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1. I n t r o d u c t i o n 

There seem to me to be four approaches to the problem of computing the 
evolution of star clusters. Firstly, one might assume tha t our knowledge of 
the evolution of stars can be condensed into a subroutine tha t can be added 
to an N-body code. This subroutine would mainly have to give the radius 
and the time-dependent mass of a star as a function of its initial mass and 
its age. Secondly, standing this on its head, one might assume tha t our 
knowledge of N-body evolution can be condensed into a subroutine tha t 
can be added to a stellar evolution code. This subroutine would determine, 
probably in a Monte-Carlo fashion, whether the star had picked up, or 
lost, a binary companion, or whether the orbit of its companion was signif-
icantly changed; the probabilities would be determined by simple analytic 
approximations to the time-dependent distribution functions of stars (and 
binaries) of different masses and ages, and by interaction cross-sections as 
functions of density and ' temperature ' . Thirdly, if the computing power 
is available, one might more simply unite an N-body code with a Stellar 
Evolution (SE) code, and follow both the dynamics and the internal evolu-
tion simultaneously. Fourthly, we might hope at some stage to put together 
simple analytic approximations both from N-body and from SE studies, to 
develop a unified simple model. I venture to say that it is only the last 
stage, if it is attainable, tha t would entitle us to say tha t we 'understand' 
the evolution of stellar clusters. 'Understanding', I think, means tha t we 
can extract some essential wisdom from large numerical simulations, and 
apply it on the back of the proverbial envelope. 

All of these approaches have problems. One tha t is common to all four 
is tha t the SE of interactive binaries is nothing like as well-determined 
as the SE of single stars, or of stars tha t are 'effectvely single', i.e. in 
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binaries with periods Ζ 10 4 d. I shall return to this later; but, put t ing it 
aside for the moment in the hope that interactive binary SE can somehow 
be fudged, then the first approach is probably the easiest to implement. 
Aarseth (1995) has incorporated into his N-body code a subroutine based 
on the simple interpolation formulae of Eggleton, Fitchett & Tout (1989) 
for the evolution from ZAMS to neutron star or white dwarf of Pop I stars. 
We (Drs C. A. Tout, Zh. Han and myself) are currently trying to upgrade 
these formulae to incorporate more recent data on opacities (Rogers & 
Iglesias 1992, Alexander & Ferguson 1994) and the equation of state and 
other physical input (Pols et al 1995). We also intend to generalise our 
formulae for a range of metallicities from Pop I to a fairly extreme Pop II. 

The second approach does not yet appear to be feasible. One can hope 
tha t as N-body simulations approach ~ 10 5 bodies some systematic results 
will emerge regarding the way in which particles in different mass bins dis-
t r ibute themselves in phase space, as a function of time. However, since core 
collapse phases, and subsequent reexpansion phases due to the formation 
of central binaries, maybe be somewhat chaotic if the number of particles 
is large enough, it is not clear tha t simple interpolation formulae will ever 
describe such processes reliably. But I should emphasise tha t SE may also 
have chaotic aspects. It is not clear that mass loss is such a straightforward 
process tha t the mass of a star can be reliably predicted at later times from 
its mass at age zero; and certain aspects of interactive binary SE, especially 
those which depend on mass loss (ML) or angular momentum loss (AML), 
may also show chaotic behaviour. 

The third approach, involving brute force, may well be feasible in a 
decade or two. It would need an SE code that is rather more reliable than 
any tha t exists now. My own code, developed over the last 25 years, is 
now (Han, Podsiadlowski & Eggleton 1994; Pols et al. 1995) almost reliable 
enough to follow a star, without manual intervention, from the ZAMS to 
carbon burning, except tha t the helium flash in low-mass stars is still an 
obstacle. It is not impossible, though, that we can fudge our way through 
tha t , and so make it fully automatic. On a modern work-station it takes 
about 2 hours to compute the entire evolution of a star, provided tha t for 
stars which have a helium flash ( £ 2.3 M Q for Pop I) we ignore the time it 
takes at present to restart the star manually on the horizontal branch. My 
SE code can also take care of certain kinds of Roche Lobe overflow (RLOF) 
in interacting binaries, but it cannot yet deal automatically with contact 
binary evolution - nor can anyone else's. 

In the fourth approach, which I hope will take place in the fullness of 
t ime, we might get away with something like the 'gas-dynamical' models 
of Hachisu et al. (1978), Lynden-Bell & Eggleton (1980) and Bettweiser & 
Sugimoto (1984), in which the whole cluster is treated like a gas sphere 
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with a ' temperature ' and 'pressure'. The analogue of 'composition' in an 
SE code would be the abundance fractions, as functions of position, for 
different mass bins, and for binaries and triples. These different species 
would interact through the analogue of nuclear reactions, for which the 
rates would have to be estimated. If, as a last step, one is able to extract 
from such calculations a few simple insights, expressible as analytic approx-
imations, one might finally feel tha t cluster evolution has been 'understood' 
- although I dare say not everyone would agree. 

There are at least two ways in which one might transfer information 
on stellar evolution to an N-body code. One might try to express the SE 
results in the form of interpolation formulae (Eggleton, Fitchett & Tout 
1 9 8 9 ) : as simple formulae as possible, though one should probably aim for 
an accuracy bet ter than ~ 1 0 % . Alternatively, one can provide the infor-
mation in tables (e.g. Schaller et al. 1 9 9 2 ) . Perhaps 3 0 different masses 
between 0 . 1 and 1 0 0 M Q , each tabulated at about 5 0 well-chosen evolu-
tionary stages, might be adequate for an accuracy of between 1 % and 1 0 % . 
There is not much point in aiming for higher accuracy, since for some masses 
(particularly high masses) and some evolutionary stages there is much big-
ger disagreement between theoretical and observed models. Even where 
disagreement is not obvious, one should not suppose tha t the theoretical 
models are good. Although several main-sequence stars, i.e. those in eclips-
ing double-lined spectroscopic binaries, have masses, radii and luminosities 
measured to ~ 1 % (Popper 1 9 8 0 , Andersen 1 9 9 1 ) , very few evolved stars, 
such as red giants and supergiants, Wolf-Rayet stars, hot subdwarfs and 
white dwarfs, have masses, radii and luminosities which are known to 1 0 % . 
Even in rare cases where something like this accuracy is achieved for such 
stars, it is normally uncertain what the initial masses were, and so it is not 
clear tha t there is agreement between observation and theory. 

Some major sources of uncertainty in SE calculations are:-
(a) Mass loss (ML). In low-mass ( £ 2 . 3 M Q ) and intermediate-mass ( ~ 2 . 3 — 
8 M Q ) stars there are probably two main types of ML. These are: 
(a l ) A weak, fairly steady wind which increases during the first giant-
branch (FGB) and asymptotic giant-branch (AGB) stages. This wind may 
be driven by magnetohydrodynamic energy, as in the solar wind, although 
at high FGB and AGB luminosities it may be that magnetic energy is less 
important , and turbulent hydrodynamic energy in the surface convection 
zone may be the prime cause of the wind. Judge & Stencel ( 1 9 9 1 ) found 
an empirical relation of the form -m ~ 1 0 ~ 1 3 ' 6 / ^ 1 , 4 3 M 0 / y r , with gravity g 
in solar units. There is quite considerable scatter, however, and it is by no 
means clear tha t this can all be at tr ibuted to measurement uncertainties. 
Even near the top of the AGB, however, where g ~ 1 0 ~ 5 this ML rate is 
barely comparable to the nuclear timescale. 
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(a2) A 'superwind', which removes the remaining envelope at the top of the 
AGB rather rapidly, forming a planetary nebula with a hot subdwarf (or 
Wolf-Rayet-like) nucleus. This superwind may be ultimately due to the fact 
tha t thanks to progressive hydrogen recombination in the outer layers the 
total binding energy of the AGB envelope changes from positive to negative 
(Paczynski &, Ziolkowski 1968, Han et al. 1994). The latter authors, by 
computing the binding energy of the envelope of a star as it climbs the 
AGB, and assuming tha t the envelope is lost at the stage when this energy 
passes through zero, found a relation between the initial mass (in the range 
0.8 — 7 M 0 ) and the final (i.e. WD) mass of a star. This relation, which I 
would emphasise has no free parameters in it to be ' tuned' , was in fairly 
good agreement with the semi-empirical relation of Weidemann & Koester 
(1983) between the initial and final masses of stars of stars in galactic 
clusters. But we should note tha t the relation of Weidemann & Koester 
(1983) has considerable scatter in it, some of which might be real; it is by 
no means established tha t the mass of a WD remnant is tightly correleted 
with initial mass for a given metllicity, and there may well be a chaotic 
aspect to the ML process which could lead to a real spread. 

For massive stars ( Ζ 30 Μ Θ ) there may be four stages of ML: 
(a3) A weak but growing wind, to some extent as in (al) but with a much 
higher velocity (~ 1500 km/s as against 30 — 300 km/s ) . Radiation pressure 
is probably what accelerates the wind to the high speed observed, but the 
wind may be energised in the first place by MHD processes and by rapid 
rotation. Conti (1982) plotted ML rate against luminosity, and this relation 
can be fitted by —rh ~ 1 0 ~ 1 6 , 7 L 1 , 9 M^/yr, with luminosity L in solar units. 
Once again there is considerable scatter. Though relatively stronger than 
(a l ) at early evolutionary stages, this wind probably also does not affect a 
star strongly on nuclear timescales. 

(a4) A Ρ Cyg wind, which is very copious as well as fast, and which presum-
ably can remove 20-80% of the star 's mass on substantially less than a nu-
clear timescale. This requires — rh Ζ 10~ 4 M^/yv. The Ρ Cyg wind may start 
when the star reaches a gently sloping line in the HRD - the Humphreys-
Davidson (1979) limit, Figure 1 - and may be due to some inherent insta-
bility perhaps related to the fact tha t the interiors of such stars are very 
near the Eddington limit. It appears to prevent the star from becoming a 
red supergiant, although not from becoming a yellow supergiant at least at 
the lower masses ( ~ 30 — 40 M Q ) . 

(a5) A Wolf-Rayet wind, which may be a continuation of the Ρ Cyg wind at 
slightly lower intensity (-rh ~ l O ~ 4 , 4 M 0 / y r ; Willis 1985) once the star has 
been stripped nearly or entirely to its small, very hot helium core. This ML 
rate may be roughly comparable to the (helium burning) nuclear timescale 
of the star. 

https://doi.org/10.1017/S0074180900001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900001558


COMBINING STELLAR EVOLUTION AND STELLAR DYNAMICS 217 

l 0 9 T / K log T/K 

Figure 1. Comparison, in a theoretical Hertzsprung-Russell diagram, of some evolu-
tionary tracks computed (left) directly with a stellar evolution code, and (right) with 
the simple interpolation formulae given by Eggleton, Fitchett & Tout (1989). Above the 
Humphreys-Davidson (1979) limit, virtually no stars are found in the Galaxy, presumably 
because of strong winds. 

(a6) An SN ejection of the remaining envelope, virtually instantaneously. 
Stars in the mass range ~ 8 — 30 MQ probably do not go through the Ρ Cyg 
phase (a4) or the W R phase (a5). Perhaps they start with (a3) and finish 
with (a6), passing through a combination of (a2) and (a4), but at a less 
intense level than in lower and higher mass stars respectively, on the way. 
It is far from clear how much mass they lose in this intermediate phase. 

(b) Semiconvective mixing. Stars of virtually all masses require semiconvec-
tive mixing at some point in their evolution. Semiconvection is a difficult 
physical process, well discussed by Spruit (1992). There is no clear numer-
ical model for this, although in my opinion a model which assumes tha t 
mixing always occurs at a rate tha t keeps the temperature gradient very 
close to the marginal adiabatic rate (Schwarzschild & Härm 1958), except 
in the surface layers, is the most likely to be realistic. It is quite probable 
tha t real semiconvection is a somewhat chaotic process. 2-D hydrodynamic, 
or be t ter still 3-D models, may cast some light on this, but such modeling 
is in its infancy (Merryfield 1995). 

(c) 'Convective overshooting'. To improve agreement between theory and 
observation of some of the most evolved stars within the MS band (An-
dersen 1991), it is helpful to assume that convective cores in the MS band 
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are larger than is indicated by the standard Schwarzschild criterion. This is 
also the conclusion of a study of red giants and supergiants in ζ Aur bina-
ries, i.e. those (rather few) binaries from which the most accurate masses, 
radii and luminosities of highly evolved stars are obtainable (Schröder 1995, 
private communication). It is also suggested by at tempts to fit the HRDs 
of young clusters (Meynet, Mermilliod & Maeder 1993; Pols 1995, private 
communication). The problem is not one of semiconvection, since semicon-
vection does not normally occur to a significant extent in the portion of 
the MS band at issue ( ~ 2 — 8 M 0 ) . Larger cores can be obtained by ad hoc 
variants on the Schwarzschild criterion, although there is no good theoreti-
cal basis for those tha t have been proposed so far (Eggleton 1983a). Recent 
improvements in the opacity (Rogers & Iglesias 1992) have decreased the 
problem, but not resolved it. Although larger convective cores appear to be 
necessary above ~ 2 M 0 , lower mass stars ( ~ 1.25 M 0 ) as in M67 (Morgan 
& Eggleton 1978; Pols 1995, private communication) appear not to need 
larger convective cores. It is by no means obvious what physical process 
could achieve this. 

(d) Convective heat t ransport . For most of a stellar interior it is not neces-
sary to have a model of convection more definitive than the mixing-length 
theory (Böhm-Vitense 1958). But in the outer layers of red supergiants a 
bet ter theory is necessary. The radii of such stars is therefore quite uncer-
tain. In fact, such stars do not have a 'radius' in a very meaningful sense. 
Their outer layers probably consist of a small number of plumes rising and 
falling in a fairly chaotic way. However the uncertainty in their radii is 
probably conflated with (and perhaps related to) the uncertainty in the 
ML rate in (a), (a2) above. 

(e) Bolometric correction. To convert from a theoretical HRD to an ob-
served one, or vice versa requires rather detailed and reliable models of 
stellar atmospheres. This does not seem to have been achieved yet for cool 
stars, in particular those with atmospheric opacity dominated by molecular 
bands (and which coincident ally also have a temperature structure domi-
nated by the uncertain process of convection). Now that it is possible with 
HST to measure even the lower MS of some globular clusters, the uncer-
tainty in the bolometric correction in such late dwarfs is probably the main 
source of disagreement with theoretical models. 

There are many other sources of uncertainty, but I believe the above five 
are the most relevant to single-star evolution. Given these uncertainties, I 
believe tha t the approximate (and very simple) formulae of Eggleton et 
al (1989) are adequate for Pop I; but they will be improved in the near 
future. A comparison in the HRD of the results of SE computations and 
these approximate formulae is shown in Figure 1. 

Even if single-star evolution were well understood, binary evolution is 
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much more uncertain, and not just because there is a larger space of initial 
parameters to explore. All of the following kinds of binary are likely to be 
important at some stage in the evolution of a globular (or Galactic) clus-
ter: contact binaries (WUMas), RS CVns, Algols, symbiotic stars, Ba or 
CH stars, cataclysmic variables (CVs), high and low-mass X-ray binaries 
(HMXBs, LMXBs), millisecond binary pulsars (MSBPs) and double degen-
erates (DDs). All have problems over and above the single-star problems 
described in the previous Section. Some of these problems are the following: 
(i) ML is probably enhanced by the presence of a close companion, to a 

largely unknown extent (Eggleton & Tout 1989). 
(ii) AML, which can take place even with negligible ML, is difficult to 

quantify. Although GR gives a definite rate, which could be important 
in some CVs and DDs, magnetic braking with tidal friction (Verbunt 
& Zwaan 1981) is quite uncertain, and may be dominant in most of 
the above types of binaries (WUMas, RS CVns, Algols, CVs, LMXBs, 
MSPBs) which have short periods and cool companions. 

(iii) Common-envelope evolution (Paczynski 1976) is a very important pro-
cess, bu t its outcome can only be modeled very crudely. 

The above three processes, and several others which are uncertain but 
perhaps less so, can affect the evolution of binaries qualitatively, and not 
just quantitatively. The same initial binary might, with slightly different 
assumptions, become (Eggleton 1983b) either a CV (with period usually 
;$0.5d) or a Ba star (with period usually £400d). For the present, we have 
to be content with crude recipes for many stages of binary evolution. 

Let us suppose, for the sake of argument, tha t the evolution of single 
stars, and also of interacting binaries with circular orbits, can be modeled 
to a sufficient accuracy for inclusion in an N-body code. It will be necessary 
to modify the standard equations of motion 

for the following reasons. Firstly, we need a term for tidal friction (TF) , 
which will ensure, in those binaries where at least one star grows large 
enough to interact with its companion, that the orbit is gradually circu-
larised. Neither primordial binaries, nor those that are formed later by 
exchange reactions, by three-body interaction, or by tidal capture, will be 
circular to s tar t with, but they will cicularise on a timescale that , em-
pirically, appears to be fairly short compared with the nuclear timescale, 
provided tha t at least one component has a radius comparable to the sep-
aration of the components at periastron. Secondly, we need a term which 
operates during the mass-transfer phase (RLOF) tha t can be expected to 
occur not long after the circularisation of the orbit by T F . This term must 

m\ r; (1) 
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conserve angular momentum in a binary which is undergoing mass transfer 
with no net mass loss. The second correction is necessary because equation 
(1), as applied just to a binary, but to a binary whose components pos-
sibly vary in mass, implies tha t the angular momentum per unit reduced 
mass is a constant; whereas in a binary undergoing conservative RLOF it is 
the total angular momentum tha t is constant. In other words, equation (1) 
with varying mass supposes tha t mass which leaves one star carries away 
the same specific momentum as the star it leaves, and if it arrives on the 
other star then it adds a different amount of momentum, to wit the specific 
momentum of the gainer rather than the donor. 

I believe the following dynamical equation is probably the simplest tha t 
encompasses both requirements: 

mi(i) ?i + m i T (r, - V ) = F [ G R ) + F [ T F ) , i = 1,2 (2) 

where 

V = m i h + m 2 f ' 2 , (3) 
m i + 7712 

m i = m i w + m i T , rri2 = ™2W + ™>2Ύ , m 2 T = — m i T , (4) 

suffix W referring to wind which leaves the star and goes to infinity, and 
suffix Γ referring to the mass which is transferred from one star to the 
other. Finally, 

F ( T F ) = X [ R i + XiRf r Ü r iJ-rij ( 5 ) 

where R\ is the radius of the i-th star, and the À's are T F coefficients. The 
À's are of course dependent on the internal physics of the stars, but can 
probably be reasonably approximated on dimensional grounds as stellar 
mass divided by a timescale which is short compared with the thermal 
timescale of the star. This T F term has been incorporated into a 3-body 
code by Dr L. G. Kiseleva, and is found to give interesting and useful results 
in the context of triple stars as well as binaries. It is the simplest term we 
can think of tha t 
(i) is radial, and antisymmetric in so tha t it conserves linear and angular 
momentum; 
(ii) opposes the radial component of velocity, and so goes to zero as the 
orbit becomes circular; 
(iii) crudely depends on the ratio of stellar to orbital radius in the way 
determined by Zahn (1977) from a detailed physical analysis of T F . 
Note tha t the above T F term is not intended as an accurate representation 
of the very complicated physics tha t occurs during a tidal capture process 
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(Mardling, this Symposium), where possibly a great amount of kinetic en-
ergy is dissipated chaotically on a short timescale. It is only intended as a 
prescription for a gradual circularisation. 

The mass transfer term in equation (2) has the property that if m i w = 
0 = m 2 w > s o tha t all the mass lost by one star is gained by the other, 
then total angular momentum is conserved, and we get P~l oc m f m ^ , 
a - 1 oc raf 77i2, where Ρ and a are the period and semimajor axis, the latter 
being the constant radius of a circular orbit by virtue of the T F term in 
the previous evolution. These are the normal results of conservative RLOF. 
If, on the other hand, τήχτ = 0 = m 2 T , so that there is only wind from 
one or both stars and no RLOF, then as usual the angular momentum 
per unit reduced mass is constant and so we get P _ 1 oc (mi + ra2)2, 

a - 1 oc m i + m 2 , e = const., as expected; though we should note, for wide 
orbits, tha t these equations for the expansion of an orbit in response to ML 
assume tha t the ML does not vary significantly during an orbit. If there is 
instaneous mass ejection as in an SN explosion, then equation (2) will still 
apply and will give the right results for tha t limit. Of course, it is implicit 
in such modeling of ML tha t the mass is lost isotropically (in the frame of 
the mass-losing star) at sufficiently high speed tha t it does not accumulate 
significantly within even the cluster, let alone the binary. It is not obvious 
to me how equation (2) might be further generalised to take into account 
the possibility of AML by magnetic braking, for example, although such a 
generalisation would seem to be necessary. 

Note tha t in equation (3) the velocity V is obtained by summing only 
over the two stars tha t are transferring mass, and that because the two 
masses are variable V is not, as one might have supposed, the velocity of 
the CG of the binary. We can of course generalise so tha t we can write 
these equations down, with a rather more elaborate notation than I care 
to use here, for all i rather than just i = 1,2. However since the T F force 
is a short-range one it should only be necessary to include the nearest 
neighbour, and perhaps in the case of some hierarchical triples the next 
nearest neighbour. Note also tha t in equation (2) the rate of mass transfer 
TTiT can be considered as a fairly simple function of the ratio of stellar 
radius Äi (if *1 is the loser) to the Roche lobe radius of * 1 , the latter being 
itself a fairly simple function of separation a and mass ratio πΐι/πΐ2. The 
rate is usually taken to be zero if the radius ratio is less than unity, and a 
rapidly increasing function if the ratio is greater than unity (Paczynski & 
Sienkiewicz 1972). However, we cannot just use the stellar radius obtained 
from our simple SE subroutine, because the mass transfer itself affects the 
radius if it is comparable to or faster than the thermal timescale of the 
star. It is possible, however, tha t this can be allowed for with a very simple 
extra differential equation for the degree of Roche-lobe overfill (Whyte & 
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Eggleton 1985). 
To sum up, we see tha t (i) back-of-the-envelope formulae exist for bulk 

stellar (Pop I) properties as functions of m, t. They are being upgraded for 
state-of-the-art internal physics, and generalised to a range of metallicities; 
(ii) evolution of interacting binaries is still quite problematic; and (iii) to 
accommodate mass loss by winds and mass transfer by RLOF, the N-body 
dynamical equations should be modified slightly. This includes adding a 
tidal friction term in order to circularise the orbits of really close binaries. 

I am indebted to Drs S. J. Aarseth, Zh. Han, L. G. Kiseleva, 0 . R. Pols, 
K.-P. Schröder, and C. A. Tout for many helpful conversations. 

References 

Aarseth, S. J. (1995) in Binaries in Clusters, ed. Milone, E. F., ASP series, in press 
Alexander, D. R. & Ferguson, J. W. (1994) ApJ, 437, 879 
Andersen, J. (1991) A&A Rev., 3, 91 
Bettweiser, Ε. & Sugimoto, D. (1984) MN, 208, 493 
Böhm-Vitense, Ε. (1958) ZsAp, 46, 108 
Conti, P. S. (1982) in Mass Loss from Astronomical Objects, ed Gondhalekar, P. M., RAL 

82-075, p45 
Eggleton, P. P., Fitchett M. J. & Tout C. A. (1989) ApJ, 347, 998 
Eggleton, P. P. (1983a) MN, 204, 449 
Eggleton, P. P. (1983b) in The Origin and Evolution of Cataclysmic Binaries, eds Livio, 

M. & Shaviv, G., p239 
Eggleton, P. P. & Tout, C. A. (1989) Sp. Sc. Rev., 50, 165 
Hachisu, I., Nakada, Y., Nomoto, K. & Sugimoto, D. (1978) Prog. Theor. Phys., 60, 393 
Han, Zh., Podsiadlowski, P. & Eggleton, P. P. (1994) MN, 270, 121 
Humphreys, R. M. & Davidson, K. (1979) ApJ, 232, 409 
Judge, P. G. & Stencel, R. E. (1991) ApJ, 371, 357 
Lynden-Bell, D. & Eggleton, P. P. (1980) MN, 191, 483 
Merryfield, W. J. (1995) ApJ, 444, 318 
Meynet, G., Mermilliod, J.-C. & Maeder, A. (1993) A&AS, 98, 477 
Morgan, J. G. & Eggleton, P. P. (1978) MN, 182, 219 
Paczynski, B. (1976) in IAU Symp. 73, Structure and Evolution of Close Binary Systems, 

eds Eggleton, P., Mitton, S. & Whelan, J., p75 
Paczynski, B. & Sienkiewicz, R. (1972) AA, 22, 73 
Paczynski, B. & Ziolkowski, J. (1968) Acta Astr., 18, 255 
Pols, O. R., Tout, C. Α., Eggleton, P. P. & Han, Zh. (1995) MN, 274, 964 
Popper, D. M. (1980) ARAA, 18, 115 
Rogers, F. J. & Iglesias, C. A. (1992) ApJS, 79, 507 
Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. (1992) A&AS, 96, 269 
Schwarzschild, M. & Härm, R. (1958) ApJ, 128, 348 
Spruit, H, (1992) A&A, 253, 131 
Verbunt, F. & Zwaan, C. (1981) A&A, 100, L7 
Weidemann, V., & Koester, D. (1983) A&A, 121, 77 
Whyte, C. A. & Eggleton, P. P. (1985) MN, 214, 357 
Willis, A. J. (1985) in Interacting Binaries, eds Eggleton, P. P. & Pringle, J. E. p l 0 3 
Zahn, J.-P. (1977) A&A, 57, 383 

https://doi.org/10.1017/S0074180900001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900001558

