 1941, The Analytical Foundations of Celestial Mechanics, Princeton University Press, 

Princeton, N.J., U.S.A., pp. 274-75. 

DISCUSSION 

/ . Moser: Can one give a detailed analytic description of the escape, in particular for « = 3, of a bounded 
pair is present? 

D. Saari: Yes. In this case the escaping particle would correspond to a 'one-particle' galaxy. For « = 3 
it would be possible to obtain a very detailed description. 

J. Moser: Do you have a guess which of the asymptotic behaviors described by you is predominant? 
D. Saari: I would guess that pulsating motion does not exist. If oscillatory motion with the property 

lim suprkJjt= oo does exist, then I would guess that it would be rare, i.e. of measure zero. This last problem 
is related to the problem of noncollision singularities. 
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