FREE PRODUCTS OF TWO REAL CYCLIC MATRIX GROUPS

by R. J. EVANS

(Received 20 April, 1973)

1. Introduction. We exhibit a large class K^* of real 2×2 matrices of determinant ± 1 such that, for nearly all A and B in K^* , the group generated by A and B' (the transpose of B) is the free product of the cyclic groups $\langle A \rangle$ and $\langle B' \rangle$. It is shown that K^* contains all matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ of determinant ± 1 with integer entries satisfying |b| > |a|, |c|, |d|. This gives a generalization of a theorem of Goldberg and Newman [2]. We also prove related results concerning the dominance of b and the discreteness of the free products $\langle A \rangle * \langle B' \rangle$.

The matrices A will be identified with linear fractional transformations on \mathbb{R}^* (the extended reals), except in §5.

2. Definitions and notation.

- (1) A matrix M is unimodular if det $M = \pm 1$.
- (2) A will always denote the real unimodular matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
- (3) Z denotes the integers.
- (4) An entry of A is called dominant if its absolute value is larger than that of each other entry.

(5)
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, $g = 2^{-\frac{1}{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$.

- (6) Γ denotes the interval (-1, 1).
- (7) $\Delta = \mathbb{R}^* [-1, 1].$
- (8) If C is a 2×2 matrix and S is a set of 2×2 matrices, then $S^C = \{B^C : B \in S\}$, where $B^C = CBC^{-1}$.
- (9) $A = \begin{bmatrix} + & + \\ & \end{bmatrix}$ means that either the matrix A or -A has the indicated sign pattern, i.e. $a, b \ge 0, c, d \le 0$ or $a, b \le 0, c, d \ge 0$.
- (10) A real linear fractional transformation is called *minimal* if it has a matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ of determinant 1 which satisfies the conditions c > 0, $a + d = 2\cos(\pi/q)(q \in \mathbb{Z}, q \ge 2)$. If a transformation A has period $q \ge 2$ and $\det A = 1$, then $\langle A \rangle$ has a unique minimal member of period q which can be found as follows. Write $|\operatorname{tr} A| = 2\cos(\pi p/q)$, where (p, q) = 1, $q \ge 2$. Choose r such that $rp \equiv 1 \pmod{q}$. Then either A^r or A^{-r} is minimal.
 - (11) $J = \{A : |a+b| \ge |c+d|, |a-b| \ge |c-d| \text{ and } |b| > |a| \}.$
 - (12) $K_1 = \{A \in J : | \operatorname{tr} A | \ge 2, \operatorname{det} A = 1 \}.$
 - (13) $K_2 = \{A : A' \in J \text{ and } A' \text{ is minimal, for some } r\}.$

It will be shown in Lemma 7 that $K_2 \subset J$. On the other hand, not every $A \in J$ of determinant 1 and finite period is in K_2 . For example, if $\lambda = 2\cos(\pi/5)$, we have

$$A = \begin{bmatrix} 0 & \lambda \\ 1 - \lambda & \lambda - 1 \end{bmatrix} \in J, A^2 \notin J, \text{ and } A^2 \text{ is minimal.}$$

- (14) $K_3 = \{A \in J : \det A = -1, \operatorname{tr} A = 0\}$. Observe that K_3 consists of all $A \in J$ of determinant -1 with finite period.
 - (15) $K_4 = \{A \in J : \det A = -1, A^2 \in J\}.$
 - (16) $K = K_1 \cup K_2 \cup K_3 \cup K_4$.

3. Free products of transformations.

THEOREM 1. Let $A, B \in K, C = B^t$. Then $\langle A, C \rangle = \langle A \rangle * \langle C \rangle$ if and only if, for every pair r, s satisfying $s^2 - r^2 = 1$, we have $\{A, C\} \notin \left\{ \begin{bmatrix} r & s \\ -s & -r \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$.

Before proving this theorem, we prove Proposition 1. The following lemmas lead up to Proposition 1.

LEMMA 1. $A \in J$ if and only if $A(\Gamma) \subset \Delta$.

Proof. Let $A \in J$; then $|A(1)| \ge 1$, $|A(-1)| \ge 1$, and A(x) does not vanish for $x \in \Gamma$. Moreover, A(x) is monotone on the intervals $(-\infty, -d/c)$ and $(-d/c, \infty)$, since $d/dx(A(x)) = \det A/(cx+d)^2$. It is thus readily seen that $\min \{|A(x)| : x \in [-1, 1]\}$ is attained at x = 1 or x = -1. Thus $A(\Gamma) \subset \Delta$. The converse is readily verified.

LEMMA 2. $A \in J$ if and only if $A^{-1} \in J$.

Proof. This follows from Lemma 1.

Lemma 3. Let det A = -1 (so that the fixed points of A are in \mathbb{R}^*). Then $A \notin J$ if and only if there is a fixed point of A in Γ .

Proof. Suppose that $A \notin J$. Then the graph of A(x) must intersect the open square whose vertices are (1, 1), (1, -1), (-1, 1), and (-1, -1). Since A(x) is monotone decreasing on $(-\infty, -d/c)$ and on $(-d/c, \infty)$, the graph of A(x) must intersect the line y = x inside the square. Thus A has a fixed point in Γ . The converse is obvious.

LEMMA 4. Let det A = -1. Then, if $A^2 \in J$, $A \in J$.

Proof. If $A \notin J$, then, by Lemma 3, there exists $x \in \Gamma$ such that A(x) = x. Thus $A^2(x) = x$, so that $A^2 \notin J$.

LEMMA 5. Let $A \in K_1$. Then $A^n \in J$ for all n > 0.

Proof. By Lemma 1, the fixed points of A must lie in $\mathbb{R}^* - \Gamma$. For any $x \in \Gamma$, the sequence x, Ax, A^2x, \ldots converges to one of these fixed points in that cyclic order on \mathbb{R}^* . Thus, for all n > 0, $A^n(x) \in \Delta$, and so $A^n(\Gamma) \subset \Delta$.

LEMMA 6. Let $A \in K_4$. Then $A^n \in J$ for all n > 0.

Proof. An easy calculation shows that $A^2 \in K_1$. By Lemma 5, $A^{2n} \in J$ for all n > 0. By Lemma 4, $A^n \in J$ for all n > 0.

LEMMA 7. Let $A \in K_2$. Then $A^n \in J$ for all n such that $A^n \neq I$.

Proof. Let $B \in \langle A \rangle$ be minimal of period q, so that $B \in J$. Fix $x \in \Gamma$. The points x, Bx, B^2x , ..., $B^{q-1}x$ occur in that cyclic order on \mathbb{R}^* . If one of these points other than x were in [-1, 1], then either $Bx \in [-1, 1]$ or $B^{-1}x \in [-1, 1]$. This is impossible since $B \in J$. Thus $\{Bx, B^2x, \ldots, B^{q-1}x\} \subset \Delta$. Therefore, for all n such that $A^n \neq I$, we have $A^n(x) \in \Delta$, and so $A^n(\Gamma) \subset \Delta$.

LEMMA 8. Let $A \in K_3$. Then $A^n \in J$ for all n such that $A^n \notin I$.

Proof. Since each $A \in K_3$ is an involution, the assertion is obvious.

PROPOSITION 1. If $A \in K$, then $A^n \in J$ for all n such that $A^n \neq I$.

Proof. This follows from Lemmas 2, 5, 6, 7 and 8.

Proof of Theorem 1. Suppose that $B^m \neq I$. By Proposition 1, $B^{-m} \in J$. Thus

$$C^{m}(\Delta) = TB^{-m}T(\Delta) \subset TB^{-m}(\Gamma) \subset T(\Delta) = \Gamma.$$

Thus, by the Lemma in [4, p. 161], $\langle A, C \rangle = \langle A \rangle * \langle C \rangle$ unless A and C are involutions such that $(AC)^n = I(n > 0)$. Suppose that the latter event occurs. We must show that

$${A, C} \subset \left\{ \begin{bmatrix} r & s \\ -s & -r \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$

for some pair r, s satisfying $s^2-r^2=1$. Let $E=\{-1,1\}$. Assume that $C(E)\neq E$. Then there exists $e\in E$ such that $C(e)\in \Gamma$, so that $AC(e)\in \Delta$. By induction, $e=(AC)^n(e)\in \Delta$, a contradiction. Thus C(E)=E. Since $(CA)^n=I$, similar reasoning shows that A(E)=E. Therefore

$$A^{g}(g(E)) = C^{g}(g(E)) = g(E) = \{0, \infty\}.$$

It follows that A^g and C^g each have one of the forms $\begin{bmatrix} 0 & u \\ -1/u & 0 \end{bmatrix}$ or $\begin{bmatrix} v & 0 \\ 0 & -1/v \end{bmatrix}$. (The forms

$$\begin{vmatrix} 0 & u \\ 1/u & 0 \end{vmatrix}$$
 and $\begin{vmatrix} v & 0 \\ 0 & 1/v \end{vmatrix}$ are ruled out because $\begin{vmatrix} 0 & u \\ 1/u & 0 \end{vmatrix}^{g^{-1}}$ and $\begin{vmatrix} v & 0 \\ 0 & 1/v \end{vmatrix}^{g^{-1}}$

are not in J, by definition of J.) The latter form is an involution only if v = 1. Suppose that A^g and C^g both have the former form, say

$$A^g = \begin{vmatrix} 0 & u \\ -1/u & 0 \end{vmatrix}, \quad C^g = \begin{vmatrix} 0 & w \\ -1/w & 0 \end{vmatrix}.$$

Then $A^g = C^g$, since otherwise $(AC)^g$ has infinite period. Therefore we conclude that, for some u,

$$\left\{A^g, C^g\right\} \subset \left\{ \left| \begin{array}{cc} 0 & u \\ -1/u & 0 \end{array} \right|, \left| \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right| \right\},$$

i.e.

$$\{A,C\} \subset \left\{ \begin{vmatrix} r & s \\ -s & -r \end{vmatrix}, \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} \right\}$$

for some pair r, s satisfying $s^2 - r^2 = 1$.

4. Discreteness. The free products $\langle A \rangle * \langle C \rangle$ in Theorem 1 are, in fact, discrete. We shall prove this now in the special case in which $\det A = \det C = 1$; we prove the result in full generality in a paper to be submitted later. First we establish some propositions.

If we could find a larger class $K' \supset K$ for which Proposition 1 held, we would be able to improve Theorem 1. The next result (the converse of Proposition 1) shows that no such K' exists.

PROPOSITION 2. Let $A \neq I$ satisfy $A^n \in J$ for all n such that $A^n \neq I$. Then $A \in K$.

Proof. First suppose that $\det A = 1$. If $|\operatorname{tr} A| \ge 2$, then $A \in K_1$. Suppose that $|\operatorname{tr} A| < 2$. If A had infinite period, then $\{A^n(0) : n = 1, 2, \dots\}$ would be dense in \mathbb{R} ; so there would exist an n > 0 such that $A^n \notin J$, a contradiction. Thus $|\operatorname{tr} A| = 2\cos(\pi p/q)$, with (p, q) = 1, $q \ge 2$. Since the power of A that is minimal is in J by hypothesis, $A \in K_2$.

Now suppose that det A = -1. If A has finite period, then $A \in K_3$. If A has infinite period, then, since $A^2 \in J$ by hypothesis, $A \in K_4$.

LEMMA 9.
$$A \in J^g$$
 if and only if $A = \begin{bmatrix} + & + \\ - & - \end{bmatrix}$.

Proof. Suppose that $A \in J^g$. Then

$$A[(0, \infty)] = A[g(\Gamma)] \subset g(\Delta) = (-\infty, 0).$$

It follows that $\{A(0), A^{-1}(0), A(\infty)\} \subset [-\infty, 0]$. This shows that $A = \begin{bmatrix} + & + \\ - & - \end{bmatrix}$.

Conversely, if
$$A = \begin{bmatrix} + & + \\ - & - \end{bmatrix}$$
, then $A[(0, \infty)] \subset (-\infty, 0)$, so that $A \in J^g$.

PROPOSITION 3. Let $A \neq I$. Then $A \in K^g$ if and only if $A^n = \begin{bmatrix} + & + \\ - & - \end{bmatrix}$ for all n such that $A^n \neq I$.

Proof. This follows from Propositions 1 and 2 and Lemma 9.

The next theorem implies that $\langle A, B^t \rangle$ is the discrete free product $\langle A \rangle * \langle B^t \rangle$ for all $A, B \in K$ of determinant 1. Another consequence is that all the real groups investigated by Lyndon and Ullman in [4] are discrete.

THEOREM 2. Let Γ_0 be an open interval in \mathbb{R}^* and let $\overline{\Gamma}_0$ be its closure. Let $\Delta_0 = \mathbb{R}^* - \overline{\Gamma}_0$. Suppose that A and C are real 2×2 matrices of determinant 1 satisfying the conditions

- (1) $A^{n}(\Gamma_{0}) \subset \Delta_{0}$ for all n such that $A^{n} \neq I$, and
- (2) $C^n(\Delta_0) \subset \Gamma_0$ for all n such that $C^n \neq I$.

Then $\langle A, C \rangle$ is the discrete free product $\langle A \rangle * \langle C \rangle$.

Proof. By conjugating A and C, we may assume without loss of generality that $\Gamma = \Gamma_0$ and $\Delta = \Delta_0$. Let $B = C^t$. Since $B = TC^{-1}T$, we have $B^n(\Gamma) \subset \Delta$ for all n such that $B^n \neq I$. Thus, by Proposition 2, A, $B \in K$. By Proposition 3, we have A^g , $B^g = \begin{bmatrix} + & + \\ - & - \end{bmatrix}$. Define $A_1 = (A^g)^j$ where j is chosen as follows. If $A \in K_1$, choose $j \in \{1, -1\}$ so that A_1 has a matrix whose upper entries are ≤ 0 and whose trace is ≥ 2 . If $A \in K_2$, choose j so that A_1 has a matrix whose upper entries are ≤ 0 and whose trace is $2\cos(\pi/q)$ with $q \geq 2$, $q \in \mathbb{Z}$. Define B_1 analogously. It is readily seen that $\langle A_1, B_1^t \rangle$ is the discrete free product $\langle A_1 \rangle * \langle B_1^t \rangle$ if and only if $\langle A^g, (B^g)^t \rangle$ is the discrete free product $\langle A_1 \rangle * \langle B_1^g \rangle$. Since $\langle B^g \rangle^t = \langle B^t \rangle^g$, it suffices to show that $\langle A_1, B_1^t \rangle$ is the discrete free product $\langle A_1 \rangle * \langle B_1^t \rangle$. This follows immediately from Newman's theorem [6, p. 159]. (For a proof of Newman's theorem, see [7, p. 212].) This completes the proof.

The next theorem shows that, if A and C satisfy certain conditions given in [7, p. 210], one can always find an interval Γ_0 for which the hypotheses of Theorem 2 hold.

THEOREM 3. Let A and C be real 2×2 matrices of determinant 1, neither of which is elliptic of infinite period. If A has infinite period, let A_1 be the matrix for A satisfying $\operatorname{tr} A_1 \geq 2$; if A has finite period, let A_1 be the matrix for the minimal transformation in $\langle A \rangle$ satisfying $\operatorname{tr} A_1 = 2\cos(\pi/q)$ with $q \geq 2$, $q \in \mathbb{Z}$. Define C_1 analogously. Suppose that $A_1 \neq -C_1$ and $\operatorname{tr}(A_1^{-1}C_1) \leq -2$. Then A and C satisfy the conditions of Theorem 2 for some Γ_0 .

Proof. View A_1 and C_1 as transformations. It suffices to prove the conclusion with A and C replaced by A_1 and C_1 , respectively. As shown in [7, pp. 210–211], we may assume, by conjugation, that $A_1 = \begin{bmatrix} 0 & -\rho \\ 1/\rho & \lambda \end{bmatrix}$ and $C_1 = \begin{bmatrix} 0 & -\rho_1 \\ 1/\rho_1 & \lambda_1 \end{bmatrix}$ with $\rho \rho_1 < 0$. Suppose, without loss of generality, that $\rho > 0$. Letting $B_1 = C_1^t$, we have $A_1, B_1 = \begin{bmatrix} + & + \\ - & - \end{bmatrix}$. By Lemma 9, $A_1, B_1 \in J^g$, so that $A_1, B_1 \in K^g$ by definition of K. The result now follows from Proposition 1.

5. Free products of matrices. In this section, unless otherwise specified, we interpret matrices as elements of the real unimodular 2×2 matrix group G rather than the group \overline{G} of real linear fractional transformations. We define \overline{A} in \overline{G} as the image of $A \in G$ under the natural homomorphism $G \to \overline{G}$. Define $K^* = \{A : \overline{A} \in K\}$.

C

THEOREM 4. Let $A, B \in K^*, C = B^t$. Then $\langle A, C \rangle = \langle A \rangle * \langle C \rangle$ if any only if

$$\{A,B\} \notin \left\{ \pm \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$

and neither A nor B has even period ≥ 4 .

Proof. Suppose that A or C, say A, has period $2n (n \ge 2)$. Then $A^n = -I$. Consequently, $A^n C A^n C^{-1} = I$, so that $\langle A, C \rangle \ne \langle A \rangle * \langle C \rangle$. Conversely, suppose that

$$\{A,B\} \notin \left\{ \pm \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$

and neither A nor B has even period ≥ 4 . Then it follows from Theorem 1 that $\langle \overline{A}, \overline{C} \rangle = \langle \overline{A} \rangle * \langle \overline{C} \rangle$. Assume that a reduced word ... $A^n C^m$... in $\langle A, C \rangle$ equals I. Then ... $\overline{A}^n \overline{C}^m$... equals \overline{I} , which is impossible because $-I \notin \langle A \rangle$, $-I \notin \langle C \rangle$. Thus $\langle A, C \rangle = \langle A \rangle * \langle C \rangle$. This completes the proof.

Let L^* be the set of unimodular matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with integer entries, infinite period, and b dominant. Let $L = \{\overline{A} : A \in L^*\}$. Goldberg and Newman [2] proved that, for all $A, B \in L^*, \langle A, B^t \rangle$ is free. The next theorem shows that this result is a special case of Theorem 4.

Theorem 5. $L^* \subset K^*$.

Proof. We must show that $L \subset K$. Let $A \in L$. As is mentioned in [2, p. 446], $|b-a| \ge |d-c|$. If the same reasoning is applied to $\begin{bmatrix} a & -b \\ -c & d \end{bmatrix} \in L$, we obtain $|a+b| \ge |c+d|$. Hence $A \in J$. This proves, incidentally, that $L \subset J$.

Suppose that $\det A = 1$. Since A has infinite period, $|\operatorname{tr} A| \ge 2$. Thus $A \in K_1$. Now suppose that $\det A = -1$. It remains to show that $A^2 \in L$, for then $A^2 \in J$ and consequently $A \in K_4$. Since A has infinite period, $t = \operatorname{tr} A \ne 0$. Observe that $A^2 = tA + I = t \begin{bmatrix} a + t^{-1} & b \\ c & d + t^{-1} \end{bmatrix}$. We may assume that $|a + t^{-1}| \ge |d + t^{-1}|$, because there is no loss of generality in replacing A^2 by its inverse, since $L = \{A^{-1} : A \in L\}$. It remains to show that $|b| > |a + t^{-1}|$. Clearly,

 $|a+t^{-1}| \le |a|+1 \le |b|$. Assume that $|a+t^{-1}| = |b|$. Then $t = \operatorname{sgn}(a)$ and $A = \begin{bmatrix} a & \pm (1+|a|) \\ c & -a + \operatorname{sgn}(a) \end{bmatrix}$

so that $\pm c = -1 + a^2/(1 + |a|)$. Since $c \in \mathbb{Z}$, we must have a = 0. Therefore |b| = 1, which contradicts the fact that b is dominant in A.

6. Dominance. For each A, write $A^n = \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix}$. In [2] it is proved that, if $A \in L$, then b_n is dominant in A^n for all $n \neq 0$. The next theorem generalizes this result. We first prove one lemma.

LEMMA 10. Let $A \in K$ and suppose that $(A^t)^n \in J$ for some n. Then

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad or \quad A = \begin{bmatrix} a & b \\ -b & -a \end{bmatrix}.$$

Proof. Let $B = A^n$. Since $B^t \in J$, $B \neq I$. Thus $B \in K$, by Propositions 1 and 2. By Lemma 9, B^g , $(B^g)^t = \begin{bmatrix} + & + \\ - & - \end{bmatrix}$. Thus $B^g = \begin{bmatrix} 0 & u \\ -1/u & 0 \end{bmatrix}$ or $\begin{bmatrix} v & 0 \\ 0 & -1/v \end{bmatrix}$ for some u, v. If B^g has the latter form, then $(B^g)^2 = \begin{vmatrix} + & + \\ + & + \end{vmatrix} \notin J^g$. Hence $B \notin K_4$; so we must have $B \in K_3$ and consequently v = 1. We have thus shown that $B^g = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ or $\begin{bmatrix} 0 & u \\ -1/u & 0 \end{bmatrix}$, i.e., $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ or $\begin{bmatrix} r & s \\ -s & -r \end{bmatrix}$ for some r, s. In either case A has even period 2m. If $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then $\det A = -1$, so that $A \in K_3$. Then $A = B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, the desired result. Suppose therefore that $B = \begin{bmatrix} r & s \\ -s & -r \end{bmatrix}$. Let $M \in \langle A \rangle$ be minimal. The sequence 1, $M(1), \ldots, M^{2m-1}(1)$ occurs in \mathbb{R}^* in that cyclic order and each term lies outside of Γ by Lemma 7. However, -1 must be in the sequence because B(1) = -1 and B is a power of M. This is possible only if $-1 \in \{M(1), M^{-1}(1)\}$. Thus B = M or $B = M^{-1}$, so that $M^2 = I$. Therefore $A^2 = I$ and A = B, the desired result.

THEOREM 6. Let $A \in K$. Then b_n is dominant in A^n for all n such that $A^n \neq I$, unless $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ or $A = \begin{bmatrix} a & b \\ -b & -a \end{bmatrix}$.

Proof. Let $B = A^n \neq I$. Suppose without loss of generality that $b_n > 0$. Since B(0) and $B^{-1}(0)$ are not in Γ , by Proposition 1, $b_n > |a_n|, |d_n|$. Assume that b_n is not dominant in B. Then we have $|c_n| \geq b_n > |a_n|, |d_n|$. Since $B \in J$, we have

- (1) $b_n + a_n \ge (c_n + d_n)s$, and
- $(2) b_n a_n \ge (c_n d_n)s,$

where $s = \operatorname{sgn}(c_n)$. Adding, we have $b_n \ge |c_n|$. Thus $b_n = |c_n|$ and equality must hold in (1) and (2). It follows that $B = \begin{bmatrix} a_n & b_n \\ sb_n & sa_n \end{bmatrix}$. Hence $B^t \in J$. By Lemma 10, $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ or $A = \begin{bmatrix} a & b \\ -b & -a \end{bmatrix}$, the desired result.

7. Comments on the literature. In [1], Brenner showed that $A = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ m & 1 \end{bmatrix}$ generate a free group if $|m| \ge 2$. Brenner asked if there were any algebraic $m \in (0, 2)$ for which $\langle A, B \rangle$ is free $(\langle A, B \rangle)$ is easily seen to be free for transcendental m. In fact, Brenner's

work answers his own question. For (as pointed out in [5]), it follows immediately that $\langle A, B \rangle$ is free when m has an algebraic conjugate of absolute value ≥ 2 . Since each $m \in S = \{4\cos \pi\theta : \theta \text{ rational}, \theta \in (\frac{1}{3}, \frac{1}{2})\}$ has a conjugate of absolute value ≥ 2 , we have a dense set of algebraic $m \in (0, 2)$ for which $\langle A, B \rangle$ is free. Thus Knapp [3, p. 304] was incorrect when he claimed (in effect) that $\langle A, B \rangle$ is free for no value of $m \in (0, 2)$.

In [5, p. 1399], it is claimed that $\begin{bmatrix} 1 & u \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ generate a discontinuous group (on the upper half-plane) when $u = 2\cos\pi\alpha$, with α rational. The condition " α rational" should be replaced by the condition " $\alpha = 1/q$, with $q \in \mathbb{Z}^+$ ".

In [4, p. 165], the description of a minimal transformation is rather ambiguous, since, if $|\operatorname{tr} A|$ is maximal, so is $|\operatorname{tr} A^{-1}|$. With our definition of minimal in §2, the ambiguity is eliminated and the theorems in [4] involving minimal transformations are correct. In particular, Purzitsky's counterexample [7, p. 214] does not apply because the transformation $\begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$ is not minimal.

Purzitsky's other counterexample [7, p. 213] is incorrect, since $(3+\sqrt{5})/2 > (5-\sqrt{21})/2$.

REFERENCES

- 1. J. Brenner, Quelques groupes libres de matrices, C.R. Acad. Sci. Paris 241 (1955), 1681-1691.
- 2. K. Goldberg and M. Newman, Pairs of matrices of order two which generate free groups, *Illinois J. Math.* 1 (1957), 446-448.
 - 3. A. Knapp, Doubly generated Fuchsian groups, Michigan Math. J. 15 (1968), 289-304.
- 4. R. Lyndon and J. Ullman, Pairs of real 2-by-2 matrices that generate free products, *Michigan Math. J.* 15 (1968), 161-166.
- 5. R. Lyndon and J. Ullman, Groups generated by two parabolic linear fractional transformations, *Canadian J. Math.* 21 (1969), 1388–1403.
- 6. M. Newman, Pairs of matrices generating discrete free groups and free products, *Michigan Math. J.* 15 (1968), 155-160.
 - 7. N. Purzitsky, Two-generator discrete free products, Math. Z. 126 (1972), 209-223.

University of Wisconsin Madison Wisconsin 53706 U.S.A.