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ABSTRACT: Multiple neurotransmitter systems are affected in senile dementia of the Alzheimer's type (SDAT). 
Among them, acetylcholine has been most studied. It is now well accepted that the activity of the enzyme, choline 
acetyltransferase (ChAT) is much decreased in various brain regions including the frontal and temporal cortices, 
hippocampus and nucleus basalis of Meynert (nbm) in SDAT. Cortical M2-muscarinic and nicotinic cholinergic 
receptors are also decreased but only in a certain proportion (30-40%) of SDAT patients. For other systems, it appears 
that cortical serotonin (5-HT)-type 2 receptor binding sites are decreased in SDAT. This diminution in 5-HT2 
receptors correlates well with the decreased levels of somatostatin-like immunoreactive materials found in the cortex 
of SDAT patients. Cortical somatostatin receptor binding sites are decreased in about one third of SDAT patients. 
Finally, neuropeptide Y and neuropeptide Y receptor binding sites are distributed in areas enriched in cholinergic cell 
bodies and nerve fiber terminals and it would be of interest to determine possible involvement of this peptide in 
SDAT. Thus, it appears that multi-drug clinical trials should be considered for the treatment of SDAT. 

RESUME: Deficits au niveau des neurotransmetteurs et des recepteurs dans la demence senile de type Alzheimer. 
Plusieurs systemes de neurotransmetteurs sont atteints dans la demence de type Alzheimer (DSTA). Parmi eux 
l'acetylcholine a ete le plus etudie. II est maintenant reconnu que l'activite de l'enzyme choline acetyltransferase 
(ChAT) est tres diminuee dans differentes regions du cerveau incluant le cortex frontal et temporal, l'hippocampe et le 
nucleus basalis de Meynert (nbM) dans la DSTA. Les recepteurs cholinergiques muscariniques de type M2 et 
nicotiniques du cortex sont egalement diminues, mais seulement chez un certain nombre de patients (30-40%) atteints 
de DSTA. Pour ce qui est des autres systeme, il semble que les sites de liaison de type 2 pour la serotonine (5-HT2) sont 
diminues dans le cortex des patients atteints de DSTA. Cette diminution des recepteurs 5-HT2 est en correlation avec 
l'abaissement des niveaux de subtances immunoreactives semblables a la somatostatine que Ton trouve dans le 
cortex des patients atteints de DSTA. Les sites de liaison des recepteurs pour la somatostatine dans le cortex sont 
diminues chez le tiers des patients atteints de DSTA. Finalement le neuropeptide Y et les sites de liaison des 
recepteurs pour le neuropeptide Y sont repartis dans des zones riches en corps cellulaires et en terminaisons 
nerveuses cholinergiques et il serait interessant d'evaluer 1'implication possible de ce peptide dans la DSTA. Ainsi, il 
semble que des essais theYapeutiques portant sur l'administration simultanee de plusieurs medicaments devraient 
etre envisages dans le traitement de la DSTA. 
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Neuropathologically, senile dementia of the Alzheimer type 
(SDAT) is characterized by higher than normal densities of 
"senile" plaques and neurofibrillary tangles in various cortical 
regions, and by marked cell losses in the nucleus basalis of 
Meynert (nbm).'"6 The neurochemical identity of these cell 
bodies projecting to the neocortex has been shown to be mostly 
cholinergic.7"'3 Interestingly, the presence in cortical plaques 
and tangles of cholinergic markers'4 as well as other neurotrans­
mitters and neuropeptides15"20 has been recently demonstrated. 
However, it remains to be demonstrated if cell losses in the 
nbm trigger cortical damages or if multiple cortical insults 
retrogradely affect cell bodies in various subcortical nuclei. 

The degeneration of cholinergic cell bodies in the nbm has 
generated much interest over the last ten years. Various groups 
have clearly shown that cortical and subcortical cholinergic 
markers are markedly affected in SDAT, especially in the nbm-
cortical pathway and hippocampus.2'5'6'810'2'"28 Thus, a great 
majority of neurochemical studies has focussed on the charac­
terization of cholinergic deficits in SDAT. Similarly, clinical 
trials in SDAT patients have concentrated, without much success, 
on using cholinergic-related drugs (for a recent review, see29). 

However, recent data have clearly demonstrated that other 
neurotransmitter systems are also affected in SDAT including 
noradrenaline,30"36 serotonin (5-HT),30'35"42 somatostatin,36'43"51 
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Table 1: Status of 

Case 

Alzheimer's 
Disease 

Early Onset 

Late Onset 

Control 

various 

Age at 
death 

(years) 

68 
60 
75 

81 
90 
82 

80 
82 
61 
63 
81 
84 
66 
77 

markers of the cholinergic synapse in senile dementia of the Alzheimer type 

nbm 

7.4±0.2 
25.7±5.l 
24.1 ±2.1 

8.6±0.3 
9.1±1.0 

22.0+2.1 

38.9±4.3 
25.1±1.2 
26.0±1.5 
45.0+9.7 
67.0+9.9 
25.9±4.4 
42.5+4.3 
33.6+5.4 

ChAT activity 
(nmol/mg protein/hour) 

Temporal Cortex 

0.9±0.1 
0.8+0.3 
1.1±0.3 

0.7+0.1 
0.5±0.1 
1.1 ±0.1 

4.0±0.3 
4.1±0.2 
3.3+0.2 
5.0±l.2 

— 
5.6±1.4 
6.3±1.9 
4.0±0.5 

Caudate Nucleus 

52.6± 2.5 
71.7± 4.7 
76.6± 6.2 

57.9± 6.4 
76.7+ 2.7 
76.6± 6.2 

58.1+ 6.2 
45.8± 2.9 
41.3+ 1.7 
84.0±19.9 
62.8± 4.6 
85.9±21.5 
66.9±36.7 
56.6±14.5 

[3H] QNB 
Temporal 

Cortex 

712 
921 
952 

543 
602 
991 

1036 
924 
947 

1139 
— 
814 

1087 
961 

[3H] Piren-
zepine-M, 
Temporal 

Cortex 

682 
686 
714 

524 
615 
832 

614 
711 
727 
801 
— 
709 
747 
782 

[3H] 
Ach-M2 

Temporal 
Cortex 

52 
75 
84 

31 
40 
79 

91 
82 
95 
72 
— 
79 
84 
80 

t3H] 
Nicotine 

Temporal 
Cortex 

13 
24 
20 

12 
10 
21 

31 
25 
27 
26 
— 
25 
30 
26 

Data represent means ± S.E.M. (for ChAT activity) of 3-6 determinations. All binding area are derived from full saturation analysis and represent 
maximal binding capacity (Bmiix) in fmol/mg protein. All clinical and neuropathological data on these brain tissues have been reported before.28 

ChAT activity has been determined as described by Fonnum.54 [3H] QNB, [3H] pirenzepine, [3H] acetylcholine-M2 and [3H] nicotine binding have 
been determined as described before.52"61 

glutamate,36,52 GABA27,36 and possibly Neuropeptide Y.53 In 
this report, we present some evidence demonstrating that 
cholinergic, serotonergic and somatostatin systems are affected 
in SDAT. The possible involvement of another peptide, 
neuropeptide Y, is also discussed. 

Brain Cholinergic Markers in SDAT 

Numerous markers are available to study cholinergic neu­
rons and the cholinergic synapse. Among them, the enzyme 
responsible for the acetylation of choline into acetylcholine, 
choline acetyltransferase (ChAT), has been most studied possi­
bly due to its long post-mortem stability, reliability and ease to 
assay.54 Moreover, it is usually assumed that changes in corti­
cal ChAT activity closely reflect the status of the cholinergic 
synapse and correlate with the severity of SDAT.6 

Multiple studies have clearly demonstrated that ChAT is 
markedly decreased in cortex (frontal, parietal and temporal), 
hippocampus and nbm in SDAT patients (early and late on-
s e t ) 2.6.21-28.30,32.36.37,43.55 T h e d e d j n e j n C h A T a c t j v j t y 

usually correlates with the high densities of senile plaques and 
neurofibrillary tangles present in cortex, and with cell loss in 
the nbm.6,28 Interestingly, we have recently found that nbm 
ChAT activity was decreased only in certain SDAT patients 
while cortical ChAT activity was low in all cases (Table 1;28). 
This may indicate that decreased cortical ChAT activity pre­
cede and may trigger loss of enzymatic activity in the nbm. On 
the other hand, it could also be suggestive of defects in the 
anterograde axonal transport of ChAT in SDAT.28 In any case, 
these data clearly demonstrate major losses in the capacity of 
synthesizing acetylcholine in brain of SDAT patients.55,56 

Possible alterations in cholinergic receptor binding sites are 
also of interest from etiological and therapeutic perspectives. 
Up to date, most studies have concentrated on muscarinic 
receptor binding sites in SDAT. Early on, major decreases in 
the total population of muscarinic receptors have been reported.62 

However, most subsequent studies did not confirm this finding 

and suggested that muscarinic receptor binding sites were not 
significantly altered in SDAT.35"38,52,63"65 

Recent data could explain these discrepancies. It has recently 
been demonstrated that muscarinic receptors do not represent 
an homogenous population of sites but can be divided into two 
sub-types of receptors, M: and M2.

66,67 M, receptors are mostly 
excitatory, insensitive to N-ethylnaleimide, independent of the 
presence of cyclic nucleotides and densely located in cortex, 
hippocampus and striatum.66,67 Preferential radioligands include 
pirenzepine and at low concentrations, quinuclidinyl benzylate 
(QNB).58,66,67 M2 receptor binding sites are generally inhibi­
tory via the blockade of adenylate cyclase, are sensitive to 
N-ethylnaleimide and found in cholinergic nerves, striatum, 
cortex, superior colliculus, brainstem, thalamus and various 
peripheral tissues.66,67 Preferential ligands include acetylcho­
line itself and oxotremorine-M.59,66,67 An example of the distri­
bution of [3H]acetylcholine-M2 binding sites in human brain is 
shown in Figure 1. 

Interestingly, it has recently been shown that the density of 
M2 muscarinic receptor sub-type is selectively decreased in 
SDAT.68 It was also suggested that this decrease was related to 
the presynaptic localization of M2 receptor binding sites on 
cholinergic nerve terminals.68 

We have performed similar experiments and found that 
between 30-50% of SDAT patients showed significant decreases 
in the total population of muscarinic receptor binding sites 
(Table 1, [3H]QNB binding). However, the density of M| sites 
(labelled with [3H]pirenzepine ;58) was normal in all SDAT patients 
while that of M2 sites (labelled with [3H] acetylcholine;59) was 
decreased in about one third of the patients (Table 1). This 
suggests that alterations in the total population of muscarinic 
binding sites (measured with [3H]QNB) probably reflect changes 
in the density of the M2 receptor sub-type. Moreover, it appears 
that the percentage of M2 receptor losses are highly variable 
between SDAT patients (Table 1, 69). Thus, it seems unlikely 
that alterations in the density of muscarinic receptors would be 
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Figure I — Photomicrograph of the autoradiographic distribution of [JH] 
acetylcholine-M2 (20 nM) binding sites in a representative coronal sec­
tion of a control human brain at the level of the thalamus. High densities of 
sites are present in the thalamus, caudate and certain areas of the cortex. 
Section was incubated under conditions described before for rat brain.59 

Abbreviations used: C, caudate; HI, hippocampus; PC, parietal cortex; 
TC, temporal cortex; TH, thalamus and arrows, pontine grisea caudato-
lenticulares. 

of major importance in the etiology of SDAT. Finally, the exact 
localization of the M2 receptor sub-type remains to be established. 
Our results suggest that it is unlikely that all M2 receptor bind­
ing sites are located on cholinergic cell bodies and nerve 
terminals. We found that the density of cortical M2 binding sites 
was decreased in only 30-50% of SDAT patients while cortical 
ChAT activity was decreased in all cases (Table 1). Moreover, 
selective lesions of the nbm-cortical (kainic acid) and septo-
hippocampal (fimbriaectomy) cholinergic pathways did not sig­
nificantly alter [3H]acetylcholine-M2 binding in cortical and 
hippocampal areas in rat brain (Quirion and Richard, unpub­
lished results). Thus, it would appear that M2 receptors are not 
exclusively located on cholinergic cell bodies and nerve termi­
nals (presynaptic) in rat and human brain tissues. 

Whitehouse et al60 have just reported that [3H] acetylcholine 
nicotinic receptor binding sites were markedly decreased in 
various cortical areas in SDAT. Previous studies were not as 
conclusive possibly due to the use of inappropriate ligands 
(a-bungarotoxin).70JI As shown in Table 1, we also found that 
cortical nicotinic receptor binding sites are decreased in a cer­
tain proportion of SDAT patients. [3H]nicotine binding was 
significantly decreased only in patients that had marked alter­
ations in both nbm and cortical ChAT activities (Table 1). This 
could indicate that nicotinic receptor binding sites are preferen­
tially located on cholinergic neurons in brain.60 Further investi­
gations on nicotinic receptors in SDAT are certainly warranted. 

It is also possible to monitor the integrity of the cholinergic 
nerve terminals by studying the activity of the high-affinity 
choline uptake (HACU) system located presynaptically. Already, 
it has been shown that its activity is markedly decreased in the 
cortex of patients dying from SDAT.7273 It should also be 
possible to use [3H]hemicholinium-3 (HC-3), a selective blocker 
of the HACU, to study possible modifications of this uptake 
mechanism in SDAT. This ligand has recently been used in rat 
brain tissues and the distribution of [3H]HC-3 binding sites 
correlates very highly with the localization of cholinergic cell 
bodies and nerve fiber terminals.58,74"80 Moreover, a selective 
lesion of the cholinergic nbm-cortical pathway decreased 
[3H]HC-3 binding in the cortex (Figure 2;2-77,79). However, it 
has been very difficult to obtain reliable results with [3H]HC-3 
in human brain, either in post-mortem or fresh biopsied tissues 
(R. Quirion, unpublished results). Thus, it appears that other 
radiolabelled probes will have to be used to assess the status of 
the cholinergic presynaptic nerve terminals in SDAT. One of 
them could be AH-5183, a selective blocker of the vesicular 
transport of acetylcholine.7282 [3H]AH-5183 has already been 
used to characterize these transporter sites in torpedo Californ­
i a 8 2 and rat brain.83 We are currently studying if it can be used 
in human brain tissues. If so, it would be of interest to deter­
mine if ChAT activity and [3H]AH-5183 binding are always 
affected in similar fashion in SDAT. 

Brain Serotonergic Markers in SDAT 

Beside the cholinergic system, much evidence has indicated 
possible involvement of the serotonergic (5-HT) innervation in 
the etiology of SDAT. Cell losses and the presence of tangles in 
the raphe nucleus, a region enriched in 5-HT cell bodies, have 
been reported.84,85 Consequently, major decreases in the lev­
els of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) have 
been observed in several brain regions including the frontal 
cortex, insula, cingulate cortex, amygdala, hippocampus and 
hypothalamus30,33-37,42 in SDAT. The specific 5-HT uptake 
mechanism could also be altered since reduced serotonin up­
take37,86 and loss of imipramine binding37 have been reported. 

Moreover, 5-HT receptor binding sites are decreased in 
SDAT, especially the 5-HT2 receptor sub-type. Marked decreases 
(up to 50%) in the density of 5-HT2 binding sites have been 
found, especially in the hippocampus, frontal and temporal 
cortices.35,36,38'" In our study, we observed marked losses in 
5-HT2 binding sites in the temporal cortex of patients dying 
from SDAT (Table 2). Thus, unlike the various cholinergic 
receptor sub-types, 5-HT2 receptors seem to be decreased in 
the brain of all SDAT patients. Interestingly, there is also some 
evidence that alterations in 5-HT2 binding sites are more pro­
nounced in the early onset-type of SDAT35 and it is possible 
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that the decrease in 5-HT2 binding sites could be related to the 
localization of these sites on cholinergic nerve terminals in the 
nbm-cortex pathway.81 Other 5-HT receptor sub-types of the 
5-HT, group (5-HTiA, 5-HT,B, 5-HT,c) are possibly slightly 
decreased in SDAT.37 However, a recent study has not been 
able to confirm this finding.36 

In summary, it seems clear that 5-HT, its metabolites and 
especially 5-HT2 receptor sub-types are decreased in SDAT. 

Table 2: Serotonin-type 2 (S-HT2) receptor binding sites in temporal 
cortex of patients dying from senile dementia of the Alzheimer type 

Case 

Alzheimer's 
Disease 
Early Onset 

Late Onset 

Control 

Age at 
Death 

(Years) 

68 
60 
75 

81 
90 
82 

80 
82 
61 
63 
81 
84 
66 
77 

ChAT Activity 
(nmol/mg) 
protein/h) 

Temporal Cortex 

0.9±0.1 
0.8±0.3 
1.1±0.3 

0.7±0.1 
0.5+0.1 
1.1±0.1 

4.0±0.3 
4.1 ±0.2 
3.3±0.2 
5.0±1.2 

— 
5.6±1.4 
6.3±1.9 
4.0+0.5 

[3H] Ketanserin 
Binding 
(fmol/mg 
protein) 

Temporal Cortex 

54 
43 
39 

56 
50 
61 

91 
127 
114 
96 
— 
132 
95 

103 

For ChAT activity, data represent means ± S.E.M. of 3-6 determina­
tions.28 Binding data are derived from full saturation analysis and 
represent maximal binding capacity (Bmax). All clinical and neuro­
pathological data have been reported before.28 ChAT activity has been 
determined by Fonnum.54 ['H] ketanserin binding has been performed 
as described before.81 ChAT activity is added for comparison. 

Thus, therapeutic approaches using 5-HT related drugs alone 
or in combination with other (cholinergic) drugs should be 
carefully considered; 

Somatostatin in SDAT 

Among the various neuropeptides studied for possible alter­
ations of their levels in SDAT, somatostatin (SS) is certainly 
the only one that consistently showed marked decreases. Vari­
ous reports have clearly demonstrated that SS levels are much 
decreased in SDAT, especially in the temporal and frontal 
cortices, hippocampus and cerebrospinal fluid.44"51 We have 
also obtained similar data in our series of SDAT patients (Table 
3). Interestingly, the decrease in SS-like immunoreactivity cor­
relates well with 5-HT2 receptor losses35 suggesting possible 
association between these two "markers" in cortical brain 
regions. 

A recent report has also suggested that SS receptor binding 
sites could be markedly decreased in cortical areas in SDAT.51 

However, our data suggest that SS receptor binding sites are 
diminished only in a certain proportion of SDAT patients (Table 
3) and further studies will be necessary to more precisely deter­
mine the exact status of SS receptors in SDAT. 

In any case, it already suggests that somatostatin (or analogues) 
replacement therapies should be considered, at least for the 
sub-population of SDAT patients in which SS receptors are not 
altered. In that regard, the recent demonstration that SS delays 
extinction and reverses electroconvulsive shock-induced amne­
sia in rats is of great interest.88 

Neuropeptide Y in SDAT 

Neuropeptide Y (NPY) is one of the most highly concen­
trated peptides in the brain.89"9' High levels of NPY are espe­
cially found in the cortex, hippocampus and hypothalamus.89"9' 
Interestingly, NPY is co-localized with SS in various brain 
regions including the cortex, striatum and hippocampus. Very 
little is known on NPY receptor binding sites in brain tissues92'94 

Table 3: Sematostatin (SS)-like immunoreactivity and somatostatin receptor binding sites in temporal cortex of patients dying from senile dementia of 
the Alzheimer type 

Case 

Age at 
Death 

(Years) 

68 
60 
75 

81 
90 
82 

80 
82 
61 
63 
81 
84 
66 
77 

ChAT Activity 
(nmol/mg) 
protein/h) 

Temporal Cortex 

0.9±0.1 
0.8±0.3 
1.1 ±0.3 

0.7+0.1 
0.5±0.1 
1.1±0.1 

4.0±0.3 
4.1±0.2 
3.3+0.2 
5.0±1.2 

5.6+1.4 
6.3±1.9 
4.0±0.5 

SS-IR 
(ng/mg 
protein) 

Temporal Cortex 

0.24 
0.36 
0.27 

0.31 
0.32 
0.30 

0.44 
0.63 
0.45 
0.59 

0.60 
0.62 
0.54 

[125I] SS-28 
binding 

(fmol/mg 
protein) 

Temporal Cortex 

48 
71 
60 

32 
39 
66 

74 
62 
84 
69 

70 
86 
61 

Alzheimer's 
Disease 
Early Onset 

Late Onset 

Control 

For ChAT activity, data represent means ± S.E.M. at 3-6 determinations.28 Binding data are derived from full saturation analysis and represent 
maximal binding capacity (Bmnx). All clinical and neuropathological data have been reported before.28 ChAT activity has been determined as 
described by Fonnum.54 SS-like immunoreactive materials and [l25I] Leu8, D-trp22, Tyr25 SS-28 binding have been assayed as described before.48,87 
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Figure 2 — Photomicrograph of the autoradiographic distribution of ['HJ 
hemicholinium-3 high affinity choline uptake sites in rat brain following a 
7 day unilateral kainic acid lesion (right side) of the ventral pallidum-
substantia innominata region. Note the decrease in [3 H Jhemicholinium 
binding (10 nM) in cortex following lesion of the ventral pallidum area. 
Lesions and binding assays were performed as described before.5"1" 

Figure 3 — Photomicrograph of the autoradiographic distribution [l25lj 
neuropeptide Y binding sites in a horizontal section of the rat brain. Brain 
sections were incubated andprocessedfor[l25l]neuropeptide Y binding as 
described before.91 Abbreviations used: CP. caudale-pulamen; HI. 
hippocampus: LS. lateral septum: OB. olfactory bulb: SLC, superficial 
layers (I and II) of the cortex and TH, thalamus. 

but we have recently described the autoradiographic distribu­
tion of NPY binding sites in rat brain.95 High densities of sites 
are present in cortex, hippocampus, thalamus and septum (Figure 
3). Thus, high levels of NPY and NPY receptor binding sites are 
found in brain regions enriched with cholinergic innervation. 

Only limited data have been reported on NPY-like immunore-
activity in SDAT patients.96"98 Thus far, decreased levels,98 

modified laminar distribution97 or normal levels9196 in NPY-
like peptides have been found in cortex of SDAT patients. The 
presence of NPY-like immunoreactivity in neuritic plaques has 
also been demonstrated.18 Studies on NPY receptor binding 
sites in SDAT brains have yet to be reported. Clearly, investiga­
tions on NPY and NPY receptors in SDAT are of interest, 

especially since this peptide is often co-localized with SS and 
its receptors are present in areas enriched with cholinergic 
innervation. 

CONCLUSIONS AND PERSPECTIVES 

In summary, multiple neurotransmitter systems are affected 
in SDAT. The cholinergic innervation is certainly much 
decreased, especially in the nbm, temporal cortex and hippo­
campus. Of the various markers used to monitor the cholinergic 
synapse, it was found that cortical ChAT activity is much 
decreased in SDAT. The high affinity choline uptake and the 
acetylcholine storage system are also most likely decreased in 
all cases. In terms of receptors, it seems that cortical muscar-
inic-M2 receptors and nicotinic receptors are significantly 
decreased in a sub-population of SDAT patients. M| receptors 
are not affected. Thus, clinical treatments with cholinergic 
drugs could potentially be beneficial if they can reach remain­
ing brain receptor sites. The intraventricular bethanechol infu­
sions precisely attempt to examine this issue.99100 

The serotonergic system is also affected in SDAT. Lower 
than normal levels of 5-HT and 5-HIAA are found in various 
cortical brain regions in certain patients while 5-HT2 receptors 
are markedly decreased in most, if not all, SDAT cases. Thus 
replacement therapies with potent 5-HT2-related drugs should 
be considered possibly in combination with cholinergic drugs. 
This could be most relevant especially since it has been recently 
shown that the combination of cholinergic and serotonergic 
agonists was more effective than either drug alone in restoring 
learning deficits in animals. 

Somatostatin-like immunoreactivity is certainly much de­
creased in various cortical regions of brain SDAT patients 
while its receptors could be diminished in a certain percentage 
of SDAT patients. Thus, clinical trials with stable SS analogues 
should be planned, either in combination with other treatments 
(with cholinergic and/or 5-HT drugs) or alone. In any case, it 
appears that intracerebroventricular infusions will be the best 
approach, at least until the discovery of stable SS analogues 
capable of rapidly crossing the blood-brain barrier. 

Finally, other neurotransmitter systems such as glutamate 
and catecholamines are most likely affected, at least in a certain 
proportion of SDAT patients. This markedly complicates the 
design of useful treatments of the disease and suggests multi­
drug clinical trials. However, this will most likely generate a 
variety of side-effects that will be difficult to control. Thus, we 
believe that more global approaches would have to be envi­
sioned in the future. For example, we are now focussing on the 
characterization of more general and basic deficits in the brain 
of SDAT patients, including possible alterations in protein 
translocation,101 calcium mobilization102 and neurotrophic 
factors.103 We hope that it will be possible to develop more 
appropriate therapies based on drugs modulating these bio­
chemical events. 
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