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Bowen Measure From Heteroclinic Points

D. B. Killough and I. F. Putnam

Abstract. We present a new construction of the entropy-maximizing, invariant probability measure

on a Smale space (the Bowen measure). Our construction is based on points that are unstably equiv-

alent to one given point, and stably equivalent to another, i.e., heteroclinic points. The spirit of the

construction is similar to Bowen’s construction from periodic points, though the techniques are very

different. We also prove results about the growth rate of certain sets of heteroclinic points, and about

the stable and unstable components of the Bowen measure. The approach we take is to prove results

through direct computation for the case of a Shift of Finite type, and then use resolving factor maps to

extend the results to more general Smale spaces.

1 Introduction

A Smale space, as defined by David Ruelle [11], is a compact metric space, X, to-

gether with a homeomorphism, ϕ, which is hyperbolic. These include the basic sets

of Smale’s Axiom A systems [13]. Another special case of great interest are the shifts

of finite type [3, 6] where the space, here usually denoted Σ, is the path space of a

finite directed graph and the homeomorphism, σ, is the left shift.

The structure of (X, ϕ) is such that each point x in X has two local sets associated

with it: Xs(x, ǫ), on which the map ϕ is (uniformly) contracting; and Xu(x, ǫ), on

which the map ϕ−1 is contracting. We call these sets the local stable and unstable sets

for x. Furthermore, x has a neighbourhood U (x, ǫ) that is isomorphic to Xu(x, ǫ) ×
Xs(x, ǫ). In other words, the sets Xu(x, ǫ) and Xs(x, ǫ) provide a coordinate system

for U (x, ǫ) such that, under application of the map ϕ, one coordinate contracts, and

the other expands.

The basic axiom for a Smale space is the existence of a map defined on pairs (x, y)

in X × X that are sufficiently close. The image of (x, y) is denoted [x, y] and is

the unique point in Xs(x, ǫ) ∩ Xu(y, ǫ). This satisfies a number of identities and in

particular defines a homeomorphism from Xu(x, ǫ) × Xs(x, ǫ) → U (x, ǫ).

There is also a notion of a global stable (unstable) set for a point x, which we

denote Xs(x) (Xu(x)). This is simply the set of all points y ∈ X such that

d
(

ϕn(x), ϕn(y)
)

−→ 0

as n → +∞ (−∞). The collection of sets {Xs(y, δ) | y ∈ Xs(x), δ > 0} forms a

neighbourhood base for a topology on Xs(x) that is locally compact and Hausdorff.

This is the topology that we use on Xs(x) (not the relative topology from X). There
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is an analogous topology on Xu(x). The global stable (unstable) sets partition the

Smale space X into equivalence classes. In other words, there are three equivalence

relations defined on X. We say x and y are stably equivalent if Xs(x) = Xs(y), unstably

equivalent if Xu(x) = Xu(y), and homoclinic if they are both stably and unstably

equivalent. Finally, we say that a point z is a heteroclinic point for the pair (x, y) if z

is stably equivalent to x and unstably equivalent to y (i.e., z ∈ Xs(x) ∩ Xu(y)).

For an irreducible Smale space, (X, ϕ), there is a unique ϕ-invariant probability

measure maximizing the entropy of ϕ [5, 12]. This measure is known as the Bowen

measure, and we denote it by µX , or when the space is obvious, simply by µ.

In [2], Bowen constructed the measure of maximum entropy as a limit of mea-

sures supported on periodic points. Our main goal in this paper is to present an

alternative construction in which the Bowen measure is obtained as the limit of mea-

sures supported on heteroclinic points. The main result is Theorem 2.10, which is

proved in Section 4. From our construction we are also able to relate the growth rate

of certain sets of heteroclinic points to the topological entropy of the Smale space. A

similar result concerning the growth rate of homoclinic orbits was proved by Men-

doza in [7], using different techniques.

2 Main Results

It was shown in [12] that if a small subset of X is written as a product, then the Bowen

measure on this set can be written as a product measure. This gives us a useful way

of dealing with the Bowen measure. The following theorem makes this result precise.

While this theorem is due to Ruelle and Sullivan, we will provide a new proof of the

result. Along the way, we will also see how this product decomposition is preserved

under resolving maps.

Theorem 2.1 Let X be an irreducible Smale space. For each x in X, there exist mea-

sures µs,x
X and µu,x

X defined on Xs(x) and Xu(x), respectively. These measures are not

finite, but are regular Borel measures. Moreover, these satisfy the following conditions.

(i) For all x in X, ǫ > 0 and Borel sets B ⊂ Xu(x, ǫ) and C ⊂ Xs(x, ǫ), we have

µ([B,C]) = µu,x(B)µs,x(C),

whenever ǫ is sufficiently small so that [B,C] is defined.

(ii) For x, y in X, ǫ > 0 and a Borel set B ⊂ Xu(x, ǫ), we have

µu,y([B, y]) = µu,x(B),

whenever d(x, y) and ǫ are sufficiently small so that [B, y] is defined.

(iii) For x, y in X, ǫ > 0 and a Borel set C ⊂ Xs(x, ǫ), we have

µs,y([y,C]) = µs,x(C),

whenever d(x, y) and ǫ are sufficiently small so that [y,C] is defined.

(iv) µs,ϕ(x) ◦ ϕ = λ−1µs,x.
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(v) µu,ϕ(x) ◦ ϕ = λµu,x.

Here log(λ) is the topological entropy of (X, ϕ).

In [2] the unique entropy maximizing ϕ-invariant probability measure is con-

structed as the weak-∗ limit of the sequence µn, where µn is defined as follows. Let

Sn =
⋃n

1 Perk(X, ϕ), then

µn =
1

#Sn

∑

z∈Sn

δz,

where δz is the point mass at z. In our construction we use points that are heteroclinic

to a given pair of points instead of periodic points. It is worth noting that in Bowen’s

construction each µn is a ϕ-invariant probability measure. In our case, the measures

constructed are not ϕ-invariant, but in the limit we recover ϕ-invariance.

Definition 2.2 Let (X, ϕ) be a mixing Smale space, x, y ∈ X, B ⊂ Xu(x), and

C ⊂ Xs(y) open with compact closure. For each positive integer k, we define

hk
B,C = ϕk(B) ∩ ϕ−k(C)

and the measure

µk
B,C =

1

#hk
B,C

∑

z∈hk
B,C

δz.

Remark 2.3 • As Xu(x) and Xs(y) intersect transversally and ϕk(B) and ϕ−k(C)

have compact closure for each k, #hk
B,C is finite for each k.

• hk
B,C may be empty, and hence µk

B,C may not be well defined for some positive

integers k. However, for given B, C there exists a K such that for all k > K, µk
B,C

is well defined. Since we will be interested in the (weak-∗) limit of these measures

as k → ∞, we will not be concerned with the finite number of k’s for which our

definition is not valid.

We have the following result relating the growth of the heteroclinic sets hk
B,C to the

topological entropy.

Theorem 2.4 Let (X, ϕ) be a mixing Smale space, B, C as in Definition 2.2. Then we

have

lim
k→∞

λ−2k#hk
B,C = µu,x

X (B)µ
s,y
X (C),

where µu,x
X and µ

s,y
X are as in Theorem 2.1, and log(λ) = h(X, ϕ) is the topological

entropy of (X, ϕ). In consequence, we also have

lim
k→∞

log(#hk
B,C )

2k
= h(X, ϕ).

Theorem 2.5 Let (X, ϕ) be a mixing Smale space, and let µk
B,C be as in Definition 2.2.

For each continuous function f : X → C we have

lim
k→∞

∫

X

f dµk
B,C =

∫

X

f dµX,
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where µX is the Bowen measure. In other words µk
B,C → µX in the weak-∗ topology.

Now suppose (X, ϕ) is an irreducible Smale space (not necessarily mixing). By

Smale’s spectral decomposition [13] we can find a partition of X into pairwise dis-

joint clopen subsets, X1,X2, . . . ,XI such that ϕ(Xi) = Xi+1 (with the indices inter-

preted modulo I) and ϕI |Xi mixing for each i.

Definition 2.6 With the notation as above, let x, y be in the same component, Xi0
,

of X and let B ⊂ Xu(x) and C ⊂ Xs(y) be open with compact closures. For each k,

we define

hk
B,C = ∪I−1

i=0

(

ϕkI+i(B) ∩ ϕ−kI+i(C)
)

and the measure

µk
B,C =

1

#hk
B,C

∑

z∈hk
B,C

δz.

Remark 2.7 • The same remark applies as before concerning hk
B,C being empty.

• In the case that (X, ϕ) is mixing (and I = 1), this clearly reduces to the same

definition as before.

With this extended definition, the analogous results as stated above for the mixing

case also hold in the irreducible case.

Theorem 2.8 Let (X, ϕ) be an irreducible Smale space, B, C as in Definition 2.6. Then

we have

lim
k→∞

λ−2kI#hk
B,C = Iµu,x

X (B)µ
s,y
X (C),

where µu,x
X and µ

s,y
X are as in Theorem 2.1, and log(λ) = h(X, ϕ) is the topological

entropy of (X, ϕ). In consequence, we also have

lim
k→∞

log(#hk
B,C )

2kI
= h(X, ϕ).

Remark 2.9 This result is essentially [7, Theorem 3.1], replacing hk
B,C with ϕk(hk

B,C )

in the case that the heteroclinic points happen to be homoclinic points.

Theorem 2.10 Let (X, ϕ) be an irreducible Smale space, and let µk
B,C be as in Defini-

tion 2.6. For each continuous function f : X → C we have

lim
k→∞

∫

X

f dµk
B,C =

∫

X

f dµX,

where µX is the Bowen measure. In other words, µk
B,C → µX in the weak-∗ topology.
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3 Resolving Factor Maps and the Bowen Measure

In the case that the Smale Space is a shift of finite type (SFT), the Bowen measure is

the same as the Parry measure. We present a brief description of the Parry measure

for a mixing SFT and prove Theorem 2.1 in this case.

Let (Σ, σ) be a mixing SFT, considered as the edge shift on a directed graph G

with adjacency matrix A. See [6] for a thorough treatment of SFTs. Then (Σ, σ) is

mixing precisely when A is primitive, i.e., when there exists N such that, for n ≥ N,

An is strictly positive. This allows us to use the consequence of the Perron–Frobenius

theorem ([6, Thm. 4.5.12]), which says limn→∞ λ−nAn
= urul, where ur, ul are the

right/left Perron–Frobenius eigenvectors of the matrix A normalized so that ulur = 1,

and λ is the Perron–Frobenius eigenvalue. This result is critical in the proof of our

main result in the case of SFTs. Fix m > N, vertices vi , v j in the graph, and let ξ be a

path of length 2m, indexed from −m + 1 to m, originating at vi and terminating at v j

(A primitive guarantees such a ξ exists). Consider the set

Σm,i, j(ξ) = {x ∈ Σ | xk = ξk for − m + 1 ≤ k ≤ m}.

The collection of such sets, as m, i, j, and ξ vary over all possible values, forms a base

for the topology on Σ. The Parry measure on such a basic set is

µΣ

(

Σm,i, j(ξ)
)

= λ−2mul(i)ur( j).

Fix x in Σ and suppose t(xm) = v j , i(x−l+1) = vi . That is to say, x−l+1 originates at

vertex vi , and xm terminates at vertex v j . Consider the sets

Σ
u(x, 2−m) = {z ∈ Σ | zk = xk ∀k ≤ m},

Σ
s(x, 2−l) = {z ∈ Σ | zk = xk ∀k ≥ −l + 1}.

These sets form a base for the topology on Σ
u(x) (respectively Σs(x)) in a neighbour-

hood of x. Suppose now that Σu(z, 2−m) ⊂ Σ
u(x, ǫ) and Σ

s(y, 2−l) ⊂ Σ
s(x, ǫ) Then

the stable/unstable components of the Parry measure are

µu,x
Σ

(Σu(z, 2−m)) = λ−mur( j), µs,x
Σ

(Σs(y, 2−l)) = λ−lul(i).

Proposition 3.1 Theorem 2.1 holds for (Σ, σ) a mixing SFT, with µu,x
Σ

, µs,x
Σ

defined

as above.

Proof We must verify the five conditions stated in Theorem 2.1.

(i) This is obvious from the formulas defining the measures on basic sets.

(ii) Consider the homeomorphism w 7→ [w, x ′] from Σ
u(x, ǫ) to Σ

u(x ′, ǫ ′). Under

this map,

Σ
u(z, 2−m) 7→

{

v ∈ Σ | vk = zk∀0 ≤ k ≤ m, vk = x ′

k∀k ≤ 0
}

= Σ
u
(

[z, x ′], 2−m
)

.

Now,

µu,x ′

Σ

(

Σ
u([z, x ′], 2−m)

)

= λ−mur( j) = µu,x
Σ

(

Σ
u(z, 2−m)

)

.
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(iii) Similarly, the map w 7→ [x ′,w] takes the measure µs,x
Σ

to µs,x ′

Σ
.

(iv) Now consider

(µu,σ(x)
Σ

◦ σ)
(

Σ
u(z, 2−m)

)

= µu,σ(x)
Σ

(

Σ
u(σ(z), 2−m+1)

)

= λ−m+1ur( j) = λµu,x
Σ

(

Σ
u(z, 2−m)

)

.

(v) Similarly,

(µs,σ(x)
Σ

◦ σ)
(

Σ
s(y, 2−l)

)

= µs,σ(x)
Σ

(

Σ
s(σ(y), 2−l−1)

)

= λ−l−1ul(i) = λ−1µs,x
Σ

(

Σ
s(y, 2−l)

)

.

In the case of a SFT, the topological entropy h(Σ, σ) = log(λ), where λ is the

Perron–Frobenius eigenvalue of the adjacency matrix associated with the SFT. Simi-

larly, for other Smale spaces X we will write λ such that h(X, ϕ) = log(λ). Whenever

we are talking about two or more Smale spaces, there will be an almost one-to-one

factor map between them, so the entropies will be equal, hence it will be unnecessary

to distinguish which space the λ comes from.

Definition 3.2 (Fried [4]) A factor map π : (Y, ψ) → (X, ϕ) is s-resolving

(u-resolving) if for every y ∈ Y , π|Y s(y) (π|Y u(y) respectively) is injective.

We will primarily be concerned with almost one-to-one resolving factor maps. A

factor map π : (Y, ψ) → (X, ϕ), where (Y, ψ) is irreducible, is called almost one-to-

one if there exists x ∈ X such that #π−1(x) = 1.

In [1], Bowen showed that for an irreducible Smale space (X, ϕ), there exists an

irreducible SFT (Σ, σ) and an almost one-to-one factor map π : Σ → X. Moreover,

letting E = {x ∈ X | #π−1(x) = 1}, Bowen showed that µΣ(π−1(E)) = 1. In other

words, π is one-to-one µΣ-a.e. It follows that for any Borel set B ⊂ X, µX(B) =

µΣ(π−1(B)) ([1, Thm. 34]).

In [9, Cor. 1.4], the second author showed that the factor map π can be realized as

the composition of two resolving factor maps. In other words, given an irreducible

Smale space (X, ϕ), we can find a Smale space (Y, ψ), a SFT (Σ, σ), and factor maps

π1 : Σ → Y , π2 : Y → X such that

(i) (Σ, σ) and (Y, ψ) are irreducible;

(ii) π1 and π2 are almost one-to-one;

(iii) π1 is s-resolving and π2 is u-resolving.

The Bowen measures on X, Y can be obtained from the Bowen measure on Σ as

follows:

(i) for E ⊂ Y the Bowen measure on (Y, ψ) is µY (E) = µΣ(π−1
1 (E));

(ii) for F ⊂ X the Bowen measure on (X, ϕ) is

µX(F) = µY

(

π−1
2 (F)

)

= µΣ

(

(π2 ◦ π1)−1(F)
)

.

This requires only that π1, π2 be almost one-to-one factor maps, not that they are

resolving. We now wish to define the measures on the stable and unstable equivalence
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classes in (Y, ψ) and (X, ϕ), from µs, ·
Σ

, µu, ·
Σ

, π1, and π2. In this case, it is not enough

that the factor maps are almost one-to-one; resolving plays an important role in what

follows. We begin by stating the following result which is proved by the second author

in [8].

Proposition 3.3 Let (Y, ψ) and (X, ϕ) be irreducible Smale spaces and let π : Y →
X be an almost one-to-one u-resolving factor map. If x ∈ X with π−1(x) =

{y1, y2, . . . , yn}, then

π−1(Xu(x)) =
n
⋃

i=1

Y u(yi),

and the union is disjoint. Moreover, using the topologies from the introduction, for each

1 ≤ i ≤ n

π|Y u(yi ) : Y u(yi) −→ Xu(x)

is a homeomorphism.

Lemma 3.4 Let (Y, ψ) and (X, ϕ) be irreducible Smale spaces and let π : Y → X be

an almost one-to-one u-resolving factor map. Fix y ∈ Y , the set {y ′ ∈ Y s(y) | π(y ′) =

π( ỹ) for some ỹ 6= y ′} has µ
s,y
Y measure zero. In other words, π|Y s(y) is one-to-one µ

s,y
Y

almost everywhere.

Proof As Y is compact, we may cover Y with a finite number of sets of the form Ui =

[Y u(zi , δi),Y
s(zi , δi)]. Fix Ui and y ∈ Ui , let Bi = [Y u(zi , δi), y], Ci = [y,Y s(zi , δi)],

so we can write Ui = [Bi ,Ci].

Let Si = {y ′ ∈ Ci | π(y ′) = π( ỹ) for some ỹ 6= y ′}. Since π is u-resolving, the

set Ui ∩ {y ′ ∈ Y | π(y ′) = π(z) for some z 6= y ′} = [Bi , Si]. Now, we know that π
is one-to-one µY almost everywhere, so

0 = µY

(

[Bi , Si]
)

= µ
u,y
Y (Bi)µ

s,y
Y (Si).

We also know that

0 6= µY (Ui) = µY ([Bi ,Ci]) = µ
u,y
Y (Bi)µ

s,y
Y (Ci).

So µ
u,y
Y (Bi) 6= 0 and thus µ

s,y
Y (Si) = 0. The conclusion follows.

Note that the analogous result with an s-resolving map and µ
u,y
Y also holds.

Proposition 3.5 Let (Y, ψ) and (X, ϕ) be irreducible Smale spaces and let π : Y → X

be an almost one-to-one u-resolving factor map. Let x ∈ X and y1, y2 ∈ π−1{x}. Let

B ⊂ Xu(x, ǫ) be a Borel set, then µ
u,y1

Y (π−1(B)) = µ
u,y2

Y (π−1(B)).

Proof For each z1 ∈ Y u(y1) there exists a unique z2 ∈ Y u(y2) such that π(z1) =

π(z2). Consider the following set:

E = {z1 ∈ Y u(y1) | z2 ∈ Y s(y1)}

and its compliment in Y u(y1), Ec. We will show that µ
u,y1

Y (Ec) = 0, and that on E the

map defined by f (z1) = z2 takes the measure µ
u,y1

Y to µ
u,y2

Y .
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We begin by showing that E is non-empty. Fix x ∈ X such that x has a unique

pre-image under π, π−1{x} = {y}. Now, since Y u(y1) is dense in Y , we can find a se-

quence {zi} ⊂ Y u(y1) such that zi → y. Now consider the sequence {z ′i } ⊂ Y u(y2),

where π(zi) = π(z ′i ). By the compactness of Y , {z ′i } has a convergent subsequence

{z ′ik
}. Denote the limit of this subsequence by y ′. Now by the continuity of π we have

π(y ′) = π( lim
k→∞

z ′ik
) = lim

k→∞

π(z ′ik
) = lim

k→∞

π(zik
) = π( lim

k→∞

zik
) = π(y) = x.

As x has a unique pre-image, we see that y ′
= y. It follows that for k sufficiently

large, d(zik
, z ′ik

) < ǫπ . Therefore, by [8, Lemma 3.3] we have zik

s
∼ z ′ik

, and hence E is

non-empty.

We now show that E is open in Y u(y1). Let z1 ∈ E. Since z1
s
∼ z2, we can

find n large enough so that d(ψn(z1), ψn(z2)) < ǫπ/3. Choose δ small enough so

that Y u(ψn(z1, δ)) ⊂ Y u(ψn(z1), ǫπ/3) and choose U (ψn(z2)) ⊂ Y u(ψn(z2), ǫπ/3),

where π(U (ψn(z2))) = π(Y u(ψn(z1), δ)). Let A1 = ψ−n(Y u(ψn(z1), δ)), A2 =

ψ−n(U (ψn(z2))). Now for each z ∈ A1, the unique z ′ ∈ A2 such that π(z) = π(z ′)

is such that d(ψn(z), ψn(z ′)) < ǫπ and π(ψn(z)) = π(ψn(z ′)). By [8, Lemma 3.3] we

have that ψn(z)
s
∼ ψn(z ′) and therefore z

s
∼ z ′. So A1 ∈ E, and hence E is open.

Now E open (and non-empty) implies thatµ
u,y1

Y (E) > 0, and since E isψ-invariant

and µ
u,y1

Y (ψ(E)) = λµ
u,y1

Y (E), we must have that µ
u,y1

Y (E) = ∞.

We now show that on the set E the map f (z1) = z2 takes µ
u,y1

Y to µ
u,y2

Y . Let n,

A1, A2 be as above. Then for z ∈ A1 the map f (z) = z ′ ∈ A2 can be written as

f (z) = ψ−n([ψn(z), ψn(z2)]). So for a Borel set B ⊂ A we have

µ
u,y2

Y ◦ f (B) = µ
u,y2

Y

(

ψ−n
(

[ψn(B), ψn(z2)]
))

= λ−nµ
u,y2

Y

(

[ψn(B), ψn(z2)]
)

= λ−nµ
u,y1

Y

(

ψn(B)
)

= µ
u,y1

Y (B).

It remains to show that µ
u,y1

Y (Ec) = 0 (by the above ψ-invariance remark, the

measure of Ec is either 0 or ∞). Fix y ∈ Y u(y1), δ < ǫY/2 and consider the sets

A1 = [E ∩ Y u(y, δ),Y s(y, δ)], A2 = [Ec ∩ Y u(y, δ),Y s(y, δ)]. We know that

µY (A1) = µ
u,y1

Y

(

E ∩ Y u(y, δ)
)

µ
s,y
Y

(

Y s(y, δ)
)

> 0

and

µY (A2) = µ
u,y1

Y

(

Ec ∩ Y u(y, δ)
)

µ
s,y
Y

(

Y s(y, δ)
)

.

Since µ
s,y
Y (Y s(y, δ)) > 0, to prove that µ

u,y1

Y (Ec) = 0 it suffices to show that

µY (A2) = 0. To this end consider ψ(A2). A typical point z ∈ A2 can be written

z ∈ Y s(z ′, δ), where z ′ = [z, y] ∈ Ec. So ψ(z) ∈ ψ(Y s(z ′, δ)) ⊂ Y s(ψ(z ′), δ),

where ψ(z ′) ∈ Ec. This shows that A1 ∩ ψ(A2) = ∅. Similarly we can show that

A1 ∩ ψ
k(A2) = ∅ for any k ≥ 0. However, ψ is strong mixing with respect to µY , so

we have

µY (A1)µY (A2) = lim
k→∞

µY

(

A1 ∩ ψ
k(A2)

)

= µY (∅) = 0.

Since we know µY (A1) > 0, we have µY (A2) = 0, and hence µ
u,y1

Y (Ec) = 0.
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We state the following result that was proved by the second author as [10, Theorem

2.5.3].

Theorem 3.6 Let (Y, ψ) and (X, ϕ) be Smale spaces and let π : Y → X be an almost

one-to-one u-resolving factor map. There is a constant M ≥ 1 such that:

(i) for any x ∈ X there exist y1, . . . , yK with K ≤ M such that

π−1
(

Xs(x)
)

=

K
⋃

i=k

Y s(yk);

(ii) for any x ∈ X, #π−1{x} ≤ M.

The previous two results allow us to make the following definition.

Definition 3.7 Let (Y, ψ) and (X, ϕ) be irreducible Smale spaces and let π : Y → X

be an almost one-to-one u-resolving factor map. Let x ∈ X. Fix y ∈ π−1{x}, and fix

{y1, . . . , yK} as in Theorem 3.6.

Define measures on Xs(x), Xu(x) by

µs,x
X =

K
∑

k=1

π∗µ
s,yk

Y , µu,x
X = π∗µ

u,y
Y .

Remark 3.8 We have stated Definition 3.7 in terms of an almost one-to-one u-

resolving factor map. Given two Smale spaces and an almost one-to-one s-resolving

factor map, we would make the analogous definition, interchanging roles of stable

and unstable sets.

Proposition 3.9 Let (Y, ψ), (X, ϕ) be irreducible Smale spaces and let π : Y → X

be an almost one-to-one resolving factor map (s or u-resolving). Suppose Y satisfies the

conclusion of Theorem 2.1. With the measures defined in Definition 3.7, X also satisfies

the conclusion of Theorem 2.1.

Proof We prove the result in the case that π is u-resolving. The s-resolving case

is completely analogous. Let x ∈ X and let C = Xs(x1, δ) ⊂ Xs(x, ǫ), B =

Xu(x2, δ) ⊂ Xu(x, ǫ). Fix y ∈ Y and U (y) ⊂ Y u(y) such that π(y) = x2,

π(U (y)) = Xu(x2, δ) = B. We need to show the following:

(i) µX([B,C]) = µu,x
X (B)µs,x

X (C);

(ii) For z close to x, µu,x
X (B) = µu,z

X ([B, z]);

(iii) µu,ϕ(x)
X (ϕ(B)) = λµu,x

X (B);

(iv) For z close to x, µs,x
X (C) = µs,z

X ([z,C]);

(v) µs,ϕ(x)
X (ϕ(C)) = λ−1µs,x

X (C).

We will prove item (ii) first, as we will use this result in the proof of item (i).

(ii) We can find y ′ ∈ π−1(z) such that y ′ is “close” to y. Then

µu,x
X (B) = µ

u,y
Y

(

U (y)
)

= µ
u,y ′

Y

(

[U (y), y ′]
)

= µu,z
X

(

π
(

[U (y), y ′]
))

but π([U (y), y ′]) = [π(U (y)), π(y ′)] and π(U (y)) = B, π(y ′) = z, so we have

µu,x
X (B) = µu,z

X

(

π
(

[U (y), y ′]
))

= µu,z
X

(

[π
(

U (y)
)

, π(y ′)]
)

= µu,z
X

(

[B, z]
)

.
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(i) Since C ⊂ Xs(x, ǫ) is open with compact closure, by Lemma 3.6 we can write

π−1(C) =
m
⋃

i=1

C ′

i ,

where C ′

i ⊂ Y s(yi) for some yi ∈ Y . Moreover, we write each C ′

i as a disjoint union

of finitely many sets

C ′

i =

ki
⋃

j=1

C ′

i j ,

where C ′

i j ⊂ Y s(yi j , ǫY /2), and yi j ∈ C ′

i j . Let xi j = π(yi j), and let Bi j = [B, xi j]. Let

B ′

i j ⊂ Y u(yi j) be such that π : B ′

i j → Bi j is a homeomorphism. We can then write

[B,C] = π
(

⋃

i, j

[B ′

i j ,C
′

i j]
)

.

So

µX

(

[B,C]
)

= µY

(

⋃

i, j

[B ′

i j ,C
′

i j]
)

=

∑

i, j

µY

(

[B ′

i j ,C
′

i j]
)

=

∑

i, j

µ
u,yi j

Y (B ′

i j)µ
s,yi j

Y (C ′

i j).

Now µ
u,yi j

Y (B ′

i j) = µ
u,xi j

X (Bi j) = µu,x
X (B) for all i, j (by part (ii)), so we have

µX

(

[B,C]
)

= µu,x
X (B)

∑

i, j

µ
s,yi j

Y (C ′

i j) = µu,x
X (B)

∑

i

µ
s,yi

Y (C ′

i ) = µu,x
X (B)µs,x

X (C)

(iii) µu,ϕ(x)
X

(

ϕ(B)
)

= µ
u,ψ(y)
Y

(

ψ(U (y))
)

= λµ
u,y
Y

(

U (y)
)

= λµu,x
X (B).

(iv) We can find y ′ ∈ π−1(z) such that y ′ ∈ Y u(y, ǫ). Let xi j , yi j , C ′

i , C ′

i j be as in

part (i). Let Ci j = π(C ′

i j), zi j = [z, xi j], C(z)i j = [z,Ci j], y ′

i j ∈ π−1(zi j) s.t. y ′

i j ∈

Y u(yi j , ǫ) and C̃ ′

i j = [y ′

i j ,C
′

i j]. Then zi j = π(y ′

i j), Ci j = π(C ′

i j), π(C̃ ′

i j) = [zi j ,Ci j],

and ∪C(z)i j = [z,∪Ci j] = [z,C], so

µs,x
X (C) =

∑

i

µ
s,yi

Y (C ′

i ) =
∑

i, j

µ
s,yi j

Y (C ′

i j)

=

∑

i, j

µ
s,y ′

i j

Y (C̃ ′

i j) = µs,z
X (∪i jC(z)i j) = µs,z

X ([z,C])

(v) µs,ϕ(x)
X (ϕ(C)) =

∑

i

µ
s,ψ(yi )
Y

(

ψ(C ′

i )
)

=

∑

i

λ−1µ
s,yi

Y (C ′

i ) = λ−1µs,x
X (C).
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Proof of Theorem 2.1. As in [9, Cor. 1.4], for the irreducible Smale space (X, ϕ) we

can find another irreducible Smale space (Y, ψ) and an irreducible SFT (Σ, σ), as well

as almost one-to-one factor maps π1 : Σ → Y , π2 : Y → X such that π1 is s-resolving

and π2 is u-resolving. The conclusion then follows from Proposition 3.1 and two

applications of Proposition 3.9.

4 Proof of Main Result

To prove Theorem 2.5 we first establish the result for a mixing SFT and use the ma-

chinery of resolving maps to obtain the more general result.

Proposition 4.1 Let (Σ, σ) be a mixing SFT. Fix x, y ∈ Σ, n,m ∈ Z and define

B = {z ∈ Σ | zi = xi ∀i ≤ n} = Σ
u
n(x) ⊂ Σ

u(x, ǫΣ)

C = {z ∈ Σ | zi = yi ∀i ≥ −m + 1} = Σ
s
m(y) ⊂ Σ

s(y, ǫΣ).

For each function f ∈ C(Σ) we have

lim
k→∞

∫

Σ

f dµk
B,C =

∫

Σ

f dµΣ.

In other words, µk
B,C → µΣ in the weak-∗ topology.

Proof Let A be the adjacency matrix for the SFT. It suffices to prove the result for

a function of the form el(ξ) = χEl(ξ), where El(ξ) = Σl,i ′, j ′(ξ). Now for k ≥
max{n + l,m + l},

∫

Σ

el(ξ)dµk
B,C = µk

B,C (El(ξ)) =
#
(

El(ξ) ∩ hk
B,C

)

#hk
B,C

.

Consider a point z ∈ El(ξ) ∩ hk
B,C . Since z ∈ El(ξ), zp = ξp for all −l + 1 ≤ p ≤ l,

and since z ∈ hk
B,C , zp = xp for all p ≤ n − k, zp = yp for all p ≥ −m + 1 + k.

Therefore the number of points in El(ξ) ∩ hk
B,C is equal to the number of paths of

length −l +1− (n−k)−1 = k− (n+ l) from t(σk(x)−k+n) = t(xn) = vi to i(ξ−l+1) =

vi ′ , which equals Ak−(n+l)
ii ′ times the number of paths of length −m + 1 + k − l − 1 =

k − (m + l) from t(ξl) = v j ′ to i(σ−k(y)k−m+1) = i(y−m+1) = v j or Ak−(m+l)
j ′ j . The

number of points in hk
B,C is the number of paths from t(σk(x)−k+n) = t(xn) = vi to

i(σ−k(y)k−m+1) = i(y−m+1) = v j , or A2k−(n+m)
i j . We therefore have

∫

Σ

el(ξ)dµk
B,C =

Ak−(n+l)
ii ′ Ak−(m+l)

j ′ j

A2k−(n+m)
i j
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and

lim
k→∞

∫

Σ

el(ξ)dµk
B,C

= lim
k→∞

Ak−(n+l)
ii ′ Ak−(m+l)

j ′ j

A2k−(n+m)
i j

= lim
k→∞

eiA
k−(n+l)ei ′e j ′A

k−(m+l)e j

eiA2k−(n+m)e j

= λ−2l ei limk(λ−k+(n+l)Ak−(n+l))ei ′e j ′ limk(λ−k+(m+l)Ak−(m+l))e j

ei limk(λ−2k+(n+m)A2k−(n+m))e j

= λ−2l ei(urul)ei ′e j ′(urul)e j

ei(urul)e j

(by [6, Thm. 4.5.12])

= λ−2l ur(i)ul(i ′)ur( j ′)(ul( j)

ur(i)ul( j)

= λ−2lul(i ′)ur( j ′) = µΣ(Σl,i ′, j ′(ξ)) =

∫

Σ

el(ξ)dµΣ.

In the above, the choice of the sets B, C , is limited to certain basic sets. We now

wish to extend this result to open sets with compact closure B ′ ⊂ Σ
u(x), C ′ ⊂ Σ

s(x).

To do this we will first need the following lemmas.

Lemma 4.2 Let (Σ, σ) be a mixing SFT. Fix x, y ∈ Σ, n,m ∈ Z and define

B = {z ∈ Σ | zi = xi ∀i ≤ n} = Σ
u
n(x) ⊂ Σ

u(x, ǫΣ)

C = {z ∈ Σ | zi = yi ∀i ≥ −m + 1} = Σ
s
m(y) ⊂ Σ

s(y, ǫΣ).

Then

lim
k→∞

λ−2k#hk
B,C = µu,x

Σ
(B)µ

s,y
Σ

(C),

where log(λ) = h(Σ, σ).

Proof Let t(xn) = vi and i(y−m+1) = v j . We then have

lim
k→∞

λ−2k#hk
B,C = lim

k→∞

λ−2kA2k−(n+m)
i j

= λ−(n+m) lim
k→∞

λ−2k+n+meiA
2k−(n+m)e j = λ−(n+m)eiurule j

= λ−nur(i)λ−mul( j) = µu,x
Σ

(B)µ
s,y
Σ

(C).

Lemma 4.3 Let B ⊂ Σ
u(x), C ⊂ Σ

s(y) be open and compact. Then

lim
k→∞

λ−2k#hk
B,C = µu,x

Σ
(B)µ

s,y
Σ

(C),

where log(λ) = h(Σ, σ).
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Proof If B and C are clopen, then each is a finite disjoint union of cylinder sets of

the form considered in Lemma 4.2. Let

B =

n
∑

i=1

Bi , C =

m
∑

i=1

Ci ,

then for fixed k, the hk
Bi ,C j

are pairwise disjoint and ∪i, jh
k
Bi ,C j

= hk
B,C . Using

Lemma 4.2 we can now write

lim
k→∞

λ−2k#hk
B,C = lim

k→∞

∑

i, j

λ−2k#hk
Bi ,C j

=

∑

i, j

lim
k→∞

λ−2k#hk
Bi ,C j

=

∑

i, j

µu,x
Σ

(Bi)µ
s,y
Σ

(C j) = µu,x
Σ

(B)µ
s,y
Σ

(C).

Lemma 4.4 Let B ⊂ Σ
u(x), C ⊂ Σ

s(y) be open with compact closure. Then

lim
k→∞

λ−2k#hk
B,C = µu,x

Σ
(B)µ

s,y
Σ

(C),

where log(λ) = h(Σ, σ).

Proof Fix ǫ > 0. We can find sets B1 ⊆ B ⊆ B2 ⊂ Σ
u(x) and C1 ⊆ C ⊆ C2 ⊂ Σ

s(y)

such that B1, B2, C1, and C2 are compact and open and

µu,x
Σ

(B2)µ
s,y
Σ

(C2) − ǫ < µu,x
Σ

(B)µ
s,y
Σ

(C) < µu,x
Σ

(B1)µ
s,y
Σ

(C1) + ǫ.

Notice that #hk
B1,C1

≤ #hk
B,C ≤ #hk

B2,C2
, so

µu,x
Σ

(B)µ
s,y
Σ

(C) − ǫ < µu,x
Σ

(B1)µ
s,y
Σ

(C1) = lim
k→∞

λ−2k#hk
B1,C1

≤ lim inf
k→∞

λ−2k#hk
B,C ,

µu,x
Σ

(B)µ
s,y
Σ

(C) + ǫ > µu,x
Σ

(B2)µ
s,y
Σ

(C2) = lim
k→∞

λ−2k#hk
B2,C2

≥ lim sup
k→∞

λ−2k#hk
B,C .

As this hold for all ǫ > 0, we have

lim sup
k→∞

λ−2k#hk
B,C ≤ µu,x

Σ
(B)µ

s,y
Σ

(C) ≤ lim inf
k→∞

λ−2k#hk
B,C

and hence limk→∞ λ−2k#hk
B,C = µu,x

Σ
(B)µ

s,y
Σ

(C).

We are now ready to prove the more general version of Propostion 4.1.

Proposition 4.5 The result of Proposition 4.1 holds with B ⊂ Σ
u(x), C ⊂ Σ

s(y) open

with compact closure.

Proof We can write B =
⋃

i Bi , C =
⋃

j Ci , where each Bi , Ci is of the form consid-

ered in Proposition 4.1, and the unions are disjoint. For brevity we write

hk
= hk

B,C , µk
= µk

B,C ,
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hk
i j = hk

Bi ,C j
, µk

i j = µk
Bi ,C j

.

Notice that for fixed k, the hk
i j ’s are pairwise disjoint and ∪i, jh

k
i j = hk. We can write

lim
k→∞

∫

Σ

f dµk
= lim

k→∞

∑

i, j

#hk
i j

#hk

∫

Σ

f dµk
i j .

Now let M = supz∈Σ
| f (z)|, which is finite as f is continuous and Σ is compact. For

each k,
∑

i, j #hk
i j/#hk

= 1 so for any I ∈ N we can write

1 = lim
k→∞

∑

i, j

#hk
i j

#hk
= lim

k→∞

I
∑

i, j=1

#hk
i j

#hk
+ lim

k→∞

∑

I+

#hk
i j

#hk
,

where I+ is the set of all pairs (i, j) such that either i > I, or j > I. We also know

that

1 =

∑

i, j

µu,x
Σ

(Bi)µ
s,y
Σ

(C j)

µu,x
Σ

(B)µ
s,y
Σ

(C)
,

and we may choose I large enough so that

lim
k→∞

∑

I+

#hk
i j

#hk
<

ǫ

2M
and

∣

∣

∣

I
∑

i, j

µu,x
Σ

(Bi)µ
s,y
Σ

(C j)

µu,x
Σ

(B)µ
s,y
Σ

(C)
− 1

∣

∣

∣
<

ǫ

2M
.

Using Lemma 4.4 and Proposition 4.1 we now have

∣

∣

∣
lim

k→∞

∫

Σ

f dµk −

∫

Σ

f dµΣ

∣

∣

∣

=

∣

∣

∣
lim

k→∞

∑

i, j

#hk
i j

#hk

∫

Σ

f dµk
i j −

∫

Σ

f dµΣ

∣

∣

∣

=

∣

∣

∣

∣

(

lim
k→∞

I
∑

i, j

#hk
i j

#hk
+ lim

k→∞

∑

I+

#hk
i j

#hk

)

∫

Σ

f dµk
i j −

∫

Σ

f dµΣ

∣

∣

∣

∣

=

∣

∣

∣

I
∑

i, j

lim
k→∞

λ−2k#hk
i j

λ−2k#hk

∫

Σ

f dµk
i j + lim

k→∞

∑

I+

#hk
i j

#hk

∫

Σ

f dµk
i j −

∫

Σ

f dµΣ

∣

∣

∣

=

∣

∣

∣

I
∑

i, j

µu,x
Σ

(Bi)µ
s,y
Σ

(C j)

µu,x
Σ

(B)µ
s,y
Σ

(C)

∫

Σ

f dµΣ + lim
k→∞

∑

I+

#hk
i j

#hk

∫

Σ

f dµk
i j −

∫

Σ

f dµΣ

∣

∣

∣

≤
∣

∣

∣

∫

Σ

f dµΣ

(

I
∑

i, j

µu,x
Σ

(Bi)µ
s,y
Σ

(C j)

µu,x
Σ

(B)µ
s,y
Σ

(C)
− 1

)
∣

∣

∣
+
∣

∣

∣
lim

k→∞

∑

I+

#hk
i j

#hk

∫

Σ

f dµk
i j

∣

∣

∣
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≤
∣

∣

∣
M
(

I
∑

i, j

µu,x
Σ

(Bi)µ
s,y
Σ

(C j)

µu,x
Σ

(B)µ
s,y
Σ

(C)
− 1

)∣

∣

∣
+
∣

∣

∣
M lim

k→∞

∑

I+

#hk
i j

#hk

∣

∣

∣
< M

ǫ

2M
+ M

ǫ

2M

= ǫ.

This holds for all ǫ > 0, so limk→∞

∫

Σ
f dµk

=
∫

Σ
f dµΣ

We now wish to extend this result to the mixing Smale space case. The main tool

will be resolving factor maps and the results in [9].

The following proposition allows us to extend the result of Lemma 4.4 to general

mixing Smale spaces.

Proposition 4.6 Let (X, ϕ) and (Y, ψ) be mixing Smale spaces, let π : Y → X be an

almost one-to-one (s or u) resolving factor map, and suppose the conclusion of Lemma

4.4 holds for (Y, ψ). Then the conclusion of Lemma 4.4 holds for (X, ϕ).

Proof Suppose π is u-resolving (the s-resolving case is completely analogous). Let

x1, x2 ∈ X and B ⊂ Xu(x1), C ⊂ Xs(x2), and let

hk
X = hk

B,C , µk
X = µk

B,C .

Now, set C ′
= π−1

1 (C). By Theorem 3.6, C ′
=

⋃m
1 C ′

i , where the union is disjoint

and C ′

i ⊂ Y s(y2,i) for some y2,i ∈ Y . Also, fix y1 ∈ π−1(x1), and set B ′ such that

π : B ′ → B is a homeomorphism, so B ′ ⊂ Y u(y1). Now

hk
B ′,C ′ =

m
⋃

1

hk
B ′,C ′

i
, #hk

B ′,C ′ =

m
∑

1

#hk
B ′,C ′

i
.

Notice that since hk
B ′,C ′ ⊂ Y u(ϕ−k(y1)) and π is u-resolving, π is one-to-one (and

hence bijective) on hk
B ′,C ′ . In other words #hk

B,C = #hk
B ′,C ′ . Also, recall from Proposi-

tion 3.9 that

µu,x1

X (B) = µ
u,y1

Y (B ′) and µs,x2

X (C) =

m
∑

1

µ
s,y2,i

Y (C ′

i ).

Now,

lim
k→∞

λ−2k#hk
B,C = lim

k→∞

λ−2k#hk
B ′,C ′ = lim

k→∞

m
∑

1

λ−2k#hk
B ′,C ′

i

=

m
∑

1

µ
u,y1

Y (B ′)µ
s,y2,i

Y (C ′

i ) = µu,x1

X (B)µs,x2

X (C).

We are now ready to prove Theorem 2.4
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Proof of Theorem 2.4 As in [9, Cor. 1.4], for the mixing Smale space (X, ϕ), we can

find another mixing Smale space (Y, ψ) and a mixing SFT (Σ, σ), as well as almost

one-to-one factor maps π1 : Σ → Y , π2 : Y → X such that π1 is s-resolving and π2 is

u-resolving. The first conclusion then follows from Lemma 4.4 and two applications

of Proposition 4.6.

For the second statement notice that

lim
k→∞

λ−2k#hk
B,C = µu,x

X (B)µ
s,y
X (C).

Hence,

lim
k→∞

log(λ−2k#hk
B,C ) = log(µu,x

X (B)µ
s,y
X (C))

lim
k→∞

(

log(#hk
B,C ) − 2k log(λ) − log(µu,x

X (B)µ
s,y
X (C))

)

= 0

lim
k→∞

( log(#hk
B,C )

2k
− h(X, ϕ) −

log(µu,x
X (B)µ

s,y
X (C))

2k

)

= 0

lim
k→∞

( log(#hk
B,C )

2k
− h(X, ϕ)

)

= 0.

The following proposition allows us to extend Proposition 4.5 from the mixing

SFT case to the mixing Smale space case and prove Theorem 2.5.

Proposition 4.7 Let (X, ϕ) and (Y, ψ) be mixing Smale spaces, let π : Y → X be an

almost one-to-one (s or u) resolving factor map, and suppose the conclusion of Theorem

2.5 holds for (Y, ψ). Then the conclusion of Theorem 2.5 holds for (X, ϕ).

Proof Suppose π is u-resolving (the s-resolving case is completely analogous). Let

x1, x2 ∈ X and B ⊂ Xu(x1), C ⊂ Xs(x2), and let

hk
X = hk

B,C , µk
X = µk

B,C .

Now, set C ′
= π−1(C). By Theorem 3.6, C ′

=
⋃m

1 C ′

i , where the union is disjoint

and C ′

i ⊂ Y s(y2,i) for some y2,i ∈ Y . Also, fix y1 ∈ π−1(x1), and set B ′ such that

π : B ′ → B is a homeomorphism, so B ′ ⊂ Y u(y1). Now set

hk
X = hk

B ′,C ′ =

m
⋃

1

hk
B ′,C ′

i
, µk

X = µk
B ′,C =

m
∑

1

#hk
B ′,C ′

i

#hk
B ′,C ′

µk
B ′,C ′

i
.

Notice that since hk
Y ⊂ Y u(ϕ−k(y1)) and π is u-resolving, π is one-to-one (and hence

bijective) on hk
Y . In other words hk

X = π(hk
Y ), and therefore µk

Y = (µk
X ◦ π). Also

recall from Theorem 2.4 that

lim
k→∞

#hk
B ′,C ′

i

#hk
B ′,C ′

=
µ

u,y2,i

Y (C ′

i )
∑k

j=1 µ
u,y2, j

Y (C ′

j)
.
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Now, for f ∈ C(X),

∫

X

f dµX =

∫

π−1(X)

( f ◦ π)d(µX ◦ π) =

∫

Y

( f ◦ π)dµY

= lim
k→∞

∫

Y

( f ◦ π)dµk
B ′,C ′

i
for any i, by hypothesis

=

(

lim
k→∞

∫

Y

( f ◦ π)dµk
B ′,C ′

i

)

m
∑

i=1

µ
u,y2,i

Y (C ′

i )
∑k

j=1 µ
u,y2, j

Y (C ′

j)

=

(

lim
k→∞

m
∑

1

#hk
B ′,C ′

i

#hk
B ′,C ′

∫

Y

( f ◦ π)dµk
B ′,C ′

i

)

= lim
k→∞

∫

Y

( f ◦ π)dµk
Y = lim

k→∞

∫

Y

( f ◦ π)d(µk
X ◦ π) = lim

k→∞

∫

X

f dµk
X.

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5 As in [9, Cor. 1.4], for the mixing Smale space (X, ϕ), we can

find another mixing Smale space (Y, ψ) and a mixing SFT (Σ, σ), as well as almost

one-to-one factor maps π1 : Σ → Y , π2 : Y → X such that π1 is s-resolving and π2 is

u-resolving. The conclusion then follows from Proposition 4.5 and two applications

of Proposition 4.7.

Finally, we prove Theorems 2.8 and 2.10.

Proof of Theorems 2.8 and 2.10 We assume that B,C are contained in Xi0
. Without

loss of generality, we assume i0 = 1. Since for any n ≥ 0, ϕn(B), ϕn(C) are both

contained in X1+n (where 1 + n is interpreted modulo I), the intersection of hk
B,C with

Xi is ϕkI+i−1(B) ∩ ϕ−kI+i−1(C), which we denote by hk
i . Furthermore, we define

µk
i = (#hk

i )−1
∑

z∈hk
i

δz.

With 1 ≤ i ≤ I fixed, consider Theorem 2.4 applied to the system (Xi , ϕ
I | Xi)

with local unstable and stable sets ϕi−1(B) and ϕi−1(C). Notice also that h(Xi , ϕ
I) =

Ih(X, ϕ), so if log(λ) = h(X, ϕ), log(λI) = h(Xi , ϕ
I). It now follows that

lim
k

#hk
i (λI)−2k

= µu,ϕi−1(x)
X

(

ϕi−1(B)
)

µ
u,ϕi−1(y)
X (ϕi−1(C))

= λ1−iµu,x
X (B)λi−1µ

s,y
X (C) = µu,x

X (B)µ
s,y
X (C).

Noticing that limk
#hk

B,C

#hk
i

= I, we have

lim
k

#hk
B,Cλ

−2kI
= Iµu,x

X (B)µ
s,y
X (C).
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It then follows as in the proof of Theorem 2.4 that

lim
k

hk
B,C

2kI
= h(X, ϕ).

We also note that Theorem 2.5 implies limk µ
k
i = µXi

. Putting all of this together, we

have

lim
k
µk

B,C = lim
k

(#hk
B,C )−1

∑

z∈hk
B,C

δz = lim
k

(#hk
B,C )−1

I
∑

i=1

∑

z∈hk
i

δz

= lim
k

I
∑

i=1

#hk
i

#hk
B,C

(#hk
i )−1

∑

z∈hk
i

δz = lim
k

I
∑

i=1

#hk
i

∑I
j=1 #hk

j

µk
i

= lim
k

I
∑

i=1

#hk
i λ

−2kI

∑I
j=1 #hk

jλ
−2kI

µk
i =

I
∑

i=1

µu,x
X (B)µ

s,y
X (C)

Iµu,x
X (B)µ

s,y
X (C)

µXi
=

I
∑

i=1

1

I
µXi

= µX.

Acknowledgment We would like to thank the referee for many helpful comments.

References

[1] R. Bowen, Markov partitions for Axiom A diffeomorphisms. Amer. J. Math. 92(1970), 725–747.
http://dx.doi.org/10.2307/2373370

[2] , Periodic points and measures for Axiom A diffeomorphisms. Trans. Amer. Math. Soc.
154(1971), 377–397.

[3] , On Axiom A diffeomorphisms. Regional Conference Series in Mathematics, 35, American
Mathematical Society, Providence, RI, 1978.

[4] D. Fried, Finitely presented dynamical systems. Ergodic Theory Dynam. Systems 7(1987), no. 4,
489–507.

[5] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Encyclopedia
of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.

[6] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding. Cambridge University
Press, Cambridge, 1995.

[7] L. Mendoza, Topological entropy of homoclinic closures. Trans. Amer. Math. Soc. 311(1989),
255–266. http://dx.doi.org/10.1090/S0002-9947-1989-0974777-0

[8] I. F. Putnam, Functoriality of the C∗-algebras associated with hyperbolic dynamical systems. J.
London Math. Soc. 62(2000), no. 3, 873–884. http://dx.doi.org/10.1112/S002461070000140X

[9] , Lifting factor maps to resolving maps. Israel J. Math. 146(2005), 253–280.
http://dx.doi.org/10.1007/BF02773536

[10] , A homology theory for Smale spaces: a summary. arxiv:0801.3294v2

[11] D. Ruelle, Thermodynamic formalism. The mathematical structures of classical equilibrium statistical
mechanics. Encyclopedia of Mathematics and its Applications, 5, Addison-Wesley, Reading, 1978.

[12] D. Ruelle and D. Sullivan, Currents, flows and diffeomorphisms. Topology 14(1975), 319–327.
http://dx.doi.org/10.1016/0040-9383(75)90016-6

[13] S. Smale, Differentiable dynamical systems. Bull. Amer. Math. Soc. 73(1967), 747–817.
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1

Department of Mathematics, Physics, and Engineering, Mount Royal University, Calgary, AB T3E 6K6
e-mail: bkillough@mtroyal.ca

Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4
e-mail: putnam@math.uvic.ca

https://doi.org/10.4153/CJM-2011-083-0 Published online by Cambridge University Press

http://dx.doi.org/10.2307/2373370
http://dx.doi.org/10.1090/S0002-9947-1989-0974777-0
http://dx.doi.org/10.1112/S002461070000140X
http://dx.doi.org/10.1007/BF02773536
http://arxiv.org/abs/0801.3294v2
http://dx.doi.org/10.1016/0040-9383(75)90016-6
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
https://doi.org/10.4153/CJM-2011-083-0

