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NONPARAMETRIC TIME-VARYING
PANEL DATA MODELS WITH

HETEROGENEITY

FEI LIU

Nankai University

Since Bai (2009, Econometrica 77, 1229–1279), considerable extensions have been
made to panel data models with interactive fixed effects (IFEs). However, little
work has been conducted to understand the associated iterative algorithm, which,
to the best of our knowledge, is the most commonly adopted approach in this line
of research. In this paper, we refine the algorithm of panel data models with IFEs
using the nuclear-norm penalization method and duple least-squares (DLS) itera-
tions. Meanwhile, we allow the regression coefficients to be individual-specific and
evolve over time. Accordingly, asymptotic properties are established to demonstrate
the theoretical validity of the proposed approach. Furthermore, we show that the
proposed methodology exhibits good finite-sample performance using simulation
and real data examples.

1. INTRODUCTION

In the panel data model literature, the interactive fixed effects (IFEs) structure has
received considerable attention since Pesaran (2006) and Bai (2009). The common
correlated effects approach and principal component analysis (PCA) are the main
tools used for regression analysis. These approaches are so popular that each has
its own separate literature. In this study, we use a PCA-based approach. In terms
of numerical implementation, most research has followed Bai (2009) in using an
iterative algorithm; however, little work has been done to explore its asymptotic
behavior. The only exception known to us is Jiang et al. (2021), who specifically
study a homogeneous parametric framework and document that this algorithm
suffers from an initial estimation bias. Moon and Weidner (2018) regard the bias
as a non-convex minimization problem that can be addressed using a nuclear-
norm penalization method. Despite producing consistent estimators, this method
exhibits a slow convergence rate.
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In this study, we provide an improved algorithm that can eliminate the initial
estimation biases and achieve an optimal convergence rate. Specifically, we
employ a semiparametric nuclear-norm penalization method for consistent initial
estimation and conduct duple least-squares (DLS) iterations to reduce initial
estimation biases. Under mild conditions, we establish asymptotic properties for
the initial and iterative DLS estimators. We also consider a generalized model with
the IFEs structure by involving regression coefficients that are individual-specific
and nonparametric time-varying functions. At this point, we introduce another
terminology: profile least squares (PLS), which is an important step in our DLS
algorithm. In the literature, the PLS method is commonly adopted for obtaining
efficient semi-/non-parametric estimation (Speckman, 1988; Su and Ullah, 2006;
Atak, Linton, and Xiao, 2011; Phillips and Wang, 2022; among others). In each
iteration of our DLS algorithm, PLS is employed for the simultaneous estimation
of time-varying regression coefficients and factor loadings. This results in a
regression model for common factors that can be estimated using the OLS method.
In summary, the newly proposed DLS algorithm is relatively straightforward in the
sense that only two least-squares methods are involved, which is a desirable feature
for practical implementation.

Additionally, the present study provides the following outcomes: (1) a residual-
based method to test the underlying time-constant parameter assumption versus
local alternatives of time-varying functions and (2) an information criterion for
factor number selection. Notably, although numerous model specification tests
have been proposed in time series and panel data frameworks (e.g., Wooldridge,
1992; Hardle and Mammen, 1993; Li, 1999; Su, Jin, and Zhang, 2015), virtually no
studies have tested the time-constant parameter assumption for the IFEs structure.
Therefore, we construct a test statistic using restricted estimation residuals of a
time-constant IFEs model with heterogeneity and develop asymptotic properties
accordingly. The information criterion is established under a set of mild conditions
and also works effectively when the heterogeneous coefficient functions reduce
to constant parameters. Consequently, it nests Bai and Ng’s (2002) method as a
special case. In numerical studies, these theoretical findings are examined through
extensive simulations.

The remainder of this paper is organized as follows. Section 2 introduces the
heterogeneous time-varying panel data model and proposes the DLS estimation
method. Section 3 establishes the asymptotic properties of the DLS estimators
under regularity conditions. Section 4 develops a constancy test for the time-
constant parameter assumption and employs an information criterion for factor
number selection. Simulation studies are presented in Section 5. Section 6 applies
the newly proposed methodology to an empirical study that investigates the
mutual fund performance in the United States. Section 7 concludes the study.
The Appendix provides justifications for assumptions and outlines the theoretical
development of this study. Additional discussion and proofs are provided in the
Supplementary Material.
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Before proceeding further, we introduce the following notation: for a matrix A,
A� denotes its transpose; ‖ · ‖F, ‖ · ‖∗, and ‖ · ‖∞ denote Frobenius, nuclear, and
spectral matrix norms, respectively; ‖ · ‖ denotes L2 vector norm; tr(·), rank(·),
vec(·), and λmin(·) denote trace, rank, vectorization, and the smallest eigenvalue
of a matrix, respectively. Further, for matrices A and B with the same dimensions,
A � B denotes their elementwise product matrix; Ia and 0a are a × a identity and
null matrices, respectively; 0a×b is an a×b matrix of zeros; for an a×b matrix A
with full column rank, letMA = Ia −A(A�A)−1A�; an � bn says an and bn have the

same order as n → ∞;
P−→ denotes convergence in probability, and

D−→ denotes
convergence in distribution; K(·) and h are the kernel function and bandwidth in
the kernel estimation, respectively.

2. MODEL AND DLS ALGORITHM

This section presents the model setup and the DLS algorithm. Specifically, we
consider the following panel data model:

yit = x�
it βit +λ0�

i f 0
t + εit, i = 1,2, . . . ,N, t = 1,2, . . . ,T, (2.1)

where xit is a p × 1 vector of explanatory variables, βit = βi(τt) is a p × 1 vector
of unknown nonparametric functions for τt = t/T , λ0

i and f 0
t are r0 × 1 vectors of

unobserved factor loadings and common factors, respectively, and εit is an error
component having correlation along both dimensions. As always, {xit} and {λ0

i ,f
0
t }

can be correlated. For the time being, we suppose that the number of factors (r0)
is known and consider its estimation in Section 4.2.

2.1. Initial Estimation

For notational simplicity, let B(τ ) = (β1(τ ), . . . ,βN(τ ))�, �0 = (
λ0

1, . . . ,λ
0
N

)�
,

F0 = (
f 0
1 , . . . ,f 0

T

)�
, γ 0

it = λ0�
i f 0

t , and �0 = �0F0�. The local linear method, as a
conventional nonparametric approach (see Chapter 2 of Fan and Gijbels, 1996),
can be applied to estimate time-varying functions. Intuitively, for any given τ ∈
(0,1), we should consider the following objective function:

Qτ (A,C,�) = 1

NTh

N∑
i=1

T∑
t=1

(
yit − x�

it (ai + (τt − τ)ci)−γit
)2

K

(
t − τT

Th

)
, (2.2)

for A,C ∈ R
N×p and � ∈ R

N×T , where ai and ci are the ith columns of A� and
C�, respectively, and γit is the (i,t)th element of �. However, Qτ (A,C,�) is
not necessarily convex in �, so minimizing (2.2) numerically may not produce
consistent estimators. To overcome this problem, we consider the following local
linear objective function with the nuclear-norm regularization:(̂
B(0)(τ ),B̂′(0)(τ ),�̂τ

) = argmin
A,C∈RN×p,�∈RN×T

{
Qτ (A,C,�)+ φNT√

NT
‖�‖∗

}
, (2.3)
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where φNT denotes a regularization parameter that satisfies φNT > 0 and φNT → 0.
Various studies have adopted the same treatment to address similar issues (e.g.,
Chernozhukov et al., 2018; Moon and Weidner, 2018; Ma, Su, and Zhang, 2022).

Let β̂(0)
i (τ ) be the ith column of B̂(0)�(τ ) and Rit = yit −x�

it β̂
(0)
i (τt). Additionally,

we define Ri = (Ri1, . . . ,RiT)� and R = (R1, . . . ,RN)�. Subsequently, we employ
the PCA method to construct initial estimators for factors and loadings as follows:

1

NT

N∑
i=1

RiR
�
i F̂(0) = F̂(0)VNT, �̂(0) = T−1RF̂(0),

where VNT is an r0 × r0 diagonal matrix containing the first r0 largest eigen-
values of the matrix (NT)−1 ∑N

i=1 RiR�
i in descending order, and F̂(0) satisfies

T−1F̂(0)�F̂(0) = Ir0 .
Despite the consistency of B̂(0)(τ ), F̂(0), and �̂(0), as discussed in Section 3,

these estimators suffer from substantial shrinkage biases owing to the inefficiency
of the nuclear-norm regularization method. Therefore, we propose the DLS algo-
rithm, which iteratively implements OLS estimation for factors and PLS estimation
for individual-specific regression coefficients and factor loadings.

2.2. DLS Iteration

Before proceeding further, we introduce some new notation to facilitate the
development. We denote n as the number of iterations. Accordingly, let B̂(n)(τ ),
F̂(n), and �̂(n) be the estimators of B(τ ), F0, and �0, respectively, in the nth
step. Then, β̂

(n)
i (τ ), f̂ (n)

t , and λ̂
(n)
i are defined analogously. In addition, we define

R̃(n)
it = yit − x�

it β̂
(n)
i (τt), R̃(n)

t = (̃R(n)
1t , . . . ,R̃(n)

Nt )
�, and

W(τ ) = diag(K((τ1 − τ)/h),, . . . ,K((τT − τ)/h)),

Mi(τ ) =
(

xi1 · · · xiT

xi1(τ1 − τ)/h · · · xiT(τ1 − τ)/h

)�
,

si(τ ) = [Ip,0p][Mi(τ )�W(τ )Mi(τ )]−1Mi(τ )�W(τ ),

Si = (si(τ1)
�xi1, . . . ,si(τT)�xiT)�.

We are now ready to present the iteration procedure.
Step 1. Find initial estimators B̂(0)(τ ), F̂(0), and �̂(0) as in Section 2.1.
Step 2. With F̂(n−1), we employ the PLS method to estimate λ0

i and βi(τ ). Note
that for given λ0

i and τ , βi(τ ) can be estimated by(
β̂

(n)
i (τ,λ0

i ),β̂
′(n)

i (τ,λ0
i )

)
= argmin

ai,ci

T∑
t=1

(
yit −λ0�

i f̂ (n−1)
t − x�

it (ai + (τt − τ)ci)
)2

K

(
t − τT

Th

)
.
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Simple algebra yields

β̂
(n)
i (τ,λ0

i ) = [Ip,0p]
[
Mi(τ )�W(τ )Mi(τ )

]−1
Mi(τ )�W(τ )

[
yi − F̂(n−1)λ0

i

]
, (2.4)

where yi = (yi1,yi2, . . . ,yiT)�. Using β̂
(n)
i (τ,λ0

i ), we obtain the PLS estimator of
factor loadings:

λ̂
(n)
i = argmin

λi

T∑
t=1

(
yit − x�

it β̂
(n)
i (τ,λi)−λ�

i f̂ (n−1)
t

)2
,

which yields

λ̂
(n)
i = [

F̂(n−1)�(I −Si)
�(I −Si)F̂

(n−1)
]−1

F̂(n−1)�(I −Si)
�(I −Si)yi. (2.5)

Plugging λ̂
(n)
i into (2.4), we finally obtain the PLS estimator of βi(τ ):

β̂
(n)
i (τ ) = [Ip,0p]

[
Mi(τ )�W(τ )Mi(τ )

]−1
Mi(τ )�W(τ )

[
yi − F̂(n−1)̂λ

(n)
i

]
.

Step 3. Subsequently, we estimate f 0
t by

f̂ (n)
t = (

�̂(n)��̂(n)
)−1

�̂(n)�R̃(n)
t .

Step 4. Repeat Steps 2 and 3 until a certain convergence criterion is satisfied.
The following section investigates the above algorithm’s asymptotic properties

under a set of mild conditions.

3. ASYMPTOTIC RESULTS

The asymptotic results in this section are organized as follows. Theorems 3.1
and 3.2 establish the consistency of the initial and iterative DLS estimators,
respectively. Asymptotic distributions are given in Theorem 3.3. Theorem 3.4
studies the asymptotic properties of the mean group (MG) estimator.

We impose a structure for explanatory variables of the form: xit = git + vit to
capture the trending features, where git = gi(τt) is a p × 1 vector of unknown
trend functions, and vit denotes a stationary error term that allows interaction
with common factors. Let vt = (v1t, . . . ,vNt)

�, εt = (ε1t, . . . ,εNt)
�, E = (ε1, . . . ,εT),

and D = {λ0
1,λ

0
2, . . .}. Additionally, define M̃i,τ = W1/2(τ )Mi(τ ) and Mx,τ =

diag(MM̃1,τ
, . . . ,MM̃N,τ

).

Assumption 1.

(i) {vt,f 0
t ,εt} are strictly stationary and α-mixing across t conditional on D. Let

αD
ij (|t − s|) and αD

0 (|t − s|) represent the conditionally α-mixing coefficients
between {vit,εit} and {vjs,εjs}, and between {f 0

t } and {f 0
s }, respectively. Assume

that αD
ij (t) ≤ αij(t) almost surely and

∑N
i=1

∑N
j=1

∑T
t=0

(
αij(t)

)δ/(4+δ) = O(N),

where δ > 0 is selected such that E(‖ωit‖4+δ) < ∞ for ωit ∈ {vit,λ
0
i ,f

0
t ,εit}.
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Let αD(t) = max{max1≤i,j≤N αD
ij (t),αD

0 (t)}. Assume that αD(t) ≤ α(t) almost
surely and α(t) = O(t−θ ), where θ > (4+ δ)/δ.

(ii) {εit} are mean-zero and independent of {vjs,f 0
s } conditional on D, for any

(i,j,t,s). Moreover, ‖E‖∞ = OP(max{√N,
√

T}) and max1≤i≤N,1≤t≤T ‖vit‖ =
OP(log(NT)).

(iii) Unknown functions {βi(τ ),gi(τ )} are uniformly bounded and have continuous
derivatives of up to the second order for τ ∈ [0,1].

(iv) The kernel function K(·) is Lipschitz continuous with a compact support on
[−1,1].

(v) The bandwidth h satisfies that limT→∞ Th5 < ∞, log(NT)2h → 0, N
T2h2 → 0,

T
N2h2 → 0, and min{N,T}h2 → ∞, as N,T → ∞. The regularization parameter
φNT satisfies min{N,T}h2φ2

NT → ∞ and max{N,T}h2φ4
NT → 0, as N,T → ∞.

(vi) Let C(c) = {� ∈ R
N×T :

∥∥M�0�MF0

∥∥∗ ≤ c
∥∥� −M�0�MF0

∥∥∗ ,almost
surely}, for some constant c > 0. A constant number κc > 0 exists such that
vec(��)�Mx,τ vec(��) ≥ κcvec(�)�vec(�), for any � ∈ C(c) and τ ∈ [0,1].

Assumption 1 comprises regularity conditions such as the stationarity, strict
exogeneity, weak cross-sectional dependence and serial correlation of errors, the
smoothness of time-varying functions, and the restricted strong convexity for the
nuclear-norm penalization. As these assumptions are conventional in the literature,
we provide their justifications in Appendix A.1.

Let �D
f = ED(f 0

t f 0�
t ), where ED(·) denotes the expectation conditional on D.

Additionally, let �D
x,i(τt) = ED(xitx�

it ), �D
xf,i(τt) = ED(xitf 0�

t ), and �D
f,i = �D

f −∫ 1
0 �D�

xf,i (τ )�D−1
x,i (τ )�D

xf,i(τ )dτ .

Assumption 2.

(i) λmin(�
D
f ), λmin(�

D
x,i(τ )), λmin(�

D
f,i) > c, almost surely for some positive

constant c, and E(‖�D
f,i‖F) < ∞, for any given i and τ .

(ii) N−1 ∑N
i=1 λ0

i λ
0�
i = �λ +OP(N−1/2) and �λ is positive definite.

(iii) Random errors {εit} satisfy

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E
(|CovD(εit1εit2,εjt3εjt4)|

) ≤ CNT2,

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

T∑
t=1

T∑
s=1

E
(|CovD(εi1tεi2t,εi3sεi4s)|

) ≤ CN2T .

(iv) For some δ∗ ∈ (0,δ), NT−(4+δ∗)/4 → 0. Additionally, Nδ†
T−θ h−3−θ (logT)1+2θ

→ 0, where δ† = 6+δ
4+δ

− 2(1+θ)

2+δ
. Here θ and δ are defined in Assumption 1.

Assumption 2 imposes additional conditions on the non-singularity of covari-
ance matrices, the convergence of N−1 ∑N

i=1 λ0
i λ

0�
i , and the weak cross-sectional
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and serial dependence of random errors. The justification of Assumption 2 is
available in Appendix A.1.

Theorem 3.1. Let Assumptions 1 and 2 hold. As N,T → ∞,

(1) N−1/2
∥∥B̂(0)(τ )−B(τ )

∥∥
F = OP

(
max

{
h3/2,φNT

}
h1/2

)
,

(2) T−1/2
∥∥F̂(0) −F0H

∥∥
F = OP

(
max

{
h3/2,φNT

}
h1/2

)
,

(3) N−1/2
∥∥�̂(0) −�0H−1�∥∥

F = OP
(
max

{
h3/2,φNT

}
h1/2

)
,

where H = (NT)−1 ∑N
i=1 λ0

i λ
0�
i F0�F̂(0)V−1

NT is a rotation matrix.

In Theorem 3.1, the rate of convergence is determined by two sources: non-
parametric local linear approximation and nuclear-norm regularization estimation,
with the latter producing a convergence rate of OP(φNT

√
h), which is slower

than the optimal root-Th rate in view of Assumption 1(v). Theorem 3.1(2) and
(3) demonstrates the PCA estimators’ consistency up to a rotation matrix H as
expected (see, for example, Bai, 2009).

Building on Theorem 3.1, the following theorem establishes the rates of conver-
gence associated with the DLS algorithm, suggesting that the shrinkage estimation
biases can be reduced through iterations.

Theorem 3.2. Let Assumptions 1 and 2 hold, and suppose n � max{logN, logT}.
As N,T → ∞,

(1)
∥∥∥̂f (n)

t −H�f 0
t

∥∥∥ = OP
(
max{h2,N−1/2,T−1}), for each given t,

(2)
∥∥∥̂λ

(n)
i −H−1λ0

i

∥∥∥ = OP
(
max{h2,N−1,T−1/2}), for each given i,

(3)
∥∥∥β̂

(n)
i (τ )−βi(τ )

∥∥∥ = OP
(
max{h2,(Th)−1/2}), for each given i and τ .

Theorem 3.2 demonstrates that our iteration algorithm can improve the estima-
tion accuracy in the sense that the shrinkage bias in initial estimation is eliminated
and the regularization parameter φNT plays no role in the rates of convergence, as
the number of iterations diverges at an appropriate rate (max{logN, logT}).

To establish central limit theorems (CLTs), additional conditions are required.

Assumption 3.

(i) �D
f = �f , �D

f,i = �f,i, and �D
x,i(τ ) = �x,i(τ ) almost surely, for each given i

and τ .
(ii) N−1/2 ∑N

i=1 λ0
i εit

D−→ N (0,�0
λε) and �0

λε is positive definite, for each given t.

(iii) T−1/2 ∑T
t=1 zitεit

D−→ N (0,�0
zε,i) and �0

zε,i is positive definite, for each given
i, where zit = f 0

t −�D�
xf,i (τt)�

D−1
x,i (τt)xit.

(iv) (Th)−1/2 ∑T
t=1 Kt,0(τ )xitεit

D−→ N
(
0,�0

xε,i(τ )
)

and �0
xε,i(τ ) is positive defi-

nite, for each given i and τ .
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CLTs in Assumption 3 are routine requirements adopted in the literature (e.g.,
Assumption E of Bai, 2009). Let Vλf be an r0 ×r0 diagonal matrix that contains the
eigenvalues of �

1/2
λ �f �

1/2
λ in descending order, and let Uλf be the corresponding

orthogonal eigenvector matrix that satisfies U�
λf Uλf = Ir0 . Additionally, let Q =

V1/2
λf U�

λf �
−1/2
λ and H0 = �λQ�V−1

λf .
With Assumption 3, the following theorem summarizes the DLS estimators’

asymptotic distributions.

Theorem 3.3. Let Assumptions 1–3 hold, and suppose n � max{logN, logT}.
As N,T → ∞,

(1) Additionally, if N/T2 → 0 and Nh4 → 0,

√
N

(̂
f (n)
t −H�f 0

t

) D−→ N (0r0,�λε),

for each given t, where �λε = V−1
λf Q�0

λεQ�V−1
λf .

(2) Additionally, if T/N2 → 0 and Th4 → 0,

√
T

(̂
λ

(n)
i −H−1λ0

i

)
D−→ N (0r0,�zε,i),

for each given i, where �zε,i = H−1
0 �−1

f,i �
0
zε,i�

−1
f,i H−1�

0 .
(3) For each given i and τ ,

√
Th

(
β̂

(n)
i (τ )−βi(τ )−ai(τ )h2

)
D−→ N (0p,�xε,i(τ )),

where �xε,i(τ ) = �−1
x,i (τ )�0

xε,i(τ )�−1
x,i (τ ), ai(τ ) = μ2

2 β ′′
i (τ )(1 + o(1)), β ′′

i (τ )

is the second-order derivative of βi(τ ), and μ2 = ∫
u2K(u)du.

Theorem 3.3(1) and (2) establishes the asymptotic distributions of the factor and
loading estimators, respectively, after imposing certain restrictions on the conver-
gence rate of h and the divergence rates of N and T. As demonstrated in Theorem
3.3(3), the initial estimation biases are eliminated as a consequence of iterations,
whereas a bias term ai(τ )h2 remains due to the local linear approximation of time-
varying functions. The presence of such a bias term is conventional in the literature
on nonparametric time-varying models (e.g., Theorem 1 in Cai, 2007).

Typically, one might be interested in the following MG estimator (Pesaran,
2006):

β̂(n)
w (τ ) =

N∑
i=1

wN,iβ̂
(n)
i (τ ),

where wN,i denotes the individual weight that satisfies wN,i > 0 and
∑N

i=1 wN,i = 1.
In what follows, we follow Pesaran (2006) and employ the random coefficient
assumption to establish the MG estimator’s asymptotic distribution.
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Assumption 4.

(i) βi(τ ) = β0(τ ) + εi(τ ), where β0(τ ) and εi(τ ) are p-dimensional vectors
of unknown deterministic functions and time-varying random individual
coefficients, respectively, for any i. Moreover, we assume εi(τ ) = π(τ)�ςi,
where π(τ) is a p-dimensional vector of unknown deterministic functions
capturing time-varying standard deviation of εi(τ ), and ςi is a p-dimensional
vector of random errors with zero mean and unit variance.

(ii) Unknown functions β0(τ ) and π(τ) have continuous derivatives of up to the
second order on the support τ ∈ [0,1].

(iii) {ςi} are independent of {vjt,λ
0
j ,f

0
t ,εjt} for any (i,j,t). Moreover, ςi is i.i.d. with

E(ςiς
�
i ) = �ς . Let �ε(τ) = �ς � (π(τ)π(τ)�) be a positive definite matrix,

for τ ∈ [0,1].

Assumption 4 extends the model in Assumption 4 of Pesaran (2006) by allowing
for unknown smooth time variations in the mean and variance of random coeffi-
cients.

Theorem 3.4. Let Assumptions 1–4 hold, and suppose n � max{logN, logT}.
As N,T → ∞,

√
γN,w

(
β̂(n)

w (τ )−β0(τ )−a0(τ )h2
) D−→ N (0p,�ε(τ )),

for any given τ , where γN,w =
(∑N

i=1 w2
N,i

)−1
, a0(τ ) = μ2

2 β ′′
0 (τ )(1 + o(1)), and

�ε(τ) is defined in Assumption 4.

Up to this point, we have completed our investigation on the DLS algorithm.
In Section 4, we address two practical issues: (1) testing time-invariant regression
coefficients and (2) selecting the number of factors.

4. CONSTANCY TEST AND FACTOR NUMBER SELECTION

This section proposes a constancy test and an information criterion for factor
number selection.

4.1. Constancy Test on Regression Coefficients

We are interested in testing the null hypothesis of time-constant parameters as
follows:

H0 : βi(τ ) = β0
i , for i = 1, . . . ,N,

where β0
i is a p×1 vector of unknown parameters. For power analysis, we consider

the following local alternatives:

H1 : βi(τ ) = β0
i +νNT�β,i(τ ) for some i,
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where �β,i(τ ) is a sequence of measurable and uniformly bounded nonparametric
functions of τ , and νNT satisfies νNT → 0 as N,T → ∞. Let Na be the number of
individuals that violate the time-constant null hypothesis.

To proceed, we define

eit = yit − x�
it β

0
i −λ0�

i f 0
t . (4.1)

In view of (2.1) and (4.1), we have eit = εit under H0 and eit = εit +νNTx�
it �β,i(τt)

for some i under H1. Following Gao and Gijbels (2008) and Su et al. (2015), we
construct a test statistic based on the restricted estimation residuals:

LNT = 1

NT
√

h

N∑
i=1

N∑
n=1

T∑
t=1

T∑
s=1, �=t

K

(
τt − τs

h

)
êit̂ens,

where {̂eit} are the estimated residuals under the null hypothesis. For the sake of
space, Appendix B.1 of the Supplementary Material provides a parametric version
of the DLS algorithm in detail, which is used to calculate {̂eit} here. Denote β̃

(n)
i ,

f̃ (n)
t , and λ̃

(n)
i as the parametric iterative estimators of β0

i , f 0
t , and λ0

i , respectively.
Then, we compute the restricted residuals: êit = yit − x�

it β̃
(n)
i − λ̃

(n)�
i f̃ (n)

t . Some
additional conditions are introduced in the following assumption.

Assumption 5.

(i) {εt} are martingale difference sequences (m.d.s.) adapted to the filtra-
tion {Ft}, where Ft is the sigma-field generated by {D,εt,εt−1, . . .},
and εt satisfies E(εitεjt|Ft−1) = E(εitεjt) = σ 2

ε,ij (a.s.). Moreover, σ 2
ε =

limN→∞ N−1 ∑N
i=1

∑N
j=1 σ 2

ε,ij is a positive and finite constant.

(ii) Assume that max1≤t<sE

(∣∣∣∑N
i=1

∑N
j=1 εitεjs

∣∣∣ 4
)

≤ CN4, for s = 2, . . . ,T .

(iii) Assume that T2− θδ
2(4+δ) h2+ θδ

2(4+δ) logT− 1
2 → 0, where θ and δ are defined in

Assumption 1.

The justifications of these conditions are provided in Appendix A.1. Under
Assumption 5, simple algebra shows that LNT ’s asymptotic covariance is σ 2

L =
2v0σ

4
ε , where v0 = ∫

K2(v)dv. Therefore, the final version of the test statistic is as
follows:

L̆NT = 1√
σ̂ 2

L

LNT,

where σ̂ 2
L = 2v0σ̂

4
ε and σ̂

2
ε = (NT)−1 ∑N

i=1

∑N
j=1

∑T
t=1 êit̂ejt.

The asymptotic properties of L̆NT under H0 and H1 are studied in the following
theorem.
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Theorem 4.1. Let Assumptions 1–3 and 5 hold. As N,T → ∞ simultaneously,

(1) L̆NT
D−→ N (0,1) under H0.

(2) If, in addition, Na and νNT satisfy νNT → 0 and NaN− 1
2 T

1
2 h

1
4 νNT → ∞, then

P(L̆NT > Lα) → 1 under H1, where Lα denotes the α-level critical value of
N (0,1).

Theorem 4.1(1) establishes the asymptotic normality of the standardized test
statistic under the null hypothesis, whereas Theorem 4.1(2) shows that the test is
asymptotically consistent under a sequence of local alternatives.

By Theorem 4.1, one can use the theoretical critical values based on the
distribution N (0,1). However, in practice, one may turn to the bootstrap method
to achieve better finite-sample performance (e.g., Gao and Gijbels, 2008; Su et al.,
2015). Therefore, we further follow Su and Wang (2017) and construct the critical
values using a dependent bootstrap method. Let �̃ε be a shrinkage version of the
covariance estimator, and let its (i,j)th element be σ̃ 2

ε,ij = σ̂ 2
ε,ij(1−ε)|j−i| for each i

and j, where σ̂ 2
ε,ij = T−1 ∑T

t=1 êit̂ejt and ε is a pre-specified small positive number
that ensures the positive definiteness of �̃ε. The bootstrap procedure is summarized
as follows.

Step 1. Obtain parametric iterative estimators β̃
(n)
i , f̃ (n)

t , and λ̃
(n)
i under H0, and

compute restricted residuals:

êit = yit − x�
it β̃

(n)
i − λ̃

(n)�
i f̃ (n)

t .

With {̂eit}, the test statistic L̆NT and covariance estimator �̃ε can be constructed.

Step 2. Compute the bootstrap error terms (e∗
1t, . . . ,e

∗
Nt)

� = �̃
1/2
ε ηt, where ηt =

(η1t, . . . ,ηNt)
� follow i.i.d. N (0,1), and construct {y∗

it} as

y∗
it = x�

it β̃
(n)
i + λ̃

(n)�
i f̃ (n)

t + e∗
it.

Thereafter, the bootstrap sample is given as {y∗
it,xit}.

Step 3. Obtain bootstrap estimators β̃∗
i , f̃ ∗

t , and λ̃∗
i under H0, and compute the

restricted residuals:

ê∗
it = y∗

it − x�
it β̃

∗
i − λ̃∗�

i f̃ ∗
t .

The bootstrap test statistic L̃∗
NT can be constructed using {̂e∗

it}.
Step 4. Repeat Steps 2 and 3 M times and obtain the bootstrap distribution from

{̃L∗
NT,m}M

m=1. The bootstrap α-level critical L∗
α is calculated as P∗(̃L∗

NT,m ≥ L∗
α) =

α, where P∗ denotes the probability measure conditional on the observed sample
{yit,xit}.

The asymptotic properties of L̃∗
NT are summarized in the following theorem.
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Theorem 4.2. Let Assumptions 1–3 and 5 hold. As N,T → ∞ simultaneously,

L̃∗
NT

D∗−−→N (0,1) in probability, where D∗ denotes the convergence in distribution
with respect to P∗ conditional on the original sample.

Theorem 4.2 establishes the asymptotic distribution of L̃∗
NT , indicating that the

bootstrap test statistic exhibits the same asymptotic behavior as L̆NT conditional
on the original sample.

4.2. Factor Number Selection

This section proposes an information criterion method to determine the number of
factors (r0) by adding a penalty term to the log value of the mean-squared initial
estimation residuals. Recall that we can obtain the consistent initial estimator
B̂(0)(τ ) without the need to know the true value of r0. Let F̂(0,r) and �̂(0,r) be the
initial factor and loading estimators, respectively, with r > 1 in particular.

We construct the following information criterion:

IC(r) = log

(
1

NT

N∑
i=1

T∑
t=1

(
yit − x�

it β̂
(0)
i (τt)− λ̂

(0,r)�
i f̂ (0,r)

t

)2
)

+dNT · r, (4.2)

where dNT is a penalty term satisfying certain restrictions to be specified later. For
the case r = 0, let IC(0) = log( 1

NT

∑N
i=1

∑T
t=1(yit −x�

it β̂
(0)
i (τt))

2). For a prespecified
large integer rmax, we estimate r0 by

r̂ = argmin
0≤r≤rmax

IC(r). (4.3)

The following theorem establishes the consistency.

Theorem 4.3. Let Assumptions 1 and 2 hold. Additionally, if dNT satisfies (i)
dNT → 0 and (ii) dNT

max
{

h3,φ2
NT

}
h

→ ∞, as N,T → ∞, Pr(̂r = r0) → 1.

Theorem 4.3 reveals that the number of factors can be consistently estimated
using the information criterion method defined in (4.2). The finite-sample per-
formance of this method is assessed using simulation examples in Section 5. An
alternative method for determining r0 is the singular-value thresholding approach
that utilizes the low-rank structure of �0 = �0F0�. Miao, Phillips, and Su (2023)
provide a complete description of this method.

5. SIMULATION STUDIES

Simulation experiments are performed in this section to assess the finite-sample
performance of DLS estimators, the constancy test procedure, and the information
criterion for factor number selection.
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5.1. DLS Estimation

This section presents three simulation examples: Examples 5.1 and 5.2 employ
heterogeneous time-varying regression coefficients, and Example 5.3 considers a
homogeneous time-varying model.

Example 5.1 Consider the following data generating process (DGP):

Yit = xit,1β1i(τt)+ xit,2β2i(τt)+λ0
1if

0
1t +λ0

2if
0
2t + εit, (5.1)

where (xit,1,xit,2) = (λ0
1if

0
1t + λ0

2if
0
2t + ηit,1,ηit,2), (β1i(τ ),β2i(τ )) = (sin(πτ) +

ε1i, cos(πτ) + ε2i) with ηit,1, ηit,2, ε1i, and ε2i being generated from i.i.d.
N (0,1), and the factors (f 0

1t,f
0
2t) are both AR(1) processes: (f 0

1t,f
0
2t) = (ρf1 f 0

1,t−1 +
vf1,t,ρf2 f 0

2,t−1 + vf2,t). Here, ρf1 = 0.6 and ρf2 = 0.4, and vf1,t and vf2,t follow i.i.d.
N (0,1). Let (λ0

11, . . . ,λ
0
1N)�, (λ0

21, . . . ,λ
0
2N)�, and (ε1t,ε2t, . . . ,εNt)

� be generated
as N-dimensional vectors of independent Gaussian variables with zero mean and
the (i,j)th element of the covariance matrix as σij = 0.5|i−j|, for i,j = 1,2, . . . ,N.

Example 5.2 Consider the DGP (5.1), where (xit,1,xit,2) = (sin(πτt)+λ0
1if

0
1t +

λ0
2if

0
2t + ηit,1,τt + ηit,2), (β1i(τ ),β2i(τ )) = (1 + τ + ε1i,1 + τ 3 + ε2i) and the other

variables are generated in the same manner as in Example 5.1.

Example 5.3 Consider the following DGP:

Yit = xit,1β1(τt)+ xit,2β2(τt)+λ0
1if

0
1t +λ0

2if
0
2t + εit,

where (β1(τ ),β2(τ )) = (sin(πτ), cos(πτ)) and the other variables are generated
in the same manner as in Example 5.1.

The number of factors is regarded as known in this section. We select the
regularization parameter as φNT = (NT)−1/10. The Epanechnikov kernel function
K(μ) = 3

4 (1 − μ2)I(|μ| ≤ 1) is used in the local linear estimation. The leave-
one-out cross-validation method is employed to select the optimal bandwidth.
Specifically, hcv is selected to minimize the following objective function:

hcv = min
h

N∑
i=1

T∑
t=1

(
Yit − xit,1β̂

(−t)
1i (τt)− xit,2β̂

(−t)
2i (τt)

)2
,

where
(
β̂

(−t)
1i (τ ),β̂

(−t)
2i (τ )

)
are the leave-one-out estimates.

After 1,000 replications (R = 1,000), we calculate the average of the mean-
squared errors (AMSEs) of the initial and iterative DLS estimates:

AMSEβ,0 = 1

2NTR

R∑
k=1

N∑
i=1

T∑
t=1

2∑
m=1

(
β̂

(0,k)
mi (τt)−βmi (τt)

)2
,

AMSEβ,n = 1

2NTR

R∑
k=1

N∑
i=1

T∑
t=1

2∑
m=1

(
β̂

(n,k)
mi (τt)−βmi (τt)

)2
,
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where β̂
(0,k)
mi (τ ) and β̂

(n,k)
mi (τ ) denote the initial and DLS estimates of βmi(τ ),

respectively, in the kth replication. To assess the estimation accuracy of factors
and loadings, we compute their second canonical-correlation coefficients (SCCs)
in each replication.1 Table 1 reports AMSEs and averaged SCCs for Examples
5.1–5.3.

As presented in Table 1, the AMSEs decrease as T diverges in all three examples.
Additionally, it is unsurprising that the AMSEs of the iterative estimates decrease
more rapidly than those of initial estimates. These simulation results are in line
with the established asymptotic theory which states that both initial and DLS
estimators are consistent irrespective of the correlation between regressors and
common factors, and iterations can substantially reduce the initial estimation bias.
In terms of SCCs, they all tend to increase toward one with growing N and T. This
finding provides some numerical evidence for the loading and factor estimators’
consistency up to a rotation matrix. The values of iterative loading and factor
estimates are invariably greater than those for initial estimates, also demonstrating
the improved estimation accuracy of the DLS iterative procedure. The results
of Example 5.2 confirm the robustness of our methodology to nonparametric
deterministic trends in regressors. In view of the simulation results for Examples
5.1 and 5.3, wherein the difference in AMSEs and SCCs is not evident, the
proposed estimation approach can be applied to estimate both homogeneous and
heterogeneous models. For Example 5.3, we construct MG estimates with wN,i =
1/N and calculate their simulated 95% confidence intervals, which are reported in
Figure 1. The bandwidth h = T−1/3 is used for bias reduction.

5.2. Constancy Test

This section utilizes two simulation examples to demonstrate the constancy test’s
size and power performance.

Example 5.4 Consider the following DGP:

Yit = xit,1β1i + xit,2β2i +λ0
1if

0
1t +λ0

2if
0
2t + εit,

where (β1i,β2i) = (1 + ε1i,1 + ε2i), ε1i and ε2i follow i.i.d. N (0,1), and the other
variables are generated in the same manner as in Example 5.2.

Example 5.5 Consider the following DGP:

Yit = xit,1β1i(τt)+ xit,2β2i(τt)+λ0
1if

0
1t +λ0

2if
0
2t + εit,

1The canonical-correlation coefficient, which is robust to the rotation matrix, is widely used in the literature on
factor models (e.g., Bai and Li, 2012) as a tool to measure estimation accuracy. We briefly introduce its definition.
The first canonical-correlation coefficient of f̂ (n)

t and f 0
t is defined as the maximum value of correlation coefficients

corr(a� f̂ (n)
t ,b�f 0

t ) for all r0 ×1 vectors a and b. The SCC is defined as the maximum value of correlation coefficients

corr(c� f̂ (n)
t ,d�f 0

t ) for all r0 ×1 vectors c and d that are orthogonal to a and b. Therefore, the SCC increasing toward
one indicates the consistency of factor and loading estimates (up to a rotation matrix).
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Table 1. AMSEs and SCCs for Examples 5.1–5.3

Example 5.1

AMSEβ,0 SCCλ,0 SCCf,0

N/T 20 40 80 120 20 40 80 120 20 40 80 120

20 0.4781 0.4133 0.3544 0.3326 0.3707 0.5656 0.7789 0.9099 0.2330 0.3006 0.4205 0.5353

40 0.4736 0.3848 0.3294 0.3019 0.4796 0.7175 0.8973 0.9383 0.2843 0.4680 0.6143 0.6659

80 0.4579 0.3653 0.3058 0.2833 0.5872 0.8472 0.9271 0.9510 0.4063 0.5856 0.6877 0.7001

AMSEβ,n SCCλ,n SCCf,n

N/T 20 40 80 120 20 40 80 120 20 40 80 120

20 0.4487 0.1385 0.0631 0.0597 0.4743 0.7681 0.9333 0.9715 0.5439 0.7659 0.8854 0.9156

40 0.3398 0.1157 0.0543 0.0529 0.7348 0.9005 0.9777 0.9863 0.7693 0.9084 0.9590 0.9716

80 0.3119 0.1105 0.0536 0.0504 0.8196 0.9585 0.9817 0.9920 0.8673 0.9613 0.9729 0.9893

Example 5.2

AMSEβ,0 SCCλ,0 SCCf,0

N/T 20 40 80 120 20 40 80 120 20 40 80 120

20 0.3831 0.2015 0.1735 0.1352 0.4454 0.6001 0.7374 0.8862 0.3439 0.3910 0.4537 0.5598

40 0.2648 0.1884 0.1581 0.1249 0.5217 0.7265 0.8911 0.9487 0.4580 0.5596 0.7208 0.7626

80 0.2897 0.1714 0.1412 0.1157 0.6241 0.8455 0.9270 0.9608 0.5745 0.7724 0.8522 0.8931

AMSEβ,n SCCλ,n SCCf,n

N/T 20 40 80 120 20 40 80 120 20 40 80 120

20 0.2537 0.1376 0.0408 0.0278 0.4694 0.7025 0.8188 0.9692 0.5108 0.6979 0.7864 0.8750

40 0.2382 0.0976 0.0364 0.0246 0.6674 0.8435 0.9662 0.9884 0.7640 0.8734 0.9640 0.9809

80 0.2368 0.0778 0.0318 0.0219 0.7587 0.9467 0.9850 0.9952 0.8649 0.9709 0.9901 0.9929

Example 5.3

AMSEβ,0 SCCλ,0 SCCf,0

N/T 20 40 80 120 20 40 80 120 20 40 80 120

20 0.4905 0.4101 0.3504 0.3345 0.4050 0.5990 0.7826 0.9222 0.2215 0.3261 0.4360 0.5400

40 0.4741 0.3855 0.3290 0.3022 0.4771 0.7436 0.9040 0.9404 0.3223 0.4785 0.6133 0.6519

80 0.4584 0.3676 0.3058 0.2745 0.5768 0.8542 0.9240 0.9447 0.4157 0.6044 0.6898 0.7323

AMSEβ,n SCCλ,n SCCf,n

N/T 20 40 80 120 20 40 80 120 20 40 80 120

20 0.5920 0.1283 0.0615 0.0503 0.5444 0.8254 0.9356 0.9870 0.5442 0.7950 0.8995 0.9224

40 0.3507 0.1136 0.0555 0.0467 0.6618 0.9128 0.9796 0.9885 0.7412 0.9170 0.9603 0.9732

80 0.3167 0.1085 0.0526 0.0437 0.8093 0.9580 0.9820 0.9915 0.8680 0.9626 0.9739 0.9838

where (β1i(τ ),β2i(τ )) = (1 + ε1i,1 + ε2i) + νNT(sin(πτ), cos(πτ)), ε1i and ε2i

follow i.i.d. N (0,1), and the other variables are generated in the same manner as in
Example 5.2. In this example, as Na = N, we use νNT = log(NT)1/2(NT)−1/2h−1/4

to calculate the local power.
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Figure 1. Confidence intervals of MG estimates for Example 5.3.
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Table 2. Rejection rates for Examples 5.4 and 5.5

Example 5.4

α = 0.01 α = 0.05 α = 0.10

N/T 20 40 80 20 40 80 20 40 80

20 0.005 0.012 0.006 0.038 0.063 0.055 0.096 0.089 0.104

40 0.016 0.007 0.013 0.061 0.040 0.047 0.113 0.108 0.093

80 0.014 0.010 0.011 0.060 0.046 0.052 0.112 0.100 0.103

Example 5.5

α = 0.01 α = 0.05 α = 0.10

N/T 20 40 80 20 40 80 20 40 80

20 0.055 0.164 0.512 0.141 0.413 0.750 0.249 0.595 0.848

40 0.081 0.423 0.751 0.240 0.772 0.914 0.286 0.835 0.960

80 0.102 0.709 0.890 0.311 0.893 0.976 0.374 0.947 0.993

For Examples 5.4 and 5.5, we test the following null hypothesis:

H0 : β1i(τ ) = β0
1i, β2i(τ ) = β0

2i,

where β0
1i and β0

2i are unknown time-constant regression coefficients. The number
of bootstraps to select the critical values is 500. After 1,000 replications, we
compute the rejection rates under 1%, 5%, and 10% confidence levels. The
simulation results of Examples 5.4 and 5.5 are reported in Table 2.

The null hypothesis H0 holds in Example 5.4. Therefore, the rejection rates in
this example are simulated sizes. As presented in Table 2, simulated sizes are close
to the corresponding significance levels across all the sample sizes. In addition,
the rejection rates in Example 5.5, which generally increase toward one as N and
T grow from 20 to 80, are simulated local powers, because the null hypothesis of
time-constant coefficients does not hold in this example. In summary, the proposed
test behaves reasonably well for both simulated sizes and powers.

5.3. Factor Number Selection

This section assesses the finite-sample performance of the proposed information
criterion method in two additional simulation examples.

Example 5.6 Consider the following DGP:

Yit = xit,1β1i(τt)+ xit,2β2i(τt)+λ0
1if

0
1t +λ0

2if
0
2t +λ0

3if
0
3t + εit,

where f 0
3t follows i.i.d. N (0,1), (x1t,1, . . . ,xNt,1)

�, (x1t,2, . . . ,xNt,2)
�, and (λ0

31, . . . ,

λ0
3N)� are generated as N-dimensional vectors of independent Gaussian variables

with zero mean and covariance matrix with (i,j)th element: σij = 0.5|i−j|. The other
variables are generated in the same manner as in Example 5.1.
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Table 3. Correct-selection rates for Examples 5.6 and 5.7

Example 5.6

Under-selection Correct-selection Over-selection

N/T 20 40 80 20 40 80 20 40 80

20 0.123 0.034 0 0.693 0.934 1 0.184 0.032 0

40 0.057 0 0 0.943 1 1 0 0 0

80 0.019 0 0 0.981 1 1 0 0 0

Example 5.7

Under-selection Correct-selection Over-selection

N/T 20 40 80 20 40 80 20 40 80

20 0.334 0.323 0.148 0.354 0.604 0.781 0.312 0.073 0.071

40 0.271 0.130 0.034 0.679 0.858 0.964 0.050 0.012 0.002

80 0.081 0.020 0 0.838 0.966 1 0.081 0.014 0

Example 5.7 Consider the following DGP:

Yit = xit,1β1i(τt)+ xit,2β2i(τt)+λ0
1if

0
1t +λ0

2if
0
2t +λ0

3if
0
3t + εit,

where (xit,1,xit,2) = ((0.2λ0
1i +γ 0

1i)f
0
1t + (0.2λ0

2i +γ 0
2i)f

0
2t +ηit,1,ηit,2) with (γ 0

11, . . . ,

γ 0
1N)� and (γ 0

21, . . . ,γ
0
2N)� being generated as N-dimensional vectors of indepen-

dent Gaussian variables with zero mean and the (i,j)th element of the covariance
matrix as σij = 0.5|i−j|. The other variables are generated in the same manner as in
Example 5.6.

Example 5.6 employs a DGP in which the regressors and factors are generated
independently, and the interaction between such variables is allowed in Example
5.7. For both examples, dNT = (NT)−1/5 is used to construct the information crite-
rion. After 1,000 replications, we calculate the rates of under-selection, correct-
selection, and over-selection, and report the simulation results in Table 3. The
correct-selection rates increase rapidly as N and T diverge in both examples. By
contrast, the under-selection and over-selection rates decline significantly. In view
of these simulation results, the proposed information criterion method performs
reasonably effectively irrespective of the interaction between regressors and fac-
tors. However, this method exhibits significantly better finite-sample performance
for uncorrelated regressors and factors when N and T are small (e.g., N = T = 20).

6. AN EMPIRICAL APPLICATION IN FINANCE

The determinants of fund performance have been extensively studied in the finance
literature (e.g., Ferson and Schadt, 1996; Mamaysky, Spiegel, and Zhang, 2008;
Blake et al., 2014). We examine the effects of three fund characteristic variables
(namely, fund size, fund family size, and fund management fees) on mutual fund
returns and allow time variations and heterogeneity in their associations.
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Table 4. Moon and Perron’s (2004) unit-root test results for regressor residuals

Residuals in regressors t∗a p-value for t∗a t∗b p-value for t∗b
FFSit −34.58 < 0.01 −13.76 < 0.01

MFSit −33.06 < 0.01 −14.5 < 0.01

MCit −37.33 < 0.01 −12.88 < 0.01

Table 5. Values of IC(r)

r 0 1 2 3 4 5 6 7 8 9 10

IC(r) −6.1126 −8.1058 −8.2266 −8.2358 −8.2347 −8.2292 −8.2000 −8.1472 −8.0975 −8.0278 −7.9514

We collect the monthly return data of U.S. mutual funds from the Center for
Research in Security Prices (CRSP) Survivor-Bias-Free Mutual Fund database for
the 2008–2019 period (T = 144). After excluding funds with incomplete records,
initial total net assets (TNAs) under 10 million dollars, or less than 90% of portfolio
holdings invested in equity markets, we obtain a sample with 117 mutual funds
(N = 117). In what follows, we introduce the dependent and explanatory variables
of interest. Mutual fund excess returns (ERit), as the dependent variable, are
calculated as the difference between the fund returns and risk-free rates, which
are also collected from CRSP. The fund family size (FFSit) is defined as the ratio
of fund family TNAs under management to the average value of all fund family
TNAs in the previous month. The mutual fund size (MFSit) is defined as the ratio
of the fund’s TNAs under management to the average value of TNAs across all
funds in the previous month, and the management charge of the fund family (MCit)
is defined as the average value of charges for the funds under management in
the current month. We employ the following panel data model with time-varying
coefficients, heterogeneity, and IFEs:

ERit = β0i(τt)+FFSitβ1i(τt)+MFSitβ2i(τt)+MCitβ3i(τt)+λ0�
i f 0

t + εit, (6.1)

where the number of factors needs to be determined.
As described in Section 3, the proposed methodology is robust to unknown

deterministic trends in regressors. To demonstrate its validity in this application,
we first estimate the trends (gi(τ )) of regressors using the local linear method
and thereafter examine the stationarity of residuals. Moon and Perron’s (2004)
method, as a second-generation panel data unit-root test that allows for cross-
sectional dependence, is employed to detect the residuals’ nonstationary behavior.
Specifically, we compute the feasible t-statistics t∗a and t∗b defined in Lemma 4 of
Moon and Perron (2004). As presented in Table 4, the test results reveal that the
null hypothesis of unit root is rejected for all three explanatory variables after we
remove the nonparametric deterministic trends.

We use the Epanechnikov kernel function to construct estimates, and the leave-
one-out cross-validation method is adopted to select the optimal bandwidth. For
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Figure 2. Estimated MG estimates and 90% confidence intervals.
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bias reduction, one may use an undersmoothing bandwidth (e.g., h ∝ T−1/3)
instead. In the initial estimation, we select φNT = (NT)−1/10 to construct the
nuclear-norm penalization estimates. The information criterion method developed
in Section 4.2 is then applied to determine the number of factors, for which we
specify rmax = 10 and dNT = (NT)−1/5. The corresponding values of IC(r) for
0 ≤ r ≤ rmax are listed in Table 5. We select the number of factors to be 3 according
to this information criterion.

After obtaining the DLS estimates for the individual time-varying regression
coefficients, we compute the MG estimates using the weight wN,i = 1/N and
construct their 90% confidence intervals. As shown in Figure 2, time varia-
tions are evident in the associations between U.S. mutual fund returns and fund
characteristic variables. The average effect of FFSit on mutual fund returns is
positive and significant, indicating that larger fund companies generally outper-
form smaller ones in this estimation period. Additionally, we observe from the
estimates for MFSit that fund returns are, on average, negatively related to fund
size, except that the effects are insignificant in some periods. Therefore, mutual
funds that manage larger assets are typically unable to produce higher returns.
This result is in line with Blake et al.’s (2014) findings on mutual funds in
the United Kingdom. Our estimation results suggest a time-varying relationship
between fund management charges and fund performance, wherein the average
effect is negative and significant at the beginning of this estimation period.
However, after 2010, we observe the manifestation of an upward trend, which
becomes positive thereafter. As presented in Figure 2, significant time-varying
patterns exist in all MG estimates. The estimates for FFSit and MFSit exhibit
quadratic forms, whereas those for the intercept and MCit are close to linear
functions.

Additionally, the constancy test is conducted to further reveal the time-varying
relationship between mutual fund characteristics and fund returns. Following the
instructions in Section 4.1, we obtain the test statistic’s value as L̃∗

NT = 16.18 and
the corresponding bootstrap p-value that is less than 0.01 after 1,000 bootstraps.
Therefore, the null hypothesis of time-constant regression coefficients is rejected.
We acknowledge that the proposed constancy test requires m.d.s. errors, which
can be restrictive in empirical studies. However, allowing for both cross-sectional
dependence and temporal correlation involves considerable technical difficulties
in the asymptotics and is left as a topic for future research.

7. CONCLUSIONS

This paper proposes the DLS iteration method to estimate a panel data model
with both heterogeneous time-varying regression coefficients (βi(τ )) and IFEs.
Specifically, we iteratively estimate βi(τ ) and factor loadings using the PLS
method, and update factor estimators using the OLS method after employing a
nuclear-norm penalization approach for initial estimation. This methodology is
robust to the correlations between factors and explanatory variables and underlying
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deterministic trends in the regressors. Under regularity conditions, we establish
asymptotic consistency and normality results for the DLS estimators, which
can demonstrate the effectiveness of iterations. Additionally, we develop a test
procedure to make inferences on the time-constant parameter assumption and
propose an information criterion method for factor number selection in practice.
The finite-sample performance of the DLS estimation method, constancy test
statistic, and information criterion for the factor number selection is assessed
through extensive simulations. An empirical study of U.S. mutual funds, which
allows for heterogeneity and time variations in parameters, reveals that smaller
mutual funds managed by large fund companies can, on average, outperform the
others.

Appendix A. Assumption Justification and Theoretical
Development Outline

A.1. Justifications for Assumptions

Justification for Assumption 1: In Assumption 1(i), conditional α-mixing conditions are
used to restrict the dependence of random errors. Similar to Assumption A.2 from Su and
Chen (2013), it can be considered as an extension of the unconditional α-mixing condition
used by Dong, Gao, and Peng (2015) and Feng et al. (2019). This assumption rules out
dynamic panel models, which can be weakened to Assumption A.2 from Su and Chen
(2013) to address the problem. The condition regarding the spectral norm of E is in line with
Assumption (ii) in Theorem 1 of Moon and Weidner (2018) and Assumption A.1(vi) from
Su and Chen (2013). Assumption 1(iii) is commonly used in the nonparametric estimation
literature (e.g. Condition 2.1 from Li and Racine, 2007 and Assumption A3 from Chen,
Gao, and Li, 2012). Assumption 1(v) can be justified by the case wherein N/T → c1, h =
c2T−1/5, and φNT = (NT)−1/10, where (c1,c2) denote fixed constants. Assumption 1(vi)
assumes restricted strong convexity, which is a heterogeneous modification of Assumption
1 from Moon and Weidner (2018).

Justification for Assumption 2: Assumption 2(i) guarantees the nonsingularity of
�D

f , �D
x,i(τ ), and �D

f,i and rules out the perfect multicollinearity between xit and λ0
i ,f

0
t .

Assumption 2(ii) is imposed for the positive definiteness of iterative DLS estimators’
asymptotic covariance matrices. Moment conditions in Assumption 3(iii) can be justified
by conditionally i.i.d. or α-mixing processes. Assumption 2(iv) automatically holds for
the exponential α-mixing process (θ → ∞) in Assumption 3.4 from Fan, Liao, and Wang
(2016).

Justification for Assumption 3: Assumption 3(i) assumes that �D
f , �D

f,i, and �D
x,i(τ )

can be approximated by deterministic matrices �f , �f,i, and �x,i(τ ), almost surely, which
guarantees the asymptotic normalities of estimators. Assumptions 3(ii)–(iv) assumes CLTs,
which can be easily justified when {vit,λ

0
i ,f

0
t ,εit} are i.i.d. across i and t.

Justification for Assumption 4: Assumption 4 imposes a time-varying version of the
random coefficient model in Assumption 4 of Pesaran (2006). Weaker restrictions on εi(τ )

could be used instead of the i.i.d. assumption, such as α-mixing conditions across i. This
aspect is left for future research.
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Justification for Assumption 5: Assumption 5(i) enables us to use the CLT for the U-
statistic to assess LNT ’s asymptotic distribution. Assumption 5(ii) further restricts the cross-
sectional dependence of random errors, which is necessary for the consistent estimation of
LNT ’s asymptotic variance.

A.2. Outline of Theoretical Development

This appendix outlines the theoretical development strategy.
First, we study the asymptotic properties of the initial estimators in Theorem 3.1 by

demonstrating that minimizing the nonparametric local linear objective function with
nuclear-norm regularization ensures consistency under the restricted strong convexity
condition. The rates of convergence are derived after we formulate the local linear approx-
imation and regularization estimation bias terms for these estimators.

Building on the initial estimation, Theorem 3.2 establishes the DLS estimators’ consis-
tency. By linking the bias terms’ probability orders with the number of iterations (n), we
obtain the preliminary rates of convergence for the DLS estimators and demonstrate the
effectiveness of the proposed iteration algorithm.

Furthermore, we study DLS estimators by deriving their leading terms that contribute
to the CLTs and establish the asymptotic distributions of the individual and MG estimators
in Theorems 3.3 and 3.4, respectively. Thus, we complete the development of the DLS
estimators’ asymptotic properties.

Thereafter, a residual-based statistic (L̆NT ) is proposed to test the time-constant param-
eter assumption. By formulating the leading term of L̆NT into a U-statistic, we employ
the CLT for m.d.s. U-statistics to establish the asymptotic normality of the test statistic in
Theorem 4.1. Theorem 4.2 can be considered as a bootstrap version of Theorem 4.1.

Finally, we propose an information criterion (IC(r)) that has the same spirit as Bai
and Ng’s (2002) method for factor number selection and establishes its consistency in
Theorem 4.3.

SUPPLEMENTARY MATERIAL

Fei Liu (2023): Supplement to “Nonparametric Time-Varying Panel Data Mod-
els with Heterogeneity,” Econometric Theory Supplementary Material. To view,
please visit: https://doi.org/10.1017/S0266466623000324
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