
J. Fluid Mech. (2023), vol. 973, A42, doi:10.1017/jfm.2023.720

Dynamics of a data-driven low-dimensional
model of turbulent minimal Couette flow

Alec J. Linot1 and Michael D. Graham1,†
1Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison,
WI 53706, USA

(Received 12 January 2023; revised 18 August 2023; accepted 26 August 2023)

Because the Navier–Stokes equations are dissipative, the long-time dynamics of a flow
in state space are expected to collapse onto a manifold whose dimension may be much
lower than the dimension required for a resolved simulation. On this manifold, the state of
the system can be exactly described in a coordinate system parameterising the manifold.
Describing the system in this low-dimensional coordinate system allows for much faster
simulations and analysis. We show, for turbulent Couette flow, that this description of
the dynamics is possible using a data-driven manifold dynamics modelling method. This
approach consists of an autoencoder to find a low-dimensional manifold coordinate system
and a set of ordinary differential equations defined by a neural network. Specifically, we
apply this method to minimal flow unit turbulent plane Couette flow at Re = 400, where
a fully resolved solutions requires O(105) degrees of freedom. Using only data from this
simulation we build models with fewer than 20 degrees of freedom that quantitatively
capture key characteristics of the flow, including the streak breakdown and regeneration
cycle. At short times, the models track the true trajectory for multiple Lyapunov times
and, at long times, the models capture the Reynolds stress and the energy balance. For
comparison, we show that the models outperform POD-Galerkin models with ∼2000
degrees of freedom. Finally, we compute unstable periodic orbits from the models. Many
of these closely resemble previously computed orbits for the full system; in addition, we
find nine orbits that correspond to previously unknown solutions in the full system.

Key words: machine learning

1. Introduction

A major challenge in dealing with chaotic fluid flows, whether it be performing
experiments, running simulations or interpreting the results, is the high-dimensional
nature of the state. Even for simulations in the smallest domains that sustain turbulence

† Email address for correspondence: mdgraham@wisc.edu

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 973 A42-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:mdgraham@wisc.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.720&domain=pdf
https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

(a minimal flow unit (MFU)), the state dimension may be O(105) (Jiménez & Moin 1991;
Hamilton, Kim & Waleffe 1995). However, despite this nominal high-dimensionality, the
dissipative nature of turbulent flows leads to the expectation that long-time dynamics
collapse onto an invariant manifold of much lower dimension than the ambient dimension
(Hopf 1948). By modelling the dynamics in a manifold coordinate system, simulations
could be performed with a drastically lower-dimensional state representation, significantly
speeding up computations. In addition, such a low-dimensional state representation is
highly useful for downstream tasks such as control or design. Finding a low-dimensional,
or ideally a minimal-dimensional, parameterisation of the manifold and an evolution
equation for this parameterisation are both challenges. In this work we aim to address these
challenges with a data-driven model, specifically for the task of reconstructing turbulent
plane Couette flow (PCF).

The classic way to perform dimension reduction from data is to use the proper
orthogonal decomposition (POD), also known as principal component analysis (PCA) or
Karhunen–Loève decomposition (Holmes et al. 2012). This is a linear dimension reduction
technique in which the state is projected onto the set of orthogonal modes that capture
the maximum variance in the data. The POD is widely used for flow phenomena, some
examples of which include turbulent channel flow (Moin & Moser 1989; Ball, Sirovich
& Keefe 1991), flat-plate boundary layers (Rempfer & Fasel 1994) and free shear jet
flows (Arndt, Long & Glauser 1997). Smith, Moehlis & Holmes (2005) showed how to
incorporate system symmetries into the POD modes, the details of which we elaborate on
in § 3.

Although the POD has seen wide use and is easy to interpret, more accurate
reconstruction can be achieved with nonlinear methods, a result we highlight in § 3.
Some popular methods for nonlinear dimension reduction include kernel PCA (Schölkopf,
Smola & Müller 1998), diffusion maps (Coifman et al. 2005), local linear embedding
(LLE) (Roweis & Saul 2000), isometric feature mapping (Isomap) (Tenenbaum, de Silva
& Langford 2000) and t-distributed stochastic neighbour embedding (tSNE) (Hinton &
Roweis 2003). These methods are described in more detail in Linot & Graham (2022),
and an overview of other dimension reduction methods can be found in Van Der Maaten,
Postma & Van Den Herik (2009). One drawback of all of these methods, however, is
that they reduce the dimension, but do not immediately provide a means to move from
a low-dimensional state back to the full state. A popular dimension reduction method
without these complications is the undercomplete autoencoder (Hinton & Salakhutdinov
2006), which uses a neural network (NN) to map the input data into a lower-dimensional
‘latent space’ and another NN to map back to the original state space. We describe this
structure in more detail in § 2. Some examples where autoencoders have been used for flow
systems include flow around a cylinder (Murata, Fukami & Fukagata 2020), flow around
a flat plate (Nair & Goza 2020), Kolmogorov flow (Page, Brenner & Kerswell 2021; Pérez
De Jesús & Graham 2023) and channel flow (Milano & Koumoutsakos 2002). Although
we will not pursue this approach in the present work, it may be advantageous for multiple
reasons to parametrise the manifold with overlapping local representations, as done in
Floryan & Graham (2022).

After reducing the dimension, the time evolution for the dynamics can be approximated
from the equations of motion or in a completely data-driven manner. The classical method
is to perform a Galerkin projection wherein the equations of motion are projected onto a
set of modes (e.g. POD modes) (Holmes et al. 2012). However, in this approach, all the
higher POD modes are neglected. An extension of this idea, called nonlinear Galerkin, is to
assume that the time derivative of the coefficients of all of the higher modes is zero, but not

973 A42-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

the coefficients themselves (Foias et al. 1988; Titi 1990; Graham, Steen & Titi 1993); this
is essentially a quasisteady state approximation for the higher modes. This improves the
accuracy, but comes at a higher computational cost than the Galerkin method, although this
can be somewhat mitigated by using a postprocessing Galerkin approach (García-Archilla,
Novo & Titi 1998). Wan et al. (2018) also showed a recurrent neural network (RNN), a
NN that feeds into itself, can be used to improve the nonlinear Galerkin approximation.
This RNN structure depends on a history of inputs, making it non-Markovian. In addition
to these linear dimension reduction approaches, an autoencoder can be used with the
equations of motion in the so-called manifold Galerkin approach, which Lee & Carlberg
(2020) developed and applied to the viscous Burgers equation.

When the equations of motion are assumed to be unknown, and only snapshots of data
are available, a number of different machine learning techniques exist to approximate the
dynamics. Two of the most popular techniques are RNNs and reservoir computers. Vlachas
et al. (2020) showed both these structures do an excellent job of capturing the chaotic
dynamics of the Lorenz-96 equation and Kuramoto–Sivashinsky equation (KSE). For fluid
flows, autoencoders and RNNs (specifically long short-term memory (LSTM) networks)
have been used to model flow around a cylinders (Eivazi et al. 2020; Hasegawa et al.
2020a), pitching airfoils (Eivazi et al. 2020), bluff bodies (Hasegawa et al. 2020b) and
MFU plane Poiseuille flow (PPF) (Nakamura et al. 2021). Although these methods often
do an excellent job of predicting chaotic dynamics, the models are not Markovian, so a true
assessment of the dimension of the state in these models has to account for the degrees of
freedom used to store past history of the dynamics. These methods are also implemented
in discrete rather than continuous time. These two properties are undesirable, because
the underlying dynamics are Markovian and continuous in time, and not modelling them
as such complicates applications and interpretations of the model. In particular, we want
to use the model for state space analyses such as determination of periodic orbits (POs),
where standard tools are available for ODEs that do not easily generalise to non-Markovian
dynamic models.

Owing to these issues, we use neural ordinary differential equations (ODEs) (Chen et al.
2019). In neural ODEs, the right-hand side of an ODE is represented as a NN that is trained
to reconstruct the time evolution of the data from snapshots of training data. Linot &
Graham (2022) showed that this is an effective method for modelling the chaotic dynamics
of the KSE. Rojas, Dengel & Ribeiro (2021) used neural ODEs to predict the periodic
dynamics of flow around a cylinder, and Portwood et al. (2019) used neural ODEs to
predict the kinetic energy and dissipation of decaying turbulence.

In this work we investigate the dynamics of MFU Couette flow. The idea behind the
MFU, first introduced by Jiménez & Moin (1991), is to reduce the simulation domain to the
smallest size that sustains turbulence, thus isolating the key components of the turbulent
nonlinear dynamics. Using an MFU for Couette flow at transitional Reynolds number,
Hamilton et al. (1995) outlined the regeneration cycle of wall-bounded turbulence called
the ‘self-sustaining process’ (SSP), which we describe in more detail in § 3. This system
was later analysed with covariant Lyapunov analysis by Inubushi, Takehiro & Yamada
(2015), who found a Lyapunov time (the inverse of the leading Lyapunov exponent) of
∼48 time units.

Many low-dimensional models have been developed to recreate the dynamics of the
SSP. The first investigation of this topic was by Waleffe (1997), who developed an 8-mode
model for shear flow between free-slip walls generated by a spatially sinusoidal forcing. He
selected the modes based on intuition from the SSP and performed a Galerkin projection
onto these modes. Moehlis, Faisst & Eckhardt (2004) later added an additional mode to

973 A42-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

Waleffe’s model which enables modification of the mean profile by the turbulence, and
made some modifications to the chosen modes. In this ‘MFE’ (Moehlis, Faisst, Eckhardt)
model, Moehlis et al. found exact coherent states (ECS), which we discuss in the following,
that did not exist in the 8-mode model. In addition, Moehlis et al. (2002) also used the POD
modes on a domain slightly larger than the MFU to generate POD-Galerkin models. These
low-dimensional models have been used as a starting point for testing data-driven models.
For example, both LSTMs (Srinivasan et al. 2019) and a Koopman operator method with
nonlinear forcing (Eivazi et al. 2021) have been used to attempt to reconstruct the MFE
model dynamics. Borrelli et al. (2022) then applied these methods to PPF.

Finally, we note that a key approach to understanding complex nonlinear dynamical
phenomena, such as the SSP of near-wall turbulence, is through study of the underlying
state space structure of fixed points and POs. In the turbulence literature these are
sometimes called ECS (Kawahara, Uhlmann & van Veen 2012; Graham & Floryan 2021).
Turbulence organises around ECS in the sense that trajectories chaotically move between
different such states. The first ECS found were fixed-point solutions in PCF (Nagata 1990).
Following this work, Waleffe (1998) was able to connect ECS of PCF and PPF to the SSP.
Later, more fixed point ECS were found in MFU PCF and visualised by Gibson, Halcrow
& Cvitanović (2008a). Unlike fixed points, which cannot capture dynamic phenomena at
all, POs are able to represent key aspects of turbulent dynamics such as bursting behaviour.
Kawahara & Kida (2001) found the first two POs for MFU PCF, one of which had statistics
that agreed well with the SSP. Then, Viswanath (2007) found another PO and 4 new
relative periodic orbits (RPOs) in this domain, and Gibson made these solutions available
in (Gibson et al. 2008b), along with a handful of others.

In the present work, we use autoencoders and neural ODEs, in a method we call
‘data-driven manifold dynamics’ (DManD) (Linot et al. 2023a), to build a reduced-order
model (ROM) for turbulent MFU PCF (Hamilton et al. 1995). Section 2 outlines the details
of the DManD framework. We then describe the details of the Couette flow in § 3.1,
the results of the dimension reduction in § 3.2, and the DManD model’s reconstruction
of short- and long-time statistics in §§ 3.3 and 3.4, respectively. After showing that the
models accurately reproduce these statistics, we compute RPOs for the model in § 3.5,
finding several that are similar to previously known RPOs, as well as several that seem to
be new. Finally, we summarise the results in § 4.

2. Framework

The fundamental ideas of the DManD framework are (1) that when modelling long-time
dynamics of a dissipative system, only the finite-dimensional manifold M on which the
dynamics lie needs to be considered, not the full state space, and (2) a low-dimensional
coordinate system for this manifold and the dynamics in this coordinate system can be
determined from data for the system. In general, the training data for the development of
a DManD model come in the form of snapshots {u1, u2, . . . , uM}, which are either the
full state or measurements diffeomorphic to the full state (e.g. time delays (Takens 1981;
Young & Graham 2023)). Here we consider full-state data u that live in an ambient space
R

d. We generate a time series of data by evolving this state forward in time according to

du
dt

= f (u). (2.1)

(In the present context, this equation represents a fully resolved direct numerical
simulation (DNS).) With the full state, we can then define a mapping to a low-dimensional

973 A42-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

state representation

h = χ(u), (2.2)

where h ∈ R
dh is a state in the manifold coordinate system. Finally, we define a mapping

back to the full state

ũ = χ̌(h). (2.3)

For data that lie on a finite-dimensional invariant manifold of dimension dM, these
functions can, in principle, reconstruct the state exactly (i.e. ũ = u). However, if the
dimension dh is too low, or there are errors in the approximation of these functions, then
ũ approximates the state. Here we also note that we refer to h as a state in the manifold
coordinate system, but this coordinate representation is non-unique, and we seek one of an
infinite number of diffeomorphic representations. Then, with this low-dimensional state
representation, we can define an evolution equation

dh
dt

= g(h). (2.4)

The DManD model consists of the three functions χ , χ̌ and g. By approximating these
functions, the evolution of trajectories on the manifold can be performed entirely in the
manifold coordinates, which requires far fewer operations than a full simulation, as dh �
d. We choose to approximate all of these functions using NNs, but other representations
could be used. The parameters (weights and biases) of these NNs (θE, θD, θg, θφ) will be
updated from data to minimise losses described in the following.

Before continuing to the details of the approach, we pause here to emphasise some
specific aspects of the model. In traditional ROMs, approximations are made to reduce the
number of degrees of freedom, e.g. in POD-Galerkin the governing equations are linearly
projected onto a low-dimensional subspace, with the inevitable loss of information. By
contrast, if the dynamics indeed lie on a manifold embedded in the ambient state space,
then in principle there is an exact mapping between coordinates in the ambient space and
the manifold, i.e. a reduced-dimensional representation that involves no approximation.
Similarly, on the invariant manifold, the dynamics are tangent to the manifold and can be
exactly represented by an ODE on it. Thus, in this context there is no issue of ‘asymptotic
convergence’ as the number of degrees of freedom in the model increases: the invariant
manifold has a definite dimension dM, and once the manifold representation has that
dimension, no further degrees of freedom should be necessary. In practice, determining
dM from data is challenging (see Zeng & Graham 2023), and even if it is known,
numerical errors will be present in whatever method (here NNs) is used to approximate
the multidimensional nonlinear functions χ , χ̌ , and g that define the model.

Now we return to the implementation of the DManD approach. First, we train χ
and χ̌ using an undercomplete autoencoder. This is a NN structure consisting of an
encoder, which reduces dimension (χ), and a decoder, which expands dimension (χ̌).
(An undercomplete autoencoder generates a lower-dimensional representation of the data
(dh < d) (Goodfellow, Bengio & Courville 2016). Overcomplete autoencoders also exist.)
As mentioned in § 1, a common approach to dimension reduction is to project onto a set
of POD modes so we will work with the data expressed in the POD basis, as detailed in
§ 3.2. Two specific approaches are used. POD gives the optimal linear projection in terms
of reconstruction error, so in one approach we use this fact to train a so-called hybrid
autoencoder. Here the encoder is written as the sum of POD and a correction in the form

973 A42-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

of a NN:

h = χ(u; θE) = UT
dh

u + E(UT
r u; θE). (2.5)

In this equation, Uk ∈ R
d×k is a matrix whose k columns are the first k POD modes as

ordered by variance and E is a NN. The first term (UT
dh

u) is the projection onto the leading
dh POD modes, and the second term is the NN correction. The matrix Ur in this term may
either be a full change of basis with no approximation (r = d), or involve some dimension
reduction (d > r > dh).

For mapping back to the full state (decoding), we again sum POD with a correction

ũ = χ̌(h; θE) = Ur([h, 0]T + D(h; θD)). (2.6)

Here, [h, 0]T is the h vector zero-padded to the correct size, and D is a NN. The first
term is the POD mapping back to the full space, and the second term is a NN correction.
These hybrid autoencoder operations act as a shortcut connection on the optimal linear
dimension reduction, which we (Linot & Graham 2020) found useful for representing
the data and achieving accurate reconstruction of u. Yu et al. (2021) also took a similar
approach with POD shortcut connections over each layer of the network. We determine
the NN parameters θE and θD by minimising

L = 1
dK

K∑
i=1

‖u(ti) − χ̌(χ(u(ti); θE); θD)‖2

+ 1
dhK

K∑
i=1

α‖E(UT
r u(ti); θE) + Ddh(h(ti); θD)‖2. (2.7)

The first term in this loss is the mean-squared error (MSE) of the reconstruction ũ, and the
second term is a penalty that promotes accurate representation of the leading dh POD
coefficients. In the second term, Ddh denotes the leading dh elements of the decoder
output. When this term vanishes (with α > 0), the autoencoder exactly matches the first dh
POD coefficients. This penalty does not reduce the size of the correction by the encoder,
rather it promotes the removal of the encoder correction by the decoder. Here, and in the
following, the norm is defined to be the L2 norm ‖q‖2 = ∑N

i=1 q2
i , so the normalisation in

front of the terms is to average over elements in the vector and the batch K. For selecting
α and other hyperparameters of the NNs we swept over the parameters to find the best. We
discuss the details of the hyperparameter selection and the minimisation procedure in § 3.

The second approach we use is a standard autoencoder, where, while still working
in the POD basis, we do not learn the encoder and decoder in terms of deviations
from POD projections but simply set h = χ(u; θE) = E(UT

r u; θE) and ũ = χ̌(h; θE) =
UrD(h; θD). In § 3.2 we contrast the standard and hybrid approaches. In Linot & Graham
(2020) we found lower autoencoder error by performing the POD change of basis, and even
lower error by taking the hybrid approach for chaotic data from the KSE. In the present
context, we found the performance of the two approaches in the POD basis to be very
similar, as further discussed in the following.

Next, we approximate g using a neural ODE. A drawback of training a single dense NN
for g is that the resulting dynamics may become weakly unstable, with linear growth at
long times (Linot & Graham 2022; Linot et al. 2023a). To avoid this, we use a ‘stabilised’

973 A42-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

neural ODE approach by adding a linear damping term onto the output of the NN, giving

g(h(ti); θg) = gNN(h(ti); θg) + Ah. (2.8)

For training gNN we integrate (2.8) over some time window τ from time ti to ti + τ yielding

h̃(ti + τ) = h(ti) +
∫ ti+τ

ti
gNN(h(t); θg) + Ah(t) dt. (2.9)

We use the standard Dormand–Prince method (Dormand & Prince 1980) to perform this
integration, but we note that this method does not depend on the integration scheme and
different methods can be used when training and deploying the model. Depending on the
situation, one may either learn A from data or fix it. Here we set it to the diagonal matrix

Aij = −βijσi(h), (2.10)

where σi(h) is the standard deviation of the ith component of h, β is a tunable parameter
and ij is the Kronecker delta. In Linot & Graham (2022) and Linot et al. (2023a), we found
that without this stabilising linear term, small errors in the dynamics would eventually
grow resulting in gNN outputting a constant value, which led to continuous linear growth
away from the attractor. Including the linear damping term effectively eliminates this
behaviour by attracting trajectories back to the origin, preventing them from moving far
away from the training data. In § 3.4 we show that this approach drastically improves the
long-time performance of these models.

We then determine the parameters θg by minimising the difference between the
predicted state h̃(ti + τ) and the true state h(ti + τ), averaged over the data:

J = 1
dhK

K∑
i=1

(‖h(ti + τ) − h̃(ti + τ)‖2). (2.11)

For clarity, we show the specific loss we use, which sums over only a single snapshot
forward in time at a fixed τ . More generally, the loss can be formulated for arbitrary
snapshot spacing and for multiple snapshots forward in time. To compute the gradient
of J with respect to the NN parameters θg, automatic differentiation can be used to
backpropagate through the ODE solver that is used to compute the time integral in (2.9),
or an adjoint problem can be solved backwards in time (Chen et al. 2019). The adjoint
method uses less memory than backpropagation, but h is low-dimensional and we will
select a short time window for training, so we choose to backpropagate through the solver.

So far this approach to approximating χ , χ̌ and g is general and does not directly
account for the fact that the underlying equations are often invariant to certain symmetry
operations. For example, one of the symmetries in PCF is a continuous translation
symmetry in x and z (i.e. any solution shifted to another location in the domain gives
another solution). This poses an issue for training, because, in principle, the training data
must include all these translations to accurately model the dynamics under any translation.
We discuss these and other symmetries of PCF in § 3.1.

In practice, accounting for continuous symmetries is most important along directions
that sample different phases very slowly. For PCF, the mean flow is in the x direction,
leading to good phase sampling along this direction. However, there is no mean flow in
the z direction, so sampling all phases relies on the slow phase diffusion in that direction.
Therefore, we only explicitly account for the z-phase in § 3, but in the current discussion
we present the general framework accounting for all continuous symmetries.

973 A42-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

One intuitive way to account for the phase would be to augment the data with
phase-shifted versions of the data, however, this suffers from two drawbacks: (1) this
can drastically slow down the training procedure by including all of these phases and
(2) data augmentation does not guarantee that the resulting dynamics are equivariant to
phase shifts. Instead, to address the issue of continuous translations, we add an additional
preprocessing step to the data, using the method of slices (Budanur, Borrero-Echeverry
& Cvitanović 2015a; Budanur et al. 2015b) to split the state u into a pattern up ∈ R

d and
a phase φ ∈ R

c. Pérez De Jesús & Graham (2023) found for Kolmogorov flow that this
step leads to an order of magnitude reduction in mean squared reconstruction error. The
number of continuous translation symmetries for which we explicitly account determines
c. We discuss the details of computing the pattern and the phase in § 3.1.

In transforming the data to pattern and phase dynamics no information about the system
is lost, and the autoencoder and neural ODE become equivariant to translations. As
shown in Linot & Graham (2020) and Pérez De Jesús & Graham (2023), autoencoders
perform better on the pattern dynamics than the state without phase alignment. In addition,
separating the pattern and phase is useful because the evolution of both the pattern and the
phase only depend on the pattern. Thus, we simply replace u with up in all the above
equations and then write one additional ODE for the phase

dφ

dt
= gφ(h; θφ). (2.12)

We then fix the parameters of g to evolve h (from up) forward in time and use that to make
a phase prediction

φ̃(ti + τ) = φ(ti) +
∫ ti+τ

ti
gφ(h(ti); θφ) dt. (2.13)

Finally, we determine the parameters θφ to minimise the difference between the predicted
phase φ̃(ti + τ) and the true phase φ(ti + τ)

Jφ = 1
cK

K∑
i=1

(‖φ(ti + τ) − φ̃(ti + τ)‖2), (2.14)

using the method described previously to compute the gradient of Jφ .

3. Results

3.1. Description of PCF data
In the following sections we apply DManD to DNS of turbulent PCF in a MFU domain.
Specifically, we consider the well-studied Hamilton, Kim and Waleffe (HKW) domain
(Hamilton et al. 1995). We made this selection to compare our DManD results with
the analysis of the SSP in this domain, to compare our DManD results with other
Galerkin-based ROMs and to compare our DManD results with known unstable periodic
solutions in this domain.

For PCF we solve the Navier–Stokes equations (NSEs)

∂v

∂t
+ v · ∇v = −∇p + Re−1∇2v, ∇ · v = 0 (3.1)

for a fluid confined between two plates moving in opposite directions with the same
speed. Equation (3.1) is the non-dimensionalised form of the equations with velocities in

973 A42-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

the streamwise x ∈ [0, Lx], wall-normal y ∈ [−1, 1] and spanwise z ∈ [0, Lz] directions
defined as v = [vx, vy, vz] and pressure p. We solve this equation for a domain with
periodic boundary conditions in x and z (v(0, y, z) = v(Lx, y, z), v(x, y, 0) = v(x, y, Lz))
and no-slip, no-penetration boundary conditions in y (vx(x, ±1, z) = ±1, vy(x, ±1, z) =
vz(x, ±1, z) = 0). The complexity of the flow increases as the Reynolds number Re
increases and the domain size Lx and Lz increase. Here we use the HKW cell, which is
at Re = 400 with a domain size [Lx, Ly, Lz] = [1.75π, 2, 1.2π] (Hamilton et al. 1995).
The HKW cell is one of the simplest flows that sustains turbulence for extended periods
of time before relaminarising. We chose to use this flow because it is well studied (refer to
§ 1), it isolates the SSP (Hamilton et al. 1995) and a library of ECS exists for this domain
(Gibson et al. 2008b). Here we are interested in modelling the turbulent dynamics, so we
will remove data upon relaminarisation as detailed in the following.

Equation (3.1), under the boundary conditions described, is invariant (and its solutions
equivariant) under the discrete symmetries of point reflections about [x, y, z] = [0, 0, 0]

P[(vx, vy, vz, p)(x, y, z, t)] = (−vx, −vy, −vz, p)(−x, −y, −z, t) (3.2)

reflection about the z = 0 plane

R[(vx, vy, vz, p)(x, y, z, t)] = (vx, vy, −vz, p)(x, y, −z, t) (3.3)

and rotation by π about the z-axis

RP[(vx, vy, vz, p)(x, y, z, t)] = (−vx, −vy, vz, p)(−x, −y, z, t). (3.4)

In addition to the discrete symmetries, there are also continuous translation symmetries in
x and z

Tσx,σz[(vx, vy, vz, p)(x, y, z, t)] = (vx, vy, vz, p)(x + σx, y, z + σz, t). (3.5)

We incorporate all these symmetries in the POD representation (Smith et al. 2005), as
we discuss further in § 3.2. Then, we use the method of slices (Budanur et al. 2015a) to
phase align in the z direction. By phase aligning in z we fix the location of the low-speed
streak. Without the alignment in z, models performed poorly because the models needed
to learn how to represent every spatial shift of every snapshot. In what follows, we only
consider phase alignment in z, but we note that extending this work to phase alignment
in x is straightforward. To phase align the data, we use the first Fourier mode method of
slices (Budanur et al. 2015a). First, we compute a phase by taking the Fourier transform
of the streamwise velocity in x and z (v̂x(kx, y, kz) = Fx,z(vx)) at a specific y location (y1)
to compute the phase

φ = atan2(imag(v̂x(0, y1, 1)), real(v̂x(0, y1, 1))). (3.6)

The variables kx and kz are the streamwise and spanwise wavenumbers. We select y1 to be
one grid point off the bottom wall. Any y location should work for the phase alignment, but
we found choosing the point in the viscous sublayer resulted in a more gradual change of
the phase. Rapid changes in the phase make prediction difficult and can require rescaling
time, as in Budanur et al. (2015b), which we want to avoid. Then we compute the pattern
dynamics by using the Fourier shift theorem to set the phase to 0 (i.e. move the low-speed
streak to the centre of the channel)

vp = F−1
x,z (v̂ exp(−ikzφ)). (3.7)

We generate turbulent PCF trajectories using the pseudo-spectral Channelflow code
developed by Gibson (2012) and Gibson et al. (2021). In this code, the velocity and

973 A42-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

pressure fields are projected onto Fourier modes in x and z and Chebyshev polynomials of
the first kind in y. These coefficients are evolved forward in time first using the multistage
SMRK2 scheme (Spalart, Moser & Rogers 1991), then, after taking multiple timesteps,
using the multistep Adams–Bashforth backward-differentiation 3 scheme (Peyret 2002).
At each timestep, a pressure boundary condition is found such that incompressibility is
satisfied at the wall (dvy/dy = 0) using the influence matrix method and tau correction
developed by Kleiser & Schumann (1980).

Data were generated with �t = 0.0325 on a grid of [Nx, Ny, Nz] = [32, 35, 32] in x, y
and z for the HKW cell. Starting from random divergence-free initial conditions, we ran
simulations forward for either 10 000 time units or until relaminarisation. Then we dropped
the first 1000 time units as transient data and the last 1000 time units to avoid laminar data,
and repeated with a new initial condition until we had 91 562 time units of data stored at
intervals of one time unit. We split these data into 80 % for training and 20 % for testing.
Finally, we preprocess the data by computing the mean over snapshots and the x and z
directions v̄(y) from the training data and subtracting it from all data v′ = v − v̄, and
then we compute the pattern v′

p and the phase φ as described previously. The pattern up

described in § 2 is v′
p flattened into a vector (i.e. d = 3NxNyNz). The POD and NN training

use only the training data, and all comparisons use test data unless otherwise specified.

3.2. Dimension reduction and dynamic model construction

3.2.1. Linear dimension reduction with POD: from O(105) to O(103)

The first task in DManD for this Couette flow data is finding a low-dimensional
parameterisation of the manifold on which the long-time dynamics lie. We parameterise
this manifold in two steps. First, we reduce the dimension down from d = O(105) to
dPOD = O(103) with the POD and, second, we use an autoencoder to reduce the dimension
down to dh, which ideally is equal to dM. The first step is simply a preprocessing step to
reduce the size of the data, which reduces the number of parameters in the autoencoder.
Due to Whitney’s embedding theorem (Whitney 1936, 1944), we know that as long as
dM < dPOD/2, then this POD representation is diffeomorphic to the full state. As we show
later, the manifold dimension dM appears to be far lower than dPOD/2, so no information
of the full state should be lost with this first step.

In other words, there are four different spaces for representing the state in this
process. There is the (infinite-dimensional) solution space of the NSEs, the d-dimensional
data space generated by the DNS, which we will refer to as the ‘full state’,
the dPOD-dimensional POD representation of the full state and the dh-dimensional
representation in the manifold coordinate system. We assume that our high-resolution
DNS solution accurately represents a true solution of the NSEs, and further assume
that this solution lies on a low-dimensional manifold of dimension dM. Then, given a
sufficient number of dimensions, the POD, followed by the autoencoder, should provide a
representation diffeomorphic to the full state. However, we cannot know that a sufficient
number of dimensions has been chosen until after training the models.

The POD originates with the question of what function Φ maximises

〈|(v′, Φ)E|2〉
‖Φ‖2

E
, (3.8)

where 〈·〉 is the ensemble average and the inner product is defined to be

(q1, q2)E = 1
2LxLz

∫∫∫
V

q1 · q2 dx, (3.9)

973 A42-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

with the corresponding energy norm ‖q‖2
E = (q, q)E. Solutions Φ(n) to this problem

satisfy the eigenvalue problem

3∑
j=1

∫ Lx

0

∫ 1

−1

∫ Lz

0
〈v′

i(x, t)v′∗
j (x′, t)〉Φ(n)

j (x′) dx′ = λiΦ
(n)
i (x) (3.10)

(Smith et al. 2005; Holmes et al. 2012). Unfortunately, upon approximating these integrals,
with the trapezoidal rule for example, this becomes a d × d matrix, making computation
intractable. Furthermore, computing the average in (3.10), without any modifications,
results in POD modes that fail to preserve the underlying symmetries described previously.

In order to make this problem computationally tractable, and preserve symmetries, we
apply the POD method used in Smith et al. (2005), with the slight difference that we first
subtract off the mean of the state before performing the analysis. The first step in this
procedure is to treat the POD modes as Fourier modes in both the x and z directions.
Holmes et al. (2012) showed that for translation-invariant directions, Fourier modes are
the optimal POD modes. This step transforms the eigenvalue problem into

LxLz

3∑
j=1

∫ 1

−1
〈v̂′

i(kx, y′, kz, t)v̂′∗
j (kx, y′, kz, t)〉ϕ(n)

jkxkz
(y′) dy′ = λ(n)

kxkz
ϕ

(n)
ikxkz

(y), (3.11)

which reduces the d × d eigenvalue problem down to a 3Ny × 3Ny eigenvalue problem for
every wavenumber pair (kx, kz) of Fourier coefficients. We used 5000 snapshots evenly
sampled over the training data to compute the POD modes. Then, to account for the
discrete symmetries, the data are augmented such that the mean in (3.11) is computed
by adding all the discrete symmetries of each snapshot, i.e. we compute 〈v̂′

i v̂
′∗
j 〉 for v, Pv,

Rv and RPv and average the results.
This analysis gives us POD modes

Φ
(n)
kxkz

(x) = 1√
LxLz

exp
(

2πi
(

kxx
Lx

+ kzz
Lz

))
ϕ

(n)
kxkz

(y), (3.12)

and eigenvalues λ(n)
kxkz

. The projection onto these modes results in complex values unless
kx = kz = 0. We sort the modes from largest eigenvalue to smallest eigenvalue (λi) and
project the phase-aligned data (i.e. v′

p, as described in § 3.1) onto the leading 256 modes,
giving us a vector of POD coefficients a(t). A majority of these modes are complex (i.e. 2
degrees of freedom), so projecting onto these modes results in a 502-dimensional system,
i.e. dPOD = 502. In figure 1(a) we plot the eigenvalues, which show a rapid drop and then
a long tail that contributes little to the energy content. By dividing the eigenvalues of the
leading 256 modes by the total, we find these modes contain 99.8 % of the energy. To
further illustrate that 256 modes is sufficient to represent the state in this case, we consider
the reconstruction of statistics after projecting onto the POD modes. In figure 1(b) we
show the reconstruction of four components of the Reynolds stress, 〈v′2

x 〉, 〈v′2
z 〉, 〈v′2

y 〉 and
〈v′

xv
′
y〉. The projection onto POD modes matches all of these quantities extremely well.

3.2.2. Nonlinear dimension reduction with autoencoders: from O(103) to O(101)

Now that we have converted the data to POD coefficients and filtered out the low-energy
modes, we next train an autoencoder to perform nonlinear dimension reduction. However,
we first ‘preprocess’ the POD coefficients by normalising the coefficients before using

973 A42-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

10–2

10–4

0.06
DNS

POD

0.04

0.02

0

–1.0 –0.5 0 0.5 1.0

10–6
λi 〈v iv

′ j〉

10–8

10–10

100 101 102 103

i y

(b)(a)

Figure 1. (a) Eigenvalues of POD modes sorted in descending order. (b) Components of the Reynolds stress
for data generated by the DNS and this data projected onto 256 POD modes. In (b) the curves are, from top to
bottom, 〈v′2

x 〉, 〈v′2
z 〉, 〈v′2

y 〉 and 〈v′
xv

′
y〉.

them in the autoencoder. It is common practice before NN training to subtract the mean
and divide by the standard deviation of each component. We do not take this approach
here because the standard deviation of the higher POD coefficients, which contribute less
to the reconstruction, is much smaller than the lower POD coefficients. In order to retain
the important information in the magnitudes, but put the values in a more amenable form
for NN training, we instead normalise the POD coefficients by subtracting the mean and
dividing by the maximum standard deviation.

With the above preprocessing step completed, we now turn to the reduction of dimension
with the nonlinear approach enabled by the autoencoder structure. We consider three
approaches to reducing the dimension of the normalised POD coefficient vector a:
(1) training a hybrid autoencoder; (2) training a standard autoencoder; and (3) linear
projection onto a small set of POD modes. We describe the first two approaches in § 2,
and note that the POD projection onto 256 (complex) modes can be written as a = UT

r u.
The third approach corresponds to setting E and D to zero in 2.5 and 2.6.

To optimise the parameters of the hybrid and standard autoencoders, we use an Adam
optimiser (Kingma & Ba 2015) in Keras (Chollet 2015) to minimise the loss in (2.7)
with the normalised POD coefficients as inputs. We train for 500 epochs with a learning
rate scheduler that drops the learning rate from 10−3 to 10−4 after 400 epochs. At this
point, we see no improvement in the reconstruction error. For the hybrid autoencoder
approach, we set α = 0.01, and for the standard autoencoder α = 0 (in practice, this term
is not included). Table 1 includes additional NN architecture details. We determined these
network parameters through a manual parameter sweep by varying the shape and activation
functions of the NNs to achieve the lowest error without excessive computational cost.

In figure 2(a) we show the relative reconstruction error for the three approaches over
a range of dimensions dh. We compute this error by computing the energy norm of the
difference between the state in the ambient space and the predicted state. Then, we divide
that quantity by the energy norm of the state in the ambient space and average over the
test data. We use NNs with the same architectures for both the standard and the hybrid
autoencoder approaches. Due to the variability introduced into autoencoder training by
randomly initialised weights and stochasticity in the optimisation, we show the error for
four separately trained autoencoders, at each dh. We see that the autoencoders perform
much better than POD in the range of dimensions considered here.

973 A42-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

Function Shape Activation Learning rate

E 502/1000/dh sig/linear [10−3, 10−4]
D dh/1000/502 sig/linear [10−3, 10−4]
gNN dh/200/200/dh sig/sig/linear [10−2, 10−3, 10−4]
gφ dh/200/200/1 sig/sig/linear [10−2, 10−3, 10−4]

Table 1. Architectures of NNs. ‘Shape’ indicates the dimension of each layer, ‘Activation’ the corresponding
activation functions and ‘sig’ is the sigmoid activation. ‘Learning rate’ gives the learning rate at multiple times
during training. We dropped the learning rate at even intervals.

0.4

0.2

0

–0.2

–0.4

vx

2.5

2.5

2.5

0

2.5

2.5

2.5

05

DNS

DNS

DNS

Auto

Auto

Auto

5

0 05 5

0 05 5

x

z

z

z

x

0.30

0.25

0.20

0.15

〈||
v
 –

 ṽ
|| E

/
||v

|| E〉

0.10

0.05

0
5 10

dh

15

Hybrid

Stand

POD

(b)(a)

Figure 2. (a) Relative error in the energy norm on test data for POD, standard autoencoders and hybrid
autoencoders at various dimensions dh. At each dimension there are four standard and four hybrid autoencoders.
(b) The centreline streamwise velocity for three examples in the DNS and reconstructed using the hybrid
autoencoder with dh = 18. The relative error of reconstruction from top to bottom is 0.021, 0.071 and 0.048.

The performance of the standard and hybrid autoencoder approaches is very similar,
and the MSE begins to level off for dh � 18. Given a perfect autoencoder (i.e. one that has
latent dimension dh ≥ dM and sufficient capacity to determine an exact mapping between
the ambient space and the manifold), the error in this figure ideally should vanish once dh
becomes high enough; however, there is always some error in the autoencoder, either due
to finite capacity or limitations in the training process, that prevents this from happening.
Figure 2(b) shows three examples of the flowfields and their reconstruction for a hybrid
autoencoder at dh = 18. This autoencoder captures the key structures of these snapshots.
The results in the following use the hybrid approach. We took this approach because the
low-dimensional representations of the hybrid autoencoders displayed less variability in
predictions from trial to trial than those of the standard autoencoders. This led, in turn, to
less variability when training neural ODEs to predict the time dynamics of the different
low-dimensional representations of these autoencoders.

Before discussing how to use the low-dimensional representations from these
autoencoders to train stabilised neural ODEs, we briefly mention convolutional neural
networks (CNNs). These could be a reasonable choice for the autoencoder in the
framework outlined previously. We chose not to use them because empirically we found
lower errors using dense NNs in the POD basis for simple chaotic systems such as the
KSE. Once in the POD basis, a CNN holds no advantage over a densely connected
network because there are no longer spatial connections between the POD coefficients.

973 A42-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

In addition, although standard CNNs are invariant to small translations of the input they
are not equivariant to inputs, which is what we desire. Separating out pattern and phase
variables ensures equivariance for any function approximation of χ and χ̌ , making it an
appealing choice over trying to constrain the structure of the NN to ensure equivariance.

3.2.3. Neural ODE training
After training four autoencoders at each dimension dh, we chose a set of damping
parameters, β, and for each, then trained four stabilised neural ODEs for all four
autoencoders at every dimension dh. This results in 16 models at every dh and β. The
final β value of 0.1 was selected so that long-time trajectories neither blew up nor decayed
too strongly. We trained each of these models to predict one time unit ahead (i.e. τ = 1)
because predicting further ahead took longer to train, and did not improve results. In Linot
& Graham (2022) we ran a more extensive study on the KSE of varying this parameter,
where we found the predictive capabilities do not start to deteriorate until the time window
approached a Lyapunov time.

Before training the ODEs, we preprocess each autoencoder’s latent space data set h by
subtracting the mean. It is important to centre the data because the linear damping (2.10)
pushes trajectories towards the origin. We train the stabilised neural ODEs to predict the
evolution of the centred data by using an Adam optimiser in PyTorch (Chen et al. 2019;
Paszke et al. 2019) to minimise the loss in (2.11). We train using a learning rate scheduler
that drops at three even intervals during training and we train until the learning curve
stops improving. Table 1 presents the details of this NN. Unless otherwise stated, we show
results for the 1 model out of those 16 at each dimension with the lowest relative error
averaged over all the statistics we consider. Here we emphasise that for all comparisons
between the DNS and the DManD model we will use the same initial conditions for the
two simulations. In the DManD model, this consists of encoding the initial condition for
the DNS and then evolving it forward with the neural ODE in the latent space to obtain
a time series of h. Then we decode this time series for comparison. Finally, to provide a
rough estimate of the computational cost of training these NNs we note that training the
autoencoder (E,D), the stabilised neural ODE (gNN) and the phase neural ODE (gφ) to
convergence took ∼4.4, 1.0 and 1.7 h, respectively, for the dh = 18 hybrid autoencoder
model on a 2.40 GHz Intel Xeon CPU E5-2640 v4.

3.3. Short-time tracking
In the following two sections, we evaluate the performance of the DManD models at
reconstructing short-time trajectories and long-time statistics. Figure 3 shows snapshots
of the streamwise velocity at the centre plane of the channel, y = 0, for the DNS and
DManD at dh = 18. We choose to show results for dh = 18 because the autoencoder error
begins to level off around this dimension and, as we will show, the error in statistics levels
off before this dimension. The value dh = 18 is not necessarily the minimal dimension
required to model this system. In figure 3, both the DNS and the DManD model show key
characteristics of the SSP: (1) low-speed streaks become wavy; (2) the wavy low-speed
streaks break down generating rolls; (3) the rolls lift fluid from the walls, regenerating
streaks.

Not only does DManD capture the qualitative behaviour of the SSP, but figure 3 also
shows good quantitative agreement as well. To further illustrate this, in figure 4 we show

973 A42-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

2

2z

x x x x

vx

z

0 5

t = 0

t = 0

t = 70

t = 70

t = 85

t = 85

t = 140

t = 140

0 5

2

2

0 5

0 5

2

2

0 5

0 5

2

2

0 5

0 5

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Snapshots of the streamwise velocity at y = 0 from the DNS and from the DManD model at
dh = 18.

0.25

0.20

0.15

0.10

0.05

0 50 100

t

M
 (k

x,
k z)

150

M (0,1)

M (1,0)

M̃ (0,1)

M̃ (1,0)

200

Figure 4. Modal RMS velocity from the DNS (M) and from the DManD model at dh = 18 (M̃). The markers
correspond to the times in figure 3.

the modal root-mean-squared (RMS) velocity

M(kx, kz) =
(∫ 1

−1
(v̂2

x (kx, y, kz) + v̂2
y (kx, y, kz) + v̂2

z (kx, y, kz)) dy

)1/2

, (3.13)

which Hamilton et al. (1995) used to identify the different parts of the SSP. Specifically,
we consider the M(0, 1) mode, which corresponds to the low-speed streak, and the M(1, 0)

mode, which corresponds to the x-dependence that appears when the streak becomes wavy
and breaks up. In this example, the two curves match well over a cycle of the SSP and only
start to move away after ∼150 time units, which is about three Lyapunov times.

While the previous result shows a single example, we also consider ensembles of initial
conditions. Figure 5 shows the tracking error ‖a(ti + t) − ã(ti + t)‖ of 10 trajectories,
starting at ti, for a model at dh = 18. Here we normalise the tracking error by the error
between solutions at random times ti and tj:N = 〈‖a(ti) − a(tj)‖〉. Here we note that,
because the 256 complex modes we use capture 99.8 % of the energy in the flow, this
normalised tracking error will be approximately equal to the normalised tracking error in
the full space. In this case, the darkest line corresponds to the flow field in figures 3 and
4. When considering the other initial conditions in figure 5, there tends to be a relatively
slow rise in the error over ∼50 time units and then a more rapid increase after this point.

973 A42-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

2.0

1.5

1.0

0.5

20
||
a

–
 ã

 ||
/N

40 60 80 1000
t

Figure 5. Normalised tracking error for 10 random initial conditions (different shades) using DManD with
dh = 18.

1.0
1.0

18

16

14

12

10

8

6

4

0.5

0

–0.5

0.8

0.6

0.4

0.2

0 20 40 60 80 100 0 20 40 60 80

DNS

DManD

100

〈||
a

–
 ã

 ||
〉/N

〈k(
τ)

k(
τ +

 t)
〉/〈

k(
τ)

2
〉

t t

dh

(b)(a)

Figure 6. (a) Ensemble-averaged short-time tracking and (b) temporal autocorrelation of the kinetic energy
for DManD models of increasing dimension. In (b), odd numbers above dh = 5 are omitted for clarity.

To better understand how this tracking varies with the dimension of the model we next
consider the ensemble-averaged tracking error.

In figure 6(a) we show the normalised ensemble-averaged tracking error for model
dimensions between dh = 3 and 18. For dh = 3–5 there is a rapid rise in the error until
∼40 time units after which the error levels off. This behaviour often happens due to
trajectories quickly diverging and landing on stable fixed points or POs that do not exist in
the true system. For dh = 6–10 there is an intermediate behaviour where lines diverge more
quickly than on the higher-dimensional models, but tend to approach the same tracking
error at ∼100 time units. Then, for the remaining models dh = 11–18, there is a smooth
improvement in the tracking error over this time interval. As the dimension increases in
this range the trends stay the same, but the error continues to decrease, which is partially
due to improvement in the autoencoder performance.

The instantaneous kinetic energy of the flow is given by E(t) = 1/2‖v‖2
E (3.9) and

we denote its fluctuating part as k(t) = E(t) − 〈E〉. In figure 6(b) we show the temporal
autocorrelation of k. Again, for dh = 3–5 we see clear disagreement between the true
autocorrelation and the prediction. Above dh > 5 all of the models match the temporal
autocorrelation well, without a clear trend in the error as dimension changes. All these
models match well for ∼40 time units, with dh = 18 (the darkest line) matching the data
extremely well for two Lyapunov times.

973 A42-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

–3.4 10–1

10–2

10–3

10–4

10–5

100 101

tt

φ

102

–3.5

–3.6

–3.7

0 50 100

DNS

DManD

M
S

D

150 200

Figure 7. (a) Example of the phase evolution and (b) the MSD of the phase evolution for the DNS and the
DManD model at dh = 18.

Finally, before investigating the long-time predictive capabilities of the model, we show
the tracking of phase dynamics for dh = 18. As mentioned in § 2, we decouple the phase
and pattern dynamics such that the time evolution of the phase only depends upon the
pattern dynamics. Here we take the dh = 18 model and used it to train an ODE for the
phase dynamics. For training we repeat the process used for training gNN to train gφ with
the loss in (2.14). Table 1 contains details on the NN architecture.

In figure 7(a) we show an example of the model phase evolution over 200 time units. In
this example, the model follows the same downward drift in phase despite not matching
exactly. Then, to show the statistical agreement between the DNS and the model, we
show the mean squared phase displacement MSD = 〈(φ(ti) − φ(ti + t))2〉 for both the
DNS and the model in figure 7(b), as was done for Kolmogorov flow by Pérez De Jesús
& Graham (2023). The curves are in good agreement. All of the remaining long-time
statistics we report are phase invariant, so the remaining results use only models for the
pattern dynamics.

3.4. Long-time statistics
Next, we investigate the ability of the DManD model to capture the long-time dynamics of
PCF. An obvious prerequisite for models to capture long-time dynamics is the long-time
stability of the models. As mentioned in § 2, the long-time trajectories of standard neural
ODEs often become unstable, which led us to use stabilised neural ODEs with an explicit
damping term. We quantify this observation by counting, of the 16 models trained at each
dimension dh, how many become unstable with and without the presence of an explicit
damping term. From our training data, we know where h should lie, so if it falls far outside
this range after some time we can classify the model as unstable. In particular, we classify
models as unstable if the norm of the final state is two times that of the maximum in our
data (‖h̃(T)‖ > 2 maxt ‖h(t)‖), after T = 104 time units. In all of the unstable cases ‖h̃(t)‖
follows the data over some short time range before eventually growing indefinitely.

In figure 8 we show the number of unstable models with and without damping. With
damping, all of the models are stable, whereas without damping almost all models become
unstable for dh = 5–16, and around half become unstable in the other cases. In addition,
with longer runs or with different initial conditions, many of the models without damping
labelled as stable here also eventually become unstable. This lack of stability happens
when inaccuracies in the neural ODE model push trajectories off the attractor. Once
off the attractor, the model is presented with states unlike the training data leading
to further growth in this error. We show more results highlighting this behaviour in

973 A42-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

1.00

0.75

0.50

F
ra

ct
io

n
 u

n
st

ab
le

0.25

0

10 20
dh

30

Standard

Stabilised

40

Figure 8. Fraction of unstable DManD models with standard neural ODEs and with stabilised neural ODEs
at various dimensions.

10–1

10–2

10–3

10–4

10–5

10–6

10–1

10–2

10–3

10–4

N = 16
N = 128
N = 512
N = 1024
λ

10–5

10–6

100 101

n + 1

〈||a
n|

|2
〉

DNS

DManD

102 100 101

n + 1
102

(b)(a)

Figure 9. Comparison of 〈‖an‖2〉 (mean-squared POD coefficient amplitudes) from the DNS to (a) 〈‖an‖2〉
from the DManD model at dh = 18 and (b) 〈‖an‖2〉 from POD-Galerkin with N POD modes (reproduced with
permission from Gibson 2002). In (b), the quantity λ is equivalent to 〈‖an‖2〉 from the DNS.

Linot & Graham (2022) and Linot et al. (2023a). Thus, although some standard neural
ODE models do provide reasonable statistics, using these models presents challenges due
to this lack of robustness. As such, all other results we show use stabilised neural ODEs.

While figure 8 indicates that stabilised neural ODEs predict h̃ in a similar range to
that of the data, it does not quantify the accuracy of these predictions. In fact, with
few dimensions many of these models do not remain chaotic, landing on fixed points
or POs. The first metric we use to quantify the long-time performance of the DManD
method is the mean-squared POD coefficient amplitudes (〈‖an‖2〉). We consider this
quantity because Gibson reports it for POD-Galerkin in Gibson (2002) at various levels
of truncation. In figure 9 we show how well the DManD model, with dh = 18, captures
this quantity, in comparison to the POD-Galerkin model in Gibson (2002). The two data
sets slightly differ because we subtract the mean before applying POD and Gibson did
not. The DManD method, with only 18 degrees of freedom, matches the mean-squared
amplitudes to high accuracy, far better than all of the POD-Galerkin models. It is not until
POD-Galerkin keeps 1024 modes that the results become comparable, which corresponds
to ∼2000 degrees of freedom because most coefficients are complex. In addition, our
method requires only data, whereas the POD-Galerkin approach requires both data for

973 A42-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

75

50

25

0

4

0

–2.5

–5.0

–7.5

2

0

(×10–3)

6

4

〈v′ z2
〉

〈v′ x2
〉

〈v′ x
v
′ y〉

〈v′ y2
〉

2

0

–1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0
y y

DNS

DManD

0.5 1.0

–1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0

(×10–3)

(×10–3)

(×10–3)

18

14

10

6

dh

(a) (b)

(c) (d)

Figure 10. Components of the Reynolds stress with increasing dimension for DManD models at various
dimensions. Odd numbers above dh = 5 are omitted for clarity.

computing the POD and knowledge of the equations of motion for projecting the equations
onto these modes.

We now investigate how the Reynolds stress and the power input versus dissipation
vary with dimension. Figure 10 shows four components of the Reynolds stress at various
dimensions. For 〈v′2

x 〉 and 〈v′
xv

′
y〉, nearly all the models match the data, with relatively

small deviations only appearing for dh ∼ 3–6. For 〈v′2
y 〉 and 〈v′2

z 〉, this deviation becomes
more obvious, and the lines do not converge until around dh > 10, with all models above
this dimension exhibiting a minor overprediction in 〈v′2

z 〉.
To evaluate how accurate the models are at reconstructing the energy balance, we look

at joint PDFs of power input and dissipation. The power input is the amount of energy
required to move the walls:

I = 1
2LxLz

∫ Lx

0

∫ Lz

0

∂vx

∂y

∣∣∣∣
y=−1

+ ∂vx

∂y

∣∣∣∣
y=1

dx dz, (3.14)

and the dissipation is the energy lost to heat due to viscosity:

D = 1
2LxLz

∫ Lx

0

∫ 1

−1

∫ Lz

0
|∇ × v|2 dx dy dz. (3.15)

These two terms define the rate of change of energy in the system Ė = (I − D)/Re
(Kaszás, Cenedese & Haller 2022), which must average to zero over long times. Checking
this statistic is important to show the DManD models correctly balance the energy.

Figure 11(a–c) show the PDF from the DNS, the PDF for dh = 6 and the PDF for dh =
18, generated from a single trajectory evolved for 5000 time units, and figures 11(e, f)
show the absolute difference between the true and model PDFs. With dh = 6 the model
overestimates the number of low dissipation states, while dh = 18 matches the density
well. In figure 11(d) we compare the joint PDFs at all dimensions with the true PDF using
the earth movers distance (EMD) (Rubner, Tomasi & Guibas 1998). The EMD determines
the distance between two PDFs as a solution to the transportation problem by treating

973 A42-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

3.5

3.0D D

D

D

D

P

E
M

D

2.5

2.0
2.0 2.5 3.0

3.5
dh = 6 dh = 18DNS

DNS

DManD

Error dh = 6 Error dh = 18

3.0

2.5

2.0
2.0 2.5 3.0

3.5
4

2

0

3

2

1

0

3.0

2.5

2.0
2.0 2.5 3.0

0.2

0.1

0
5 10

dh I I

I I I

15

3.5

3.0

2.5

2.0
2.0 2.5 3.0

3.5

3.0

2.5

2.0
2.0 2.5 3.0

|P
 –

 P̃
|

(a) (b) (c)

(d) (e) (f)

Figure 11. (a–c) Examples of joint PDFs for the true system, the DManD model at dh = 6 and the DManD
model at dh = 18. (d) EMD between the PDF from the DNS and the PDFs predicted by the DManD model
at various dimensions. ‘DNS’ is the error between two PDFs generated from DNS trajectories of the same
length with different initial conditions. (e, f) The error associated with the DManD model PDFs at dh = 6 and
dh = 18.

the true PDF as ‘supplies’ and the model PDF as ‘demands’ and finding the ‘flow’ that
minimises the work required to move one to the other. Specifically, we find the flow fij that
minimises

∑m
i=1

∑n
j=1 fijdij subject to the constraints:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (3.16)
n∑

j=1

fij = pi, 1 ≤ i ≤ m, (3.17)

m∑
i=1

fij = qj, 1 ≤ j ≤ n, (3.18)

where pi is the probability density at the ith bin in the model PDF and qj is the probability
density at the jth bin in the true PDF, for PDFs with n and m bins (in this case n = m). In
addition, dij is the cost to move between bins, which we take to be the L2 distance between
bins i and j (for i = j dij = 0). After solving this minimisation problem for the optimal
flow f ∗

ij the EMD is defined as

EMD =

m∑
i=1

n∑
j=1

f ∗
ij dij

m∑
i=1

n∑
j=1

f ∗
ij

. (3.19)

For a more detailed explanation of the EMD we refer the reader to Levina & Bickel (2001).

973 A42-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

0.04

0.02

0

–0.02

λn
LE

–0.04

0.02

0

–0.02

–0.04
0 5 10 150 500 1000

nt
1500 2000

DNS

DManD

(b)(a)

Figure 12. (a) The mean (black) and standard deviation (blue) of the Lyapunov exponents computed with
the DManD model through time for 10 random initial conditions. The grey dashed line identifies λ = 0.
(b) Lyapunov exponents computed from the model and from the DNS (Inubushi et al. 2015).

We compute the distance between PDFs using the EMD because it is a cross-bin
distance, meaning the distance accounts for the density in neighbouring bins. This is in
contrast to bin-to-bin distances, such as the Kullback–Leibler divergence, which only uses
the error at a given bin. Bin-to-bin distances can vary significantly with small shifts in
one PDF (misalignment) and when changing the number of bins used to generate the PDF
(Ling & Okada 2007). We choose the EMD because it does not suffer from these issues. In
figure 11(d) we see a steep drop in the EMD at dh = 5 and after dh � 15 the joint PDFs are
in excellent agreement with the DNS. The dashed line corresponds to the EMD between
two different trajectories from the DNS. An interesting observation is that the DManD
models appear to accurately capture the statistics of the DNS for dh � 15, and Inubushi
et al. (2015) reported a Lyapunov dimension of 14.8. The close agreement between this
fractal dimension and the dimension at which our models perform well further supports
that, in theory, for the models with dh � 15 we have a sufficient number of dimensions to
‘exactly’ parameterise the manifold on which the dynamics lie.

Finally, we investigate the Lyapunov exponents of the DManD models. In figure 12, we
report the spectrum of Lyapunov exponents λLE

n for the DManD model with dh = 18, as
well as the leading values computed by Inubushi et al. (2015) from DNS. Figure 12(a)
shows the prediction of the Lyapunov exponents through time in the DManD model,
averaged over 10 initial conditions using the methods described in Sandri (1996) with
the code made available by Rozdeba (2017). At around 2000 time units we see that the
Lyapunov exponents have nearly converged, with relatively small discrepancies across
trials, as seen by the standard deviation. In figure 12(b), we report the Lyapunov spectra for
the DManD model and the DNS. The DManD model correctly predicts that there are four
positive exponents, and the computed values are in very good agreement with those from
the DNS. Along with the positive exponents, Inubushi et al. (2015) identified that there
were three zero exponents associated with the time translation symmetry and the spatial
translational symmetries in x and z. We see that the DManD model reasonably predicts
two of these zero Lyapunov exponents, but lacks the third due to the phase alignment of
the model. The negative values are not in such good agreement, probably for one or both of
two reasons. First, the DManD model considers only the dynamics on the low-dimensional
invariant manifold of the long-time dynamics, so cannot capture Lyapunov exponents
corresponding to directions off of this manifold. Second, the stabilisation term included
in the neural ODE representation may lead to some additional damping. Nevertheless, the
quantitative prediction of both the number and magnitude of the unstable and neutrally

973 A42-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

0.04

0.02

0

–0.02

–0.04

5 10

dh

15

λn
LE

DNS

DManD

Figure 13. The four leading Lyapunov exponents for the DManD models at various dimensions and
for the DNS.

stable Lyapunov exponents indicates the fidelity of the DManD model with regard to the
chaotic dynamics of the flow.

As with the other statistics, we may again investigate the exponents as we vary the
DManD model dimension. Figure 13 shows the four leading Lyapunov exponents (all
positive in the DNS) for the models as we vary the dimension. Again, we compute these
Lyapunov exponents from 10 initial conditions evolved forward 2000 time units. The
positive Lyapunov exponents may be used to compute the Kolmogorov–Sinai entropy
KS = ΣλLE

n >0λ
LE
n . This is a measure of the information created by a dynamical system

(Eckmann & Ruelle 1985). As we increase the model dimension, the estimate of these
Lyapunov exponents improves in two different ways. First, from dh = 4–8 the number of
positive Lyapunov exponents increases from one to three, recovering the correct number
of four positive Lyapunov exponents at dh = 9. Second, from dh = 9–15 we see a gradual
decrease in the two highest Lyapunov exponents and a gradual increase in the other two
positive Lyapunov exponents. After dh � 15 the accuracy of the Lyapunov exponents
only shows mild improvement, further supporting the conclusion that near dh = 15 we
have a sufficient number of dimensions. At dh = 18 (the most accurate model) the
Kolmogorov–Sinai entropy of the DManD model is KS = 0.054 which is close to the
DNS value of KS = 0.048 (Inubushi et al. 2015).

3.5. Finding ECS in the model
Now that we know that the DManD model quantitatively captures many of the key
characteristics of MFU PCF, we now want to explore using the model to discover ECS.
In particular, we first investigate whether known POs of the DNS exist in the DManD
model, and then we use the DManD model to search for new POs. Finding good initial
conditions for use in a PO search is a challenging task, for example, Page & Kerswell
(2020) compared using DManD with recurrent flow analysis for this task. Here we show
that the DManD model offers a rapid method for finding useful initial conditions to input
into the full DNS ECS solver. As our model predicts phase-aligned dynamics, the POs
of the DManD model are either POs or RPOs, depending on the phase evolution, which
we have not tracked. In the following, we omit all ·̃ for clarity, so all functions should be
assumed to come from a DManD model.

Here we outline the approach we take to find POs, which follows Cvitanović et al.
(2016). When searching for POs we seek an initial condition to a trajectory that repeats

973 A42-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

after some time period. This is equivalent to finding the zeros of

H(h, T) = GT(h) − h, (3.20)

where GT(h) is the flow map forward T time units from h, i.e. GT(h(t)) = h(t + T). We
compute GT(h) from (2.9). Finding zeros to (3.20) requires that we find both a point h∗ on
the PO and a period T∗ such that H(h∗, T∗) = 0. One way to find h∗ and T∗ is by using
the Newton–Raphson method.

By performing a Taylor series expansion of H we find near the fixed point h∗, T∗ of H
that

H(h∗, T∗) − H(h, T) ≈ DhH(h, T)�h + DTH(h, T)�T,

−H(h, T) ≈ DhH(h, T)�h + g(GT(h))�T,

}
(3.21)

where Dh is the Jacobian of H with respect to h, DT is the Jacobian of H with respect
to the period T , �h = h∗ − h and �T = T∗ − T . To have a complete set of equations for
�h and �T , we supplement (3.21) with the constraint that the updates �h are orthogonal
to the vector field at h: i.e.

g(h)T�h = 0. (3.22)

With this constraint, at Newton step (i), the system of equations becomes[
Dh(i)H(h(i), T(i)) g(GT(i) (h(i)))

g(h(i))T 0

] [
�h(i)

�T(i)

]
= −

[
H(h(i), T(i))

0

]
, (3.23)

which, in the standard Newton–Raphson method, is used to update the guesses h(i+1) =
h(i) + �h(i) and T(i+1) = T(i) + �T(i).

Typically, a Newton–Krylov method is used to avoid explicitly constructing the Jacobian
(Viswanath 2007). However, with DManD, computing the Jacobian is simple, fast and
requires little memory because the state representation is dramatically smaller in the
DManD model than in the DNS. We compute the Jacobian DhH(h, T) directly, with the
same automatic differentiation tools used for training the neural ODE. Furthermore, if we
had chosen to represent the dynamics in discrete, rather than continuous time, computation
of general POs would not be possible, as the period T can take on arbitrary values and a
discrete-time representation would limit T to multiples of the time step. When finding POs
of the DManD model we used the SciPy ‘hybr’ method, which uses a modification of the
Powell hybrid method (Virtanen et al. 2020), and for finding POs of the DNS we used
the Newton GMRES-Hookstep method built into Channelflow (Gibson et al. 2021). In the
following trials we only consider DManD models with dh = 18.

For the HKW cell there exists a library of POs made available by Gibson et al. (2008b).
To investigate whether the DManD model finds POs similar to existing solutions, we took
states from the known POs, encoded them and used this as an initial condition in the
DManD Newton solver to find POs in the model. In figure 14 we show projections of 12
known POs, which we identify by the period T , and compare them with projections of POs
found using the DManD model. This makes up a majority of the POs made available by
Gibson et al. (2008b). Of the other known solutions, three are RPOs with phase shifts in
the streamwise direction that our model, with the current set-up, cannot capture. The other
two have short periods of T = 19.02 and T = 19.06. Most of the POs found with DManD
land on initial conditions near that of the DNS and follow similar trajectories to the DNS.

How close many of these trajectories are to the true PO is surprising and encouraging
for many reasons. First, the data used for training the DManD model does not explicitly

973 A42-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

3.5

3.0

2.5

2.5 3.0

T = 90.52 T = 99.70 T = 121.4

3.5

3.5

3.0

2.5

2.5 3.0 3.5

3.5

3.0

2.5

2.5 3.0 3.5

3.5

3.0

2.5

2.5 3.0

T = 87.89 T = 88.90 T = 90.31

3.5

3.5

3.0

2.5

2.5 3.0 3.5

3.5

3.0

2.5

2.5 3.0 3.5

3.5

3.0

2.5

2.5 3.0

T = 76.82 T = 76.85 T = 85.27

3.5

3.5

3.0

2.5

2.5 3.0 3.5

3.5

3.0

2.5

2.5 3.0 3.5

3.5

3.0

D

D

D

D

2.5

2.5 3.0

T = 62.13 T = 68.07 T = 75.35

3.5

3.5

3.0

2.5

2.5 3.0 3.5

3.5

3.0

2.5

2.5 3.0 3.5

DNS

DManD

I I I

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 14. Power input versus dissipation of known POs (period reported in bottom right) from the DNS and
POs found in the DManD model at dh = 18. The blue line is a long trajectory of the DNS for comparison.

contain any POs. Second, this approach by no means guarantees convergence on a PO in
the DManD model. Third, starting with an initial condition from a PO does not necessarily
mean that the solution the Newton solver lands on will be the closest PO to that initial
condition, so there may exist POs in the DManD model closer to the DNS solutions than
what we present here.

Now that we know the DManD model can find POs similar to those known to exist for
the DNS, we now use it to search for new POs. First, we searched for POs in three of
the dh = 18 models by randomly selecting 20 initial conditions and selecting 4 different
periods T = [20, 40, 60, 80]. We then took the initial conditions and periods for converged
POs and decoded and upsampled them onto a 48 × 49 × 48 grid. We performed this
upsampling because Viswanath (2007) reported that solutions on the coarser grid can be
computational artifacts. Finally, we put these new initial conditions into Channelflow and
ran another Newton search for 100 iterations. This procedure resulted in us finding nine
new RPOs and three existing POs, the details of which we include in table 2.

973 A42-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

L
ab

el
1

2
3

4
5

6
7

8
9

10
11

12

σ
z

1.
91

×
10

−1
−9

.6
6

×
10

−2
−1

.7
7

×
10

−3
1.

15
×

10
−1

−9
.2

1
×

10
−3

−1
.9

0
×

10
−1

−1
.2

8
×

10
−2

−1
.1

9
×

10
−1

−5
.6

3
×

10
−5

4.
64

×
10

−1
4

2.
17

×
10

−1
4

2.
73

×
10

−1
3

T
37

.9
4

84
.2

5
91

.2
9

82
.0

7
74

.1
4

41
.2

4
11

0.
67

83
.3

1
64

.6
4

19
.0

6
68

.0
7

75
.3

5
E

rr
or

2.
23

×
10

−3
1.

01
×

10
−3

3.
92

×
10

−3
2.

84
×

10
−3

1.
87

×
10

−3
5.

26
×

10
−4

1.
25

×
10

−3
1.

13
×

10
−3

2.
25

×
10

−3
1.

57
×

10
−4

2.
55

×
10

−4
1.

07
×

10
− 4

Ta
bl

e
2.

D
et

ai
ls

on
th

e
R

PO
s

an
d

PO
s

fo
un

d
us

in
g

in
iti

al
co

nd
iti

on
s

fr
om

th
e

D
M

an
D

m
od

el
.T

he
fir

st
ni

ne
so

lu
tio

ns
ar

e
ne

w
an

d
th

e
la

st
th

re
e

ha
d

pr
ev

io
us

ly
be

en
fo

un
d.

‘L
ab

el
’

in
di

ca
te

s
th

e
la

be
li

n
fig

ur
e

15
,σ

z
co

rr
es

po
nd

s
to

th
e

ph
as

e-
sh

if
ti

n
z,

T
is

th
e

pe
ri

od
of

th
e

or
bi

ta
nd

‘E
rr

or
’

is
‖s

hi
ft

ed
fin

al
st

at
e
−

in
iti

al
st

at
e‖

/
‖in

iti
al

st
at

e‖
,

w
hi

ch
is

th
e

sa
m

e
er

ro
ra

s
in

V
is

w
an

at
h

(2
00

7)
.

973 A42-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

4

3

2

2.0 2.5 3.0

RPO7 RPO8 RPO9

RPO4 RPO5 RPO6

RPO1 RPO2 RPO3

3.5

4

3

2

2.0 2.5 3.0 3.5

4

3

2

2.0 2.5

I

D

D

D

I I
3.0 3.5

4

3

2

2.0 2.5 3.0 3.5

4

3

2

2.0 2.5 3.0 3.5

4

3

2

2.0 2.5 3.0 3.5

4

3

2

2.0 2.5 3.0 3.5

4

3

2

2.0 2.5 3.0 3.5

4

3

2

2.0 2.5 3.0 3.5

DNS

DManD

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15. Power input versus dissipation of new POs found in the DManD model at dh = 18 and used to find
solutions in the DNS (periods reported in table 2). The blue line is a long trajectory of the DNS for comparison.

In figure 15 we show the new RPOs in the DManD model and the RPOs they converged
to after putting them into the Channelflow Newton solver as initial guesses. Again, many
of the RPOs end up following a similar path through this state space, with the biggest
exceptions being RPO1 and RPO6, which converged to low-power input solutions. It is
worth noting that this worked well, considering that the DManD initial conditions are
POD coefficients from a model trained using data on a coarser grid than used to search
for these solutions and considering Newton–Raphson methods can converge to solutions
far from the initial condition (as in RPO1 and RPO6). We have described a new method to
rapidly find new ECS, wherein an accurate low-dimensional model, such as the DManD
model presented here, is used to quickly perform a large number of ECS searches in the
model, and then these solutions can be fine-tuned in the full simulation to land on new
solutions.

4. Conclusion

In the present work we have described DManD and applied it for accurate modelling of
MFU PCF with far fewer degrees of freedom (O(10)) than required for the DNS (O(105)).
The DManD method consists of first finding a low-dimensional parameterisation of the
manifold on which data lies, and then discovering an ODE to evolve this low-dimensional
state representation forward in time. In both cases, we use NNs to approximate these
functions from data. We find that an extremely low-dimensional parameterisation of this
manifold can be found using an autoencoder. Then, we use stabilised neural ODEs to
accurately evolve the low-dimensional state forward in time. Although we used NNs for

973 A42-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

the function approximations and applied the method to MFU turbulence, the approach is
general in that any method can be used for the function approximation and it applies to any
system with long-time dynamics that lie on a manifold. Applying the method to another
parameter regime, for example a higher Reynolds number, involves acquiring new data and
varying the dimension dh such that the dynamics are appropriately captured, along with
the hyperparameters of the NNs. In addition, parameter dependency could be incorporated
directly by inputting the parameters into the autoencoder (e.g. h = χ(u, Re; θE)).

The DManD model captures the SSP and accurately tracks trajectories and the temporal
autocorrelation over short time horizons. For DManD models with dh � 15 we found
excellent agreement between the model and the DNS in computing the mean-squared
POD coefficient amplitude, the Reynolds stress and the joint PDF of power input versus
dissipation. For comparison, we showed that a POD-Galerkin model requires ∼2000
degrees of freedom to get similar performance in matching the mean-squared POD
coefficient amplitudes. Finally, we used the DManD model at dh = 18 for PO searches.
Using a set of existing POs, we successfully landed on nearby POs in the model. Finally,
we found nine previously undiscovered RPOs by first finding solutions in the DManD
model and then using those as initial guesses to search in the full DNS. Future work will
be necessary to examine how well the present approach will extend to higher Reynolds
numbers where a spectrum of turbulent length scales arises.

The results reported here have both fundamental and technological importance. At the
fundamental level, they indicate that the true dimension of the dynamics of a turbulent
flow can be orders of magnitude smaller than the number of degrees of freedom required
for a fully resolved simulation. Technologically this point is important because it may
enable, for example, highly sophisticated model-based nonlinear control algorithms to be
used: determining the control strategy from the low-dimensional DManD model rather
than a full-scale DNS, and applying it to the full flow will speed up both learning and
implementing a control policy (Zeng, Linot & Graham 2022a, ; Linot, Zeng & Graham
2023b).

Funding. This work was supported by the Air Force Office of Scientific Research (grant no.
FA9550-18-1-0174) and the Office of Naval Research (grant no. N00014-18-1-2865 (Vannevar Bush Faculty
Fellowship)).

Declaration of interests. The authors report no conflict of interest.

Data availability. The code that supports the findings of this study is openly available at https://github.com/
alinot5/DManDCouette.git

Author ORCIDs.
Alec J. Linot https://orcid.org/0000-0002-4591-7133;
Michael D. Graham https://orcid.org/0000-0003-4983-4949.

REFERENCES

ARNDT, R.E.A., LONG, D.F. & GLAUSER, M.N. 1997 The proper orthogonal decomposition of pressure
fluctuations surrounding a turbulent jet. J. Fluid Mech. 340, 1–33.

BALL, K.S., SIROVICH, L. & KEEFE, L.R. 1991 Dynamical eigenfunction decomposition of turbulent
channel flow. Intl J. Numer. Meth. Fluids 12 (6), 585–604.

BORRELLI, G., GUASTONI, L., EIVAZI, H., SCHLATTER, P. & VINUESA, R. 2022 Predicting the temporal
dynamics of turbulent channels through deep learning. Intl J. Heat Fluid Flow 96, 109010.

BUDANUR, N.B., BORRERO-ECHEVERRY, D. & CVITANOVIĆ, P. 2015a Periodic orbit analysis of a system
with continuous symmetry – a tutorial. Chaos 25 (7), 073112.

BUDANUR, N.B., CVITANOVIĆ, P., DAVIDCHACK, R.L. & SIMINOS, E. 2015b Reduction of SO(2)
symmetry for spatially extended dynamical systems. Phys. Rev. Lett. 114, 084102.

973 A42-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/alinot5/DManDCouette.git
https://github.com/alinot5/DManDCouette.git
https://orcid.org/0000-0002-4591-7133
https://orcid.org/0000-0002-4591-7133
https://orcid.org/0000-0003-4983-4949
https://orcid.org/0000-0003-4983-4949
https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

CHEN, R.T.Q., RUBANOVA, Y., BETTENCOURT, J. & DUVENAUD, D. 2019 Neural ordinary differential
equations. In 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, QC.

CHOLLET, F., et al. 2015 Keras. Available at: https://keras.io.
COIFMAN, R.R., LAFON, S., LEE, A.B., , MAGGIONI, M., NADLER, B., WARNER, F. & ZUCKER, S.W.

2005 Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps.
Proc. Natl Acad. Sci. USA 102 (21), 7426–7431.

CVITANOVIĆ, P., ARTUSO, R., MAINIERI, R., TANNER, G. & VATTAY, G. 2016 Chaos: Classical and
Quantum. Niels Bohr Institute.

DORMAND, J.R. & PRINCE, P.J. 1980 A family of embedded Runge–Kutta formulae. J. Comput. Appl. Maths
6 (1), 19–26.

ECKMANN, J.P. & RUELLE, D. 1985 Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57,
617–656.

EIVAZI, H., GUASTONI, L., SCHLATTER, P., AZIZPOUR, H. & VINUESA, R. 2021 Recurrent neural networks
and Koopman-based frameworks for temporal predictions in a low-order model of turbulence. Intl J. Heat
Fluid Flow 90, 108816.

EIVAZI, H., VEISI, H., NADERI, M.H. & ESFAHANIAN, V. 2020 Deep neural networks for nonlinear model
order reduction of unsteady flows. Phys. Fluids 32 (10), 105104.

FLORYAN, D. & GRAHAM, M.D. 2022 Data-driven discovery of intrinsic dynamics. Nat. Mach. Intell. 4 (12),
1113–1120.

FOIAS, C., JOLLY, M.S., KEVREKIDIS, I.G., SELL, G.R. & TITI, E.S. 1988 On the computation of inertial
manifolds. Phys. Lett. A 131 (7–8), 433–436.

GARCÍA-ARCHILLA, B., NOVO, J. & TITI, E.S. 1998 Postprocessing the Galerkin method: a novel approach
to approximate inertial manifolds. SIAM J. Numer. Anal. 35 (3), 941–972.

GIBSON, J.F. 2002 Dynamical systems models of wall-bounded, shear-flow turbulence. PhD thesis, Cornell
University, New York.

GIBSON, J.F. 2012 Channelflow: a spectral Navier–Stokes simulator in C++. pp. 1–41. University of New
Hampshire.

GIBSON, J.F., et al. 2021 Channelflow 2.0. arXiv:channelflow.ch
GIBSON, J.F., HALCROW, J. & CVITANOVIĆ, P. 2008a Visualizing the geometry of state space in plane

Couette flow. J. Fluid Mech. 611 (1987), 107–130.
GIBSON, J.F., HALCROW, J., CVITANOVIĆ, P. & VISWANATH, D. 2008b Heteroclinic connections in plane

Couette flow. J. Fluid Mech. 621, 365–376.
GOODFELLOW, I., BENGIO, Y. & COURVILLE, A. 2016 Deep Learning. MIT. Available at: http://www.

deeplearningbook.org.
GRAHAM, M.D. & FLORYAN, D. 2021 Exact coherent states and the nonlinear dynamics of wall-bounded

turbulent flows. Annu. Rev. Fluid Mech. 53 (1), 227–253.
GRAHAM, M.D., STEEN, P.H. & TITI, E.S. 1993 Computational efficiency and approximate inertial

manifolds for a Bénard convection system. J. Nonlinear Sci. 3 (1), 153–167.
HAMILTON, J., KIM, J. & WALEFFE, F. 1995 Regeneration mechanisms of near-wall turbulence structures.

J. Fluid Mech. 287, 317–348.
HASEGAWA, K., FUKAMI, K., MURATA, T. & FUKAGATA, K. 2020a CNN-LSTM based reduced order

modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers.
Fluid Dyn. Res. 52 (6), 065501.

HASEGAWA, K., FUKAMI, K., MURATA, T. & FUKAGATA, K. 2020b Machine-learning-based reduced-order
modeling for unsteady flows around bluff bodies of various shapes. Theor. Comput. Fluid Dyn. 34 (4),
367–383.

HINTON, G. & ROWEIS, S. 2003 Stochastic neighbor embedding. Adv. Neural Inform. Proc. Syst. 15, 833–840.
HINTON, G.E. & SALAKHUTDINOV, R.R. 2006 Reducing the dimensionality of data with neural networks.

Science 313 (5786), 504–507.
HOLMES, P., LUMLEY, J.L., BERKOOZ, G. & ROWLEY, C.W. 2012 Turbulence, Coherent Structures,

Dynamical Systems and Symmetry. Cambridge University Press.
HOPF, E. 1948 A mathematical example displaying features of turbulence. Commun. Pure Appl. Maths 1 (4),

303–322.
INUBUSHI, M., TAKEHIRO, S.-I. & YAMADA, M. 2015 Regeneration cycle and the covariant Lyapunov

vectors in a minimal wall turbulence. Phys. Rev. E 92, 023022.
JIMÉNEZ, J. & MOIN, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240.
KASZÁS, B., CENEDESE, M. & HALLER, G. 2022 Dynamics-based machine learning of transitions in

Couette flow. Phys. Rev. Fluids 7, L082402.

973 A42-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://keras.io
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1017/jfm.2023.720

Data-driven low-dimensional turbulent minimal Couette flow

KAWAHARA, G. & KIDA, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle
and burst. J. Fluid Mech. 449, 291–300.

KAWAHARA, G., UHLMANN, M. & VAN VEEN, L. 2012 The significance of simple invariant solutions in
turbulent flows. Annu. Rev. Fluid Mech. 44 (1), 203–225.

KINGMA, D.P. & BA, J.L. 2015 Adam: a method for stochastic optimization. 3rd International Conference on
Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–15.

KLEISER, L. & SCHUMANN, U. 1980 Treatment of Incompressibility and Boundary Conditions in 3-D
Numerical Spectral Simulations of Plane Channel Flows, pp. 165–173. Vieweg+Teubner.

LEE, K. & CARLBERG, K.T. 2020 Model reduction of dynamical systems on nonlinear manifolds using deep
convolutional autoencoders. J. Comput. Phys. 404, 108973.

LEVINA, E. & BICKEL, P. 2001 The earth mover’s distance is the Mallows distance: some insights from
statistics. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2,
pp. 251–256. IEEE.

LING, H. & OKADA, K. 2007 An efficient earth mover’s distance algorithm for robust histogram comparison.
IEEE Trans. Pattern Anal. Mach. Intell. 29 (5), 840–853.

LINOT, A.J., BURBY, J.W., TANG, Q., BALAPRAKASH, P., GRAHAM, M.D. & MAULIK, R. 2023a
Stabilized neural ordinary differential equations for long-time forecasting of dynamical systems. J. Comput.
Phys. 474, 111838.

LINOT, A.J. & GRAHAM, M.D. 2020 Deep learning to discover and predict dynamics on an inertial manifold.
Phys. Rev. E 101, 062209.

LINOT, A.J. & GRAHAM, M.D. 2022 Data-driven reduced-order modeling of spatiotemporal chaos with
neural ordinary differential equations. Chaos 32 (7), 073110.

LINOT, A.J., ZENG, K. & GRAHAM, M.D. 2023b Turbulence control in plane Couette flow using
low-dimensional neural ODE-based models and deep reinforcement learning. Intl J. Heat Fluid Flow 101,
109139.

MILANO, M. & KOUMOUTSAKOS, P. 2002 Neural network modeling for near wall turbulent flow. J. Comput.
Phys. 182 (1), 1–26.

MOEHLIS, J., FAISST, H. & ECKHARDT, B. 2004 A low-dimensional model for turbulent shear flows.
New J. Phys. 6 (1), 56.

MOEHLIS, J., SMITH, T.R., HOLMES, P. & FAISST, H. 2002 Models for turbulent plane Couette flow using
the proper orthogonal decomposition. Phys. Fluids 14 (7), 2493–2507.

MOIN, P. & MOSER, R.D. 1989 Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech.
200, 471–509.

MURATA, T., FUKAMI, K. & FUKAGATA, K. 2020 Nonlinear mode decomposition with convolutional neural
networks for fluid dynamics. J. Fluid Mech. 882, A13.

NAGATA, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from
infinity. J. Fluid Mech. 217, 519–527.

NAIR, N.J. & GOZA, A. 2020 Leveraging reduced-order models for state estimation using deep learning.
J. Fluid Mech. 897, 1–13.

NAKAMURA, T., FUKAMI, K., HASEGAWA, K., NABAE, Y. & FUKAGATA, K. 2021 Convolutional neural
network and long short-term memory based reduced order surrogate for minimal turbulent channel flow.
Phys. Fluids 33 (2), 025116.

PAGE, J., BRENNER, M.P. & KERSWELL, R.R. 2021 Revealing the state space of turbulence using machine
learning. Phys. Rev. Fluids 6, 034402.

PAGE, J. & KERSWELL, R.R. 2020 Searching turbulence for periodic orbits with dynamic mode
decomposition. J. Fluid Mech. 886, A28.

PASZKE, A., et al. 2019 PyTorch: an imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates.

PÉREZ DE JESÚS, C.E. & GRAHAM, M.D. 2023 Data-driven low-dimensional dynamic model of
Kolmogorov flow. Phys. Rev. Fluids 8 (4), 044402.

PEYRET, R. 2002 Spectral Methods for Incompressible Viscous Flow. Springer.
PORTWOOD, G.D., et al. 2019 Turbulence forecasting via neural ODE. arXiv:1911.05180
REMPFER, D. & FASEL, H.F. 1994 Evolution of three-dimensional coherent structures in a flat-plate boundary

layer. J. Fluid Mech. 260, 351–375.
ROJAS, C.J.G., DENGEL, A. & RIBEIRO, M.D. 2021 Reduced-order model for fluid flows via neural ordinary

differential equations. arXiv:2102.02248
ROWEIS, S.T. & SAUL, L.K. 2000 Nonlinear dimensionality reduction by locally linear embedding. Science

290 (5500), 2323–2326.
ROZDEBA, P. 2017 pyLyapunov. Available at: https://github.com/paulrozdeba/pyLyapunov

973 A42-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/1911.05180
https://arxiv.org/abs/2102.02248
https://github.com/paulrozdeba/pyLyapunov
https://doi.org/10.1017/jfm.2023.720

A.J. Linot and M.D. Graham

RUBNER, Y., TOMASI, C. & GUIBAS, L.J. 1998 A metric for distributions with applications to image
databases. In Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp. 59–66.
IEEE.

SANDRI, M. 1996 Numerical calculation of Lyapunov exponents. Math. J. 6, 78–84.
SCHÖLKOPF, B., SMOLA, A. & MÜLLER, K.-R. 1998 Nonlinear component analysis as a kernel eigenvalue

problem. Neural Comput. 10 (5), 1299–1319.
SMITH, T.R., MOEHLIS, J. & HOLMES, P. 2005 Low-dimensional modelling of turbulence using the proper

orthogonal decomposition: a tutorial. Nonlinear Dyn. 41 (1), 275–307.
SPALART, P.R., MOSER, R.D. & ROGERS, M.M. 1991 Spectral methods for the Navier–Stokes equations

with one infinite and two periodic directions. J. Comput. Phys. 96 (2), 297–324.
SRINIVASAN, P.A., GUASTONI, L., AZIZPOUR, H., SCHLATTER, P. & VINUESA, R. 2019 Predictions of

turbulent shear flows using deep neural networks. Phys. Rev. Fluids 4, 054603.
TAKENS, F. 1981 Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick

1980 (ed. David Rand & Lai-Sang Young), pp. 366–381. Springer.
TENENBAUM, J.B., DE SILVA, V. & LANGFORD, J.C. 2000 A global geometric framework for nonlinear

dimensionality reduction. Science 290 (5500), 2319–2323.
TITI, E.S. 1990 On approximate inertial manifolds to the Navier–Stokes equations. J. Math. Anal. Appl.

149 (2), 540–557.
VAN DER MAATEN, L.J.P., POSTMA, E.O. & VAN DEN HERIK, H.J. 2009 Dimensionality reduction: a

comparative review. J. Mach. Learn. Res. 10, 1–41.
VIRTANEN, P., et al. 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods

17, 261–272.
VISWANATH, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339–358.
VLACHAS, P.R., PATHAK, J., HUNT, B.R., SAPSIS, T.P., GIRVAN, M., OTT, E. & KOUMOUTSAKOS, P.

2020 Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting
of complex spatiotemporal dynamics. Neural Netw. 126, 191–217.

WALEFFE, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883–900.
WALEFFE, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81 (19), 4140–4143.
WAN, Z.Y., VLACHAS, P., KOUMOUTSAKOS, P. & SAPSIS, T. 2018 Data-assisted reduced-order modeling

of extreme events in complex dynamical systems. PLoS ONE 13 (5), e0197704.
WHITNEY, H. 1936 Differentiable manifolds. Ann. Maths 37 (3), 645–680.
WHITNEY, H. 1944 The self-intersections of a smooth n-manifold in 2n-space. Ann. Maths 45 (2), 220–246.
YOUNG, C.D. & GRAHAM, M.D. 2023 Deep learning delay coordinate dynamics for chaotic attractors from

partial observable data. Phys. Rev. E 107 (3), 034215.
YU, H., TIAN, X., WEINAN, E & QIANXIAO, L. 2021 Onsagernet: learning stable and interpretable dynamics

using a generalized Onsager principle. Phys. Rev. Fluids 6, 114402.
ZENG, K. & GRAHAM, M.D. 2023 Autoencoders for discovering manifold dimension and coordinates in data

from complex dynamical systems. arXiv:2305.01090
ZENG, K., LINOT, A. & GRAHAM, M.D. 2022a Learning turbulence control strategies with data-driven

reduced-order models and deep reinforcement learning. In 12th International Symposium on Turbulence
and Shear Flow Phenomena (TSFP12) Osaka, Japan (Online).

ZENG, K., LINOT, A.J. & GRAHAM, M.D. 2022b Data-driven control of spatiotemporal chaos with
reduced-order neural ODE-based models and reinforcement learning. Proc. R. Soc. A 478 (2267),
20220297.

973 A42-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
0

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2305.01090
https://doi.org/10.1017/jfm.2023.720

	1 Introduction
	2 Framework
	3 Results
	3.1 Description of PCF data
	3.2 Dimension reduction and dynamic model construction
	3.2.1 Linear dimension reduction with POD: from O(105) to O(103)
	3.2.2 Nonlinear dimension reduction with autoencoders: from O(103) to O(101)
	3.2.3 Neural ODE training

	3.3 Short-time tracking
	3.4 Long-time statistics
	3.5 Finding ECS in the model

	4 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

