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ABSTRACT. In this paper, we extend the analysis of geometry and deformation of pack
ice initiated in part I by considering random isotropic geometry using the Poisson line pro-
cess. The model is used to estimate opening, ridging and sliding coefficients for more realis-
tic geometry than the idealized simple and regular geometry considered in part I. We then
derive the shape of yield curves by applying minimization of the maximum shear stress to a
linear combination of the estimated ridging and sliding coefficients. It is found that isotropic
crack geometry results in a sine-lens shape for the yield curve if sliding makes no contribu-
tion to the energy dissipation. By contrast, when sliding contributes, the shape of the yield
curve becomes teardropped. These results suggest the presence of a consistent relationship
between large-scale characterization of inter-floe interactions and small-scale (crack and

lead) ridging processes.

1. INTRODUCTION

In winter, the pack ice of the Arctic Ocean resembles an
aggregate of closely packed rigid plates whose boundaries
may be modeled as a plane geometry. This discrete view
suggests that the large-scale deformation of the pack ice is
some integral of the piecewise-rigid motions of these plates.
Thus, opening, ridging and sliding occur at plate bound-
aries (cracks and leads). This kinematic relationship
between geometry and deformation plays a central role in
theories of the large-scale momentum and mass balances of
sea ice. In these theories, it is postulated that the large-scale
strain rate influences the formation of ridges. The forces that
build these ridges are exerted between adjacent plates, and
this modifies the momentum balance (Thorndike and
others, 1975). By equating the rate of change of potential and
internal energy in ridge formation to the rate of dissipation of
kinetic energy in the large-scale flow, Rothrock (1975) derived
a relationship between the so-called ridging coefficient and
the shape of the yield curve. Ukita and Moritz (1995; hence-
forth UM95) showed that minimizing the maximum shear
stress provides both an algorithm for calculating a continuous
yield curve from a given ridging coefficient, and a necessary
condition for the existence of a continuous yield curve consis-
tent with the given ridging coefficient.

In the companion paper (Moritz and Ukita, 2000), we
present a kinematic model that explicitly predicts large-
scale coefficients of opening, ridging and sliding as functions
of the geometry of cracks and the large-scale strain rate. By
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contrast, relatively little is known about the ridging coeffi-
cient based on observations (Stern and others, 1995). In
Moritz and Ukita (2000) we analyzed uniform and regular
geometries of rigid plates, which may be too idealized to
represent real pack ice. Here we extend the analysis to a ran-
dom geometry, whose statistical properties we prescribe. By
specifying geometry according to observations, the model
could in principle be used to predict a ridging coefficient
testable against any independent observations. Then, using
the energetics framework of Rothrock (1975), we apply mini-
mization of the maximum shear stress to simulated ridging
and sliding coefficients to find the shape of the yield curve,
under different assumptions about the role of sliding in the
dissipation of kinetic energy.

2. METHOD OF ANALYSIS

2.1. Kinematic model of the deformation coeffi-
cients

This presentation employs the kinematic model described in
Moritz and Ukita (2000), which is based upon a discrete
representation of pack ice. The reader is referred to that
paper for details. The model relates large-scale strain rate
and crack geometry to individual piecewise-rigid body
motion of the plates. The large-scale strain rate is parame-
terized by divergence and shear or by strain-rate magnitude
and the ratio of shear to divergence, denoted by €, éyp, |€|
and 0, respectively. Each crack in the pack ice is characterized
by three geometric quantities: (a) orientation of the crack with
respect to the principal axis of the strain rate, pV; (b) orien-
tation of the relative position vector between the center points
of adjacent plates with respect to the crack, n”); and (c) area of
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the quadrilateral region associated with the individual crack
A" Given either a statistical or deterministic specification of
the triplet (1, 7%, AD) for a set of cracks indexed by
1 =1,..., N whose quadrilaterals occupy a finite area R, the
model predicts the large-scale coefficients of deformation for
opening, ridging and sliding, o, o, o, as functions of ¢:
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ence normal to each crack and w is the rigid body rotation
rate of each plate about its geometric center. If the definition
of sliding is limited to cracks that are simultaneously sliding
and closing, Equation (3) is replaced with
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2.2. The energy equation

The large-scale, two-dimensional, internal ice stress o is the
integral of the Cauchy stress over the ice thickness minus the
local hydrostatic load, averaged over an area large enough
to cover many plates (Rothrock, 1975; Gray and Morland,
1994). The sum and difference of its principal components,
o1 and oy, are called the normal stress and the maximum
shear stress. In the sea-ice momentum equation, the force
per unit area associated with the large-scale stress appears
in the form V - 0. An equation governing changes in the
kinetic energy of ice per unit area is obtained by taking the
dot product of the ice velocity and the momentum equation.
Changes in the kinetic energy per unit area associated with
the large-scale stress are then written as

U-(V:0)=V-:(oU)—-0:VU, (5)

with : denoting the summing operation over all entries. The
last term represents processes by which kinetic energy is
transformed to internal energy by large-scale deformation.
The essence of the energy balance argument developed
by Parmerter and Coon (1972) is that the rate of increase of
internal energy by ridge formation equals this rate of kinetic
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energy dissipation. Note that “internal” energy here includes
the potential energy associated with vertical displacements of
ridged ice. Rothrock (1975) extended the theory by combin-
ing it with the ice-thickness distribution theory (Thorndike
and others, 1975). Within the context of the plastic theory, he
showed that for the mechanical production of potential
energy and the frictional loss per unit area those sinks are
formulated as P*|é|a,(6). The function oy(6) describes the
change of the fractional area covered by ridges as a function
of f that characterizes the ratio of shear motion to divergence.
P, referred to as the maximum compressive strength of the
pack ice, can be thought of as the potential plus internal
energy transformed per unit area per unit strain rate in pure
convergence. Assuming that ridges are caused by relative trans-
lational motion, Rothrock derived an explicit formulation of

opcosf + oy sin@ = P a,(0) (6)

for the energetics of the ridging process. In UM95 we added
a second term P*kas(6) to the righthand side of this equa-
tion, to recognize the possibility that kinetic energy can be
dissipated by sliding relative motions, as well as by ridging
relative motions. Normalizing the stresses by P*, this aug-
mented expression then becomes

orcos + oy sin 6 = a;(0) + kas(0), (7)

where the parameter k describes the ratio of energy transfor-
mations associated with sliding to ridging (note that oy and oyg
are normalized stress components and remain so hereafter,
and that in UM95 the second term on the lefthand side is mul-
tiplied by the cosine of the angle measuring the difference
between the principal directions of strain rate and stress).

2.3. Minimization of maximum shear stress

In Rothrock’s formulation, P* is a function of ice properties
such as thickness and concentration. He pointed out that
once the righthand side of the energy equation (7) is known
then the functional relationship between two stress com-
ponents, oy and oy, can be calculated as a solution consisting
of the envelope of lines defined by

1
g1 = m [Otr(e) — COS 90’[} (8)

for different values of 6. Note that in this form it has been
assumed that the principal directions of stress and strain
rate align, and that the contribution from sliding is zero,
rLe. k=0.

UMO95 pointed out that imposing the condition of mini-
mizing the maximum shear stress, oy, for a given value of o1
defines the envelope. This condition provides a numerical
algorithm for computing the functional relationship between
o1 and oy, and thus the shape of the yield curve. Furthermore,
it provides relationships among the flow rule, the convexity of
the yield curve and the alignment of principal directions of
stress and strain rate. UM95 applied this condition and the
energy equation to the kinematic model using simple, uni-
form geometric patterns of cracks and plates.

2.4. Random geometry

What is new here is a combined analysis of the three elements
summarized above, namely, the kinematic model, the energy
equation and the minimization of maximum shear stress,
with a random geometry that simulates pack ice with pre-
scribed statistical properties. Thorndike (1987) introduced
the random geometry to investigate an isotropic sea-ice field


https://doi.org/10.3189/172756400781820084

and its deformation. The Poisson line process was used to
construct the random cracks. Each line is specified by the
polar coordinates (rj, ¢;),j = 1,...,J for J lines within a
circular domain of radius R. The jth line intersects the point
(rj, ¢;) and is perpendicular to the vector from the origin to
this point. The isotropic Poisson line process is a special case
in which ¢; is distributed uniformly and the sequence of 7; is
generated independently from the exponential distribution
for ;41 —7; with 7, = —R and a mean value Ryean. The
number of lines in this circular domain is then Poisson dis-
tributed with average density A = 1/ Rpean, so the expected
number of cracks in the domain is 2R/ Ryyean. This construc-
tion 1s simple, and statistically isotropic and homogeneous
(Miles, 1964; Stoyan and others, 1987). The intersections
between pairs of lines define the end-points of the cracks
for our kinematic model (see Moritz and Ukita, 2000, fig. 2).

Thorndike (1987) assigned the relative displacements at
cracks randomly, using an independent Gaussian distribu-
tion process. This implies that the relative displacement is
independent of the geometric properties of the plates whose
boundary is the given crack. Our kinematic model used
here 1s different, because the relative displacement depends
explicitly on the relative position vector between the center
points of plates on either side of a given crack.

Here we generate 100 realizations of isotropic random
geometry on a domain with radius R = 3 and density A =1/
4 (Fig 1). For each realization, we find the length and orien-
tation of each crack, and the centroids of the neighboring
plates, which specify all terms in Equations (1—4). Assuming
that the plates do not rotate about their centroids (w = 0), we
compute the opening, ridging and sliding coefficients for each
realization, and then average over the ensemble of 100 real-
izations. In applying Equations (1-4), the exact locations of
centroids are needed. For a circular domain, this presents a

1 1 L

Fig. 1. A realization of isotropic random geometry constructed
by the Poisson line process with density A = 1/4 (black lines)
over the domain defined by the outside circle with radius 5. To
minimize the bias _from the edge plates with circular bound-
artes, only those crack segments having at least one end-point
inside the inner circle are used for calculation (lightly shaded
region ). A typical crack segment and the centroids of adjacent
plates are marked with dark shade, which corresponds to figure
2 of Moritz and Ukita (2000). Note that in this realization the
areas of light- and dark-shaded regions correspond to A and
A" in Equations (1-4).
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numerical problem because of boundary plates. To circum-
vent this problem, we construct the crack geometry within a
larger domain (R = 3), then sample only those plates with
centroids inside the smaller interior domain (R =2), and use
only well-defined crack segments in the computations. This is
explained in the caption of Figure 1.

3. RESULTS

Figure 2 shows opening, ridging and sliding functions averaged
over an ensemble of 100 independent realizations with the slid-
ing function calculated using Equation (4). These plots share
many features with the isotropic ensemble of uniform square
geometries (Moritz and Ukita, 2000, fig. 6). For instance, the
ridging coefficients are identically zero on 0 < 6 < 7/4. This
corresponds to the dominant influence of divergence on open-
ing, which always exceeds the closing by shear motion, so that
no cracks can close. As in the square-geometry case, the net
opening 1s a cosine function, consistent with the original ice-
thickness distribution formulation (Thorndike and others, 1975).

On the other hand, sliding coefficients differ between the
1sotropic-square and random-geometry cases. Although for
both cases a(6) = 0 over 0 < 6 < /4, it becomes zero at
0 = 7 in the former case, but not in the latter. This contrast
results from the difference in the distribution of 7 between
the two cases. 7 is identically zero in the isotropic ensemble
of square geometries, but is distributed over a range of
values in the random geometry. These non-zero values of n
make a positive contribution to the first term within the
absolute value sign in Equations (3) and (4). In short, unless
the geometry of plates is regular, or equivalently all plates
are symmetric about their intervening cracks, the terms
involving 1 produce a positive contribution to sliding,

Figure 3 shows the yield curves using minimization of
maximum shear stress with the ridging and sliding co-
efficients plotted in Figure 2. With k = 0, the yield curve has
a sine-lens shape. Bratchie (1984) proposed a sine-lens yield
curve to describe plastic behavior for a system of circular
disks colliding at random. Its geometric setting is interpreted
as isotropic, and the dynamics formulation is restricted to
normal forces between disks. In essence, it is similar to our
isotropic model with k£ = 0.
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Fig. 2. The opening ( dashed line ), ridging ( dotted line), sliding
(dash-dotted line) and net opeming (solid line) functions
against 6. The net opening ts defined as opening minus ridging.
The obtained coefficients are numerically identical to cos 0. Note
that the estimated ridging coefficients are in good agreement with
satellite observations (i.e. Stern and others, 1995, fig. 5).
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Irg. 3. The yield curves computed from random isotropic
geometry with varying values of k: k=0 (solid line),
k = 0.5 (dash-dotted line) and k = 1.0 (dashed line).
Without the contribution from sliding, the yield curve has the
sine-lens shape. As k increases, the shape changes to tear-
dropped and becomes more asymmelric.

To examine the influence of sliding on the yield curve, we
follow the same minimization procedure with £ = 0.5 and
k= 10 (Fig. 3). As k increases, there is an increase in the
maximum shear stress, as well as the normal elongation
along stress axis. There also develops asymmetry in the
shape between the divergent (doy/doy < 0) and convergent
(doyr/doy > 0) regimes. Indeed the shape is like a teardrop.
These features correspond to some intuitive notions about
the small-scale physical processes. First, both closing and
sliding at the cracks result in ridging by the formation of
pressure and shear ridges. And second, more shear ridge for-
mation occurs under a convergent ice field. It is noteworthy
that, although exact shapes vary, this reasoning led Coon
and others (1974) and Rothrock (1975) to propose a teardrop
shape for the yield curve of pack ice.

Although the yield curves for the isotropic ensemble of
square plates and the random geometry are similar for k =
0, they differ significantly when k£ > 0 (Figs 3 and 4), reflecting
the difference in the behavior of the sliding function near
6 = 7. Since, in general, 77 does not vanish, we see both a
positive sliding coefficient at § = 7 and a corresponding
elongation of the yield curve parallel to the normal stress axis.

4. CONCLUDING REMARKS

A number of authors have contributed to the development of
the energy argument for sea-ice dynamics (e.g. Parmerter
and Coon, 1972; Coon and others, 1974; Rothrock, 1975;
Thorndike and others, 1975; Coon, 1980; Hibler, 1980;
Bratchie, 1984; Thorndike, 1987; Pritchard, 1988; Stern and
others, 1995; Ukita and Moritz 1995). This work is an attempt
to integrate key components of this development, including
the plastic theory, the thickness distribution theory, the ener-
getics of ridge formation and the isotropic random geometry
of cracks and plates. Within the present framework, one can
estimate the shape of the yield curve from statistical proper-
ties of the crack geometry, provided the parameter £ is
known. In particular, we find that in the absence of contribu-
tions from sliding (k = 0), the isotropic crack geometry leads
to the sine-lens shape and that inclusion of sliding results in a
teardrop shape. This change in the shape of the yield curve
may be regarded as the effect of including shear ridge forma-
tion in the energetics.
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Fig. 4. The yield curves computed from isotropic geometry of the
statistical ensemble of uniform squares. Solid line is for the case
with k = 0. Dashed and dash-dotted lines correspond to the case
with k = 0.5, with and without the simultaneous constraint on
the closing ( Equation (4) vs Equation (3) ), respectively.
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