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Abstract
We use a dynamic model of the U.S. apple industry separated into organic and conventional production to
better measure the impacts of pest or disease outbreaks on producers and consumers, along with an equi-
librium displacement model to simulate welfare effects from various shocks compared to a baseline. Our
results show that the impacts of the outbreaks differ between organic and conventional production methods.
Growers’ and consumers’ responses to shocks differ widely across the industry. Farmers and policy makers
should use these findings to appropriately respond to different shocks and production methods.
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1. Introduction
Organic production standards place meaningful limitations on practices common among conven-
tional producers for limiting pest and disease outbreaks in crops. At the same time, organic
producers have developed alternative methods that could, in some circumstances, outperform
conventional approaches. Either way, there is reason to expect heterogeneous outcomes for a crop
in a given production region between organic and conventional production methods. Notably,
there are direct and indirect pathways through which organic and conventional markets affect
each other that are important to represent in models to capture outcomes accurately. For example,
certified organic can be sold as conventional if the organic market cannot absorb all supply.
Consumers substitute between organic and conventional depending on relative prices. Also,
producers decide how to allocate their land between organic and conventional depending, in part,
on expectations about the relative risks from pest and disease outbreaks.

There are many factors increasing pest and disease pressure in cropping systems. Pesticide
resistance is one example. Another, and likely the most significant risk, is climate change, which
scientists forecast will increase the population size, survival rate, and geographical distribution of
pests, along with an increase in diseases’ intensity, development, and geographical distribution
(Doody, 2020). In general, the rise in temperature and rainfall leads to a warm and humid envi-
ronment that fuels the growth and distribution of most pest species. The temperature changes
affect the insects’ physiology and spatial distribution, especially in temperate regions below the
optimum temperature. As these regions warm, pests are expected to grow more quickly
(Harrington, Fleming, and Woiwod, 2001; Yamamura et al., 2006). Many species have already
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responded to the increased warming over the last century (Crozier and Dwyer, 2006). In most
cases, the increased frequency of climate extremes promotes pest outbreaks (Gan, 2004). The nega-
tive impacts of climate change on agriculture consist of altered rates of pressure from pests,
diseases, and weeds, whichmay affect the productivity of crops and livestock (Walthall et al., 2012).

The U.S. is the world’s second-largest producer of apples after China. The crop is economically
important to several communities in the U.S., with a sales value of $3.03 billion in 2021 (U.S.
Department of Agriculture, 2022). The initial investment in planting an apple orchard and the
annual operating costs are higher than yearly row crops (Basu and Gallardo, 2021). This makes
the economic sustainability of apple operations particularly vulnerable to external shocks such as
pest and disease outbreaks due to the potential of significant capital loss. For example, in 2000, the
fireblight (Erwinia amylovora) outbreak in Michigan State resulted in the removal of about
400,000 apple trees, costing 42 million dollars (Longstroth, 2001). The rising threat of pest
and disease outbreaks accompanying increased temperature and humidity imposes potentially
high costs on apple producers and other economic agents. These outbreaks’ impacts differ
between operations following organic or conventional production methods.

U.S. farmers employ various pest management strategies to reduce crop losses. Despite
improved pest control management strategies, including more targeted applications and improved
chemical materials, pest and disease outbreaks still need to be addressed, particularly for organic
growers prohibited from applying synthetic pesticides. Organic production methods’ pest and
disease management practices are more expensive and labor-intensive than conventional methods
(Galinato, Gallardo, and Hong, 2016). Galinato, Gallardo, and Hong (2016) reported that as of
2014, the costs of chemicals and fertilizer for organic production methods for Gala apples were
about 25% higher than conventional ones. Therefore, an outbreak of pests or disease will likely
impose much higher costs on organic growers through pest control programs.

In addition to the different aspects of organic and conventional production methods, consumers
also prefer organic and conventional fruits. Increased consumer demand for healthier fruit andmore
environmentally sustainable farming has driven the development of pest management systems that
use organic and integrated pest management programs (Peck et al., 2005). Accordingly, consumers
who buy organic food tend to be more concerned about human health and food safety due to the
perceived lower prevalence of chemicals and environmental stewardship (Davies, Titterington, and
Cochrane, 1995; Demeritt, 2002; Ekelund, 1990; Goldman and Clancy, 1991; Grunert and Juhl,
1995; Jolly et al., 1989). While the U.S. acreage of apples has declined and the total production under
both conventional and organic production methods has stayed at a similar level in recent years
(USDA-NASS 1980–2019), consumer demand has spurred a fast-growing organic apple sector.
The value of certified organic apple sales accounts for 17.3% of total apple sales in 2019, up from
6.2% in 2008 (USDA-NASS 2008, 2019). This may be partly because of increased consumer aware-
ness of pesticide safety issues and higher preferences for organic and pesticide-free products
(Grunert, 2005; Simon et al., 2011). Due to concerns about food and pesticide safety, consumers
might be more inclined to purchase organic fruits, given potential increases in the use of synthetic
pesticides due to more prevalent pest or disease outbreaks.

This study aims to assess the economic consequences of pest and disease outbreaks in the U.S.
apple industry and to consider the interactions between organic and conventional production
methods. We use an equilibrium displacement model (EDM), disaggregated by organic vs.
conventional, to measure the impacts of climate-triggered shocks. The analysis is complemented
by applying simulations to understand better the relationships between organic and conventional
sectors on the supply and demand sides.

This study is organized as follows: section 2 explores a comprehensive literature review on pest-
and disease-related studies; section 3 describes the dynamic model of the U.S. apple industry,
considers organic and conventional production methods, and presents the EDM for empirical anal-
ysis; section 4 describes the data and scenarios used in the simulation; in section 5, the results of the
simulations are presented; and finally, section 6 includes the conclusions and policy implications.
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2. Literature Review
Agriculture is vulnerable to climate change, as it influences crop production directly and indirectly.
The direct negative influence on yield is associated with environmental factors such as drought,
heavy rainfall, and solar intensity. For example, a rise in temperature increases atmospheric water
demand, reducing soil moisture and eventually decreasing yield (Zhao et al., 2017). Indirect effects of
higher temperatures include the increased fecundity of pests, weeds, and plant diseases (Field et al.,
2014). Temperature is the most important environmental factor affecting insect behavior, distribu-
tion, development, and reproduction. Therefore, climate change could significantly affect the popu-
lation dynamics of insect pests and, thus, crop losses (Fand, Kamble, and Kumar, 2012; Kocmánková
et al., 2010). Also, warmer winter conditions could increase overwintering populations and early
infestation, resulting in crop damage from insect pests (Diffenbaugh et al., 2008; Fand, Kamble,
and Kumar, 2012; Kocmánková et al., 2011; Yamamura and Yokozawa, 2002).

Several studies have analyzed the economic impact of pest and disease outbreaks, but only a few
have focused on perennial crops. Because perennial crops, such as apples, take up to 5–6 years to come
into total production and require considerable investment and horticultural management-related
costs, external shocks, such as the outbreak of pest or disease, may impose a more significant burden
on the tree fruit industry than annual crops. This is particularly true for organic perennial crop
producers compared to conventional. This is why developing a model tailored to organic perennial
crop production that captures interactions with conventional markets is a significant contribution.

Zhao, Wahl, and Marsh (2007) estimated welfare change for different levels of apple maggot
(Rhagoletis pomonella) spread and found that spread speed is a significant factor. Galinato et al.
(2018) and Hong et al. (2019) estimated the costs of potential expansions of the apple maggot
quarantine areas to the Washington State economy, emphasizing the loss of growers’ profits
due to the spread of apple maggot in nonquarantine areas. Chambers, Karagiannis, and
V. Tzouvelekas (2010) considered scenarios involving Greek olive producers and measured
economic losses due to pest increases by incorporating supply-response adjustments, leading
to higher economic losses than models with adjustments. Jiang, Cassey, and Marsh (2017) used
a dynamic national-level model of the pear industry that included tree fruit packing and proc-
essing intermediaries to measure the economic impacts of disease outbreaks and trade shocks
for heterogeneous agents along the vertical tree fruit supply chain.

While previous studies analyzed the economic effects of pests and diseases on fruit production,
such analyses have not considered heterogeneous agents – where heterogeneity refers to differences
in production technologies – in their industries simultaneously responding to shocks. This study will
employ a U.S. apple industry model to estimate the impacts of shocks on conventional and organic
markets. We build from the dynamic model of the U.S. apple industry described by Tozer and
Marsh (2018), who found heterogeneous impacts of pest or disease outbreaks resulting from
different industry structures and regional allocation of apples. They employed a whole-apple
industry model and did not consider the potential for various pest and disease shock responses
between organic and conventional production methods. Also, even if they disaggregated the model
by regions, due to the complexity of the model, they did not consider cross-regional interactions.
They assumed that own-regional prices influence the supply and demand of products. Our model
considers the interactions between organic and conventional sectors by assuming that both organic
and conventional prices determine production and consumption amounts.

Despite the fast-paced growth of the U.S. organic apple industry, most studies on pest
outbreaks have yet to consider the importance of conventional versus organic production methods
and the market-level interactions between them. An exception is a study by Galinato et al. (2018)
that studied the different impacts of pest expansion between the organic and conventional apple
industries. However, they only estimated the impact onWashington State’s economy using a static
cost–benefit analysis. The contribution of this study is to model the effects of pest and disease
shocks on the U.S. apple industry by separating it into organic and conventional production
sectors and considering the interactions between them.
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3. Theoretical Model
The study uses a dynamic model of the U.S. apple industry building on Tozer and Marsh (2018),
separating the industry into organic and conventional production methods and markets.
We assume perfect competition throughout. While tree fruit farm sizes are increasing, similar
to the rest of agriculture, it is reasonable to assume that no single or small subset of farms has
pricing power. In our model, the shock on the organic production method affects the conventional
apple production method and vice versa. For example, in our empirical estimation, the organic
bearing area (ΔBAo) would be affected by the organic price premium that is made up of the farm-
level prices of organic and conventional apples (pF; o and pF; c). In addition, there may be supply
effects when analyzing the interactions between the organic and conventional apple industry
because organic growers, under some circumstances (such as an increase in insect pressure
and the need to increase the number and type of chemical applications), sell their products as
conventional. One of our scenarios in this study represents the situation where organic apple
growers sell their products as conventional because they cannot meet the conditions required
for organic products, therefore reducing the supply of organic apples (FDo) while increasing
the supply of conventional (FDc) apples. Also, organic and conventional varieties of apples would
affect each other in that the prices of organic might be marked up as a function of the prices for
conventional for each variety, even though those scenarios are not considered in this research.

Also, considering the importance of export markets for the U.S. apple industry, our model
includes international trade to depict the interactions between domestic and international markets.
For simplification purposes, this model only focuses on fresh market apples. This is because most
growers in the U.S. invest in apple production, considering selling their output to the fresh market.1

Following Tozer andMarsh (2018), our model includes three levels of the supply chain: farm level,
wholesale level, and retail level. At the farm level, total supply is a function of the bearing acreage
multiplied by the yield per acre. We assume the bearing acreage is fixed in the short run and prone to
change in the long run. Fresh apples are distributed to domestic or international markets through a
market-clearing condition at wholesale. Also, imports are linked through market-clearing price
conditions at the wholesale level. The quantities imported and exported are assumed to be deter-
mined by the wholesale-level prices. At the retail level, the demand for apples is a function of apple
retail prices, retail prices of substitute products (e.g., organic apple prices for conventional apples),
and household income. Finally, for the market-clearing condition, domestic supply plus imports
equals domestic consumption plus exports, and the market-clearing prices at each level are identified
through marketing margins. The market-clearing optimization model is based on the EDM.

3.1. Bearing Area

The equations for bearing area follow Tozer and Marsh’s (2018) model with the addition of sepa-
rating the industry into organic and conventional. The total bearing area �Ad

t � is the sum of the
areas with trees that have reached full maturity (jjτ) up to age J when trees are removed:

Ad
t �

XJ

j�jτ

Aj;d
t ; d � o; cf g (1)

where d= o represents organic and c represents conventional production methods, and
Aj;d
t � Aj�1;d

t�1 � RMj;d
t � Ajτ�1;d

t�1 . Aj�1;d
t�1 is the previous year’s bearing area. RMj;d

t is the area of trees

1Seventy percent of the U.S. apple production happens inWashington state. In this state, growers invest in apple production
with the primal intention to sell in the fresh market. As of WA in 2021, 5,137.6 million pounds went to fresh and 1,352 went to
processing; thus, processing represents 21% of total production which is not a negligible quantity (USDA-NASS, 2022).
However, this is because this 21% do not meet standards for the fresh market, not because growers intentionally planted
trees to be destined for processing.
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removed in the current year. The final term, Ajτ�1;d
t�1 , represents the area planted τ years ago that

reaches productive age in t.
The change in total bearing area ΔAd

t

� �
is defined by,

ΔAd
t � Ajτ�1;d

t�1 �
XJ

j�jτ

RMj;d
t 2)

An alternative form, shown in (3), employs the difference between new plantings that reaches
productive age in t (NPd

t�jτ ) and total removals.

ΔAd
t � NPd

t�jτ �
XJ

j�jτ

RMj;d
t : (3)

Change in bearing area of organic and conventional apples is used for estimation because data on
absolute levels are unavailable.

3.2. Apple Production and Farm-level Supply

As with the model of Tozer and Marsh (2018), the total production �TPd
t � of apples in each year is

given by,

TPd
t � TAd

t � AYd
t�1 � 1� gd

� �
; d � o; cf g (4)

where AYd
t�1 is the yield per acre in the previous year, and gd is the annual yield growth rate for

each apple product. It is assumed that the yield per acre will grow over time because of the replace-
ment of old low-density plantings by new high-density orchard systems, increasing the yield per
acre.2 To our knowledge, there are no reliable data on the share of low- and high-density orchards.
Therefore, the annual growth rate of yield per acre is considered appropriate for estimating the
dynamics of apple production decisions.

In this model, farm-level supply (FDd
t ) for fresh apples is given by,

FDd
t � fd � TPd

t (5)

where fd is the proportion of production destined to the fresh market, which is assumed to be 0.86
for organic and 0.69 for conventional production. This is based on USDA data from 2011 to 2016
(USDA-NASS 2011–2016).

Finally, the total supply of apples in the U.S. is given by,

TSAd
t � FSdt � FMd

t ; (6)

where FMd
t � sIM;d

t pW;d
t � cdt

� �
is the quantity of imported apples, sIMt is the imported apple func-

tion of prices and costs, pW;d
t is the domestic price at the wholesale level, and cdt is the trade costs.

The quantity of imported apples is assumed to be determined at the wholesale level.

3.3. Apple Demand at the Retail Level

Individual demand for apples is based on the own prices of organic and conventional production,
prices of substitutes (e.g., organic prices for conventional apples), and household income. The
demand function is therefore:

qdt � f dt pR;ot ; pR;ct ; It
� �

; d � o; cf g ; (7)

2In the U.S., the yield per acre of apples (calculated by total production divided by total bearing acres) increased by 1%
annually on average from 1980 to 2019 (USDA-NASS 1980-2019).
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where pR;ot and pR;ct are the retail prices of organic fresh apple and conventional fresh apple,
respectively, and It is the income.

The utility function for consumers is assumed to be homothetic following Tozer and Marsh
(2018), and therefore the aggregate individual demand function is given by:

QDd
t �

XH

h�1

qdt; h � qdt �Ht (8)

where H is the population, and h represents individual consumers.
Finally, the total demand for apples in the U.S. is represented by,

TDAd
t � QDd

t � FXd
t (9)

where FXd
t � sEX;dt pW;d

t � edt
� �

is the quantity demanded by the international market, sEMt is the
exported apple function of prices and tariff, pW;d

t is the price at the wholesale level, and tdt is the
tariff, or the tariff equivalent, of trade barriers. The quantities of exported apples are assumed to be
determined through wholesale-level prices.

3.4. Intermediaries and Marketing Margins

There are three types of prices: the farmgate price (pF;dt ), wholesale-level prices (pW;d
t ), and retail

price (pR;dt ). The farm-to-retail marketing margin comprises two components, the farm-to-whole-
sale margin (MMF) and the wholesale-to-retail margin (MMR). Thus, the wholesale price follows,

pW;
t � pF;dt �MMFd

t (10)

where MMFd
t � γMMF:d

i �pW;d
t , and γMMF:d

i is the proportion of wholesale prices that are
distributed to farm-to-wholesale margins.

The retail price is

pR;dt � pW;d
t �MMRd

t (11)

where MMRd
t � γ

MMR;d
i �pR;dt and γMMR:d

i is the proportion of retail prices that are distributed to
wholesale-to-retail margins.

3.5. Market-clearing

Import and export decisions are made at the wholesale level, so it is assumed that the apple market
clears at the wholesale level. Therefore, the market-clearing condition follows:

TDAd
t � TSAd

t ; (12)

or

QDd
t � FXd

t � FSdt � FMd
t (13)

3.6. Equilibrium Displacement Model

The farm-level supply for fresh apples is given by FDd
t � fd � TPd

t . The total logarithmic
differential equation is as follows:

EFSdt � ETPd
t (14)

where E represents the total logarithmic differential of each equation.
The total demand function for domestically grown apples is given by QDd

t � qdt � Ht , where
qdt � f dt pR;ot ; pR;ct ; It

� �
. Therefore, logarithmically differentiating demand results in the following

expression:
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EQDd
t � EHt � ηo;d � EpR;ot � ηc;d � EpR;ct � νd � EIt (15)

where and ηc;d � @f dt
@pR;ct

pR;xt

qdt
represent the own-price elasticities and the cross-price elasticities, and

νd � @f dt
@It

It
qdt
is the income elasticity.

To depict international trade, we denote the function of imported apples and that of exported
apples by FMd

t � sIM;d
t pW;d

t � cdt
� �

and FXd
t � sEX;dt pW;d

t � edt
� �

, respectively. Taking total loga-
rithmic differentiation gives the following:

EFMd
t � µIM;d pW;d

t � cdt
� ��1

pW;d
t EpW;d

t � dcdt
� �

(16)

and

EFXd
t � µEX;d pW;d

t � edt
� ��1

pW;d
t EpW;d

t � dedt
� �

(17)

where µIM;d � @sIM;d
t

@ pW;d
t �cdt� �

pW;d
t

FMd
t
and µEX;d � @sEX;dt

@ pW;d
t �edt� �

pW;d
t

FXd
t
are the price elasticities of imported and

exported apples, respectively, with respect to wholesale price.
The apple supply from the domestic farm is given by QSdt � FDd

t � FMd
t � FXd

t , which is the
sum of domestic supply and imported supply minus export demand. The total logarithmic differ-
ential equation for domestic supply captures the change in each variable multiplied by the original
level of each divided by the total supply as shown in (18). The intuition is that the effect of a given
change on the total depends on how big of a share that variable represents.

EQSdt �
FSdt
QSdt

EFDd
t �

FMd
t

QSdt
EFMd

t �
FXd

t

QSdt
EFXd

t : (18)

The relationship between the farmgate and wholesale price and between the wholesale and
retail price is represented by 1 � γMMF:d

� �
pW;d
t � pF;dt and 1 � γMMR;d

� �
pR;dt � pW;d

t , respectively.
Taking total logarithmic differentiation of price equations gives the following:

1 � γMMF:d
� �

EpW;d
t � pF;dt

pW;d
t

EpF;dt � γMMF:d � EγMMF:d (19)

and

1 � γMMR;d
� �

EpR;dt � pW;d
t

pR;dt

EpW;d
t � γMMR;d � EγMMR;d: (20)

Since we have market-clearing condition as TDAd
t � TSAd

t , or QD
d
t � FXd

t � FDd
t � FMd

t , the
total logarithmic differentiation equation is then:

EHt � ηo;d � EpR;ot � ηc;d � EpR;ct � νdi � EIt � EFDd
i;t

� FMd
t

QSdt
µIM;d pW;d

t � cdt
� ��1

pW;d
t EpW;d

t cdt � dcdt
� �h i

� FXd
t

QSdt
µEX;d pW;d

t � edt
� ��1

pW;d
t EpW;d

t � dedt
� �h i

:

(21)

Using the market-clearing conditions and price relationship equations, we solve market-clearing
prices at different levels of markets (farm, wholesale, and retail levels; pF;dt ; pW;d

t ; pR;dt ), quantities of
supply and demand inside of country (FDd

t ;QD
d
t ), and quantities of imports and exports

(FMd
t , FX

d
t ).
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4. Data and Scenarios
4.1. Data

A dynamic model of the apple industry is parameterized using data from the U.S. apple industry.
The fresh apple industry is separated into two sectors according to the production method:
organic and conventional.

We employ the “utilized fresh apple production” from the Noncitrus Fruits and Nuts (USDA-
NASS 2016) and Organic Survey (USDA-NASS 2016) as the farm-level supply of apples. Imports
and exports of apples are obtained from the USDA-ERS (2016). For the farm-level prices of
apples, this study uses the value of sales per pound from the USDA Noncitrus Fruits and Nuts
(USDA-NASS 2016) and the Organic Survey (USDA-NASS 2016). Retail prices of apples are
obtained from the USDA-AMS (2016). The wholesale prices are calculated using the information
in Tozer and Marsh (2018). They estimated that the average wholesale-to-retail margin of the
retail price is about six times the farm-to-wholesale margins of the retail price.

Because data to forecast the bearing acres of organic apples in the U.S. are limited, we employ
Washington State organic apple cultivated area in acres. We also use the free on board price in
$/40-lb box data by nine apple varieties from various Washington State University Tree Fruit
Research and Extension reports considering 2004–2018 (Granatstein and Kirby, 2019). Since
Washington State produced about 97% of the fresh organic produce in the country in 2019,
according to USDA-NASS (2019), it would be most appropriate to estimate organic bearing acres
given the data available. Due to data limitations, we also use the data on the entire apple industry
(including both organic and conventional sectors) as a proxy for conventional production. The
bearing acres of conventional apples accounted for 95% of total apple acres in 2015 (USDA-NASS
2015). We use the bearing acres and grower price data from 1980 to 2015 from the USDA
Noncitrus Fruits and Nuts annual reports to estimate the function of conventional bearing acres.3

Then, the model is calibrated as an EDM using the parameters in Table 1. We utilize published
elasticities of demand. Few studies have estimated demand elasticities for organic and conven-
tional apples separately. We used the estimates of Lin et al. (2009) as the retail price elasticities
of fresh apples in the demand model.4 Income elasticities for fresh apples are also from the esti-
mates of expenditure elasticities in Lin et al. (2009).

Table 1. Parameter values used in the simulation

Parameter
Organic apple

market
Conventional apple

market

Own-price elasticity of fresh applesa −1.06 −0.83

Cross-price elasticity between fresh apples from different marketsa 0.10 0.10

Income elasticity of fresh applesa 0.99 1.01

Export elasticity of fresh applesb,c −1.3 −1

Import elasticity of fresh applesb,c 1.3 1

Farm-to-wholesale market margin rate of the wholesale priceb 0.33 0.33

Wholesale-to-retail market margin rate of fresh apples of the retail
priceb

0.67 0.67

Sources: aLin et al. (2009); b Tozer and Marsh (2018); c Authors assumed these values.

3The total U.S. bearing acres before mid-2010 was used as a proxy for conventional, since certified organic apple area nearly
doubled between 2016 and 2021 and accounted for about 10.7% of total apple area in 2021, up from 4.6% 2016 (USDA 2017;
2022).

4The cross-price elasticities were 0.03 to 0.1 in Lin et al (2009) and 0.055 to 0.32 in Nelson et al. (2017) With the range of
these cross-price elasticities, we set the cross-price elasticities as 0.1 following Lin et al. (2009).
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Import and export elasticities are also needed to complete the model. Roosen (1999) reported
import elasticities for fresh apples as −0.609. Seale, Sparks, and Buxton (1992) estimated demand
elasticities for U.S. apples between −0.90 and −1.62 in Canada, the U.K., Singapore, and Hong
Kong. Richards, Van Ispelen, and Kagan (1997) estimated elasticities for fresh apples at −1. Given
the range of the calculated results, Tozer and Marsh (2018) assumed the import and export elas-
ticities as −1 for U.S. fresh apples. Previous studies estimated that the elasticities of organic apples
are larger than those of conventional apples (Lin et al., 2009). Following these studies, we set the
export (import) elasticities at −1.3 (1.3) for organic and −1 (1) for conventional apples.

4.2. Scenarios

We examine a limited number of scenarios that offer a reasonable representation of pest or disease
outbreaks that are a balance of being similar to scale to historical examples and also relevant to
future shocks under climate change for the U.S. apple industry. The baseline scenario represents
the economic outcomes resulting from a situation in which the apple consumer population increases
annually by 0.9%, and the annual apple yield growth rate is 1% due to farms’ strategies of planting
and removal.5 The future climate-induced exogenous shocks are applied to this baseline scenario.

The second scenario contemplates a situation where the organic and conventional apple-bearing
areas are reduced by 5% and 2% due to pest and disease outbreaks. The justification for this scenario
relies on the evidence fromMichigan. In 2000, fire blight caused the removal of about 400,000 apple
trees covering approximately 2,000 acres, which was 4% of the apple-bearing area in Michigan
(Longstroth, 2001). Over the years, after the fire blight spread, it has been scarce in northern
Michigan due to the cooler weather, which has helped keep the bacteria. However, warmer, wetter
temperatures of late spring and early summer 2019 have caused fire blight to becomemore prevalent
in the region. As the climate crisis is expected to bring longer, warmer, and rainier springs, fire blight
that spreads quickly during the blooming season is more likely to increase the risk of infecting trees
(Vansickle, 2019). We assume that the damage to the organic apple area is more prominent than the
conventional apple area, considering the number of limitations in treating diseases for organic
apples. For example, the antibiotics to control fire blight have been removed from the list of allowed
materials by the National Organic Standards Board in the U.S. As a result, these antibiotics have
been prohibited for organic orchards since October 2014 (Granatstein, 2019).

The third scenario represents a situation in which the organic apple yield is reduced by 10%,
and the conventional apple yield is reduced by 2%. The recurrence of the pest codling moth in U.S.
apple orchards justifies this scenario. The codling moth is distributed worldwide; the number of
codling moth generations depends mainly on the length of the season (when exactly the apples are
to be harvested) and the climate conditions of the production environment (Stoeckli et al., 2012).
Stoeckli et al. (2012) showed that under future conditions with increased temperatures, the present
risk of below 20% for a pronounced second generation would increase to 70–100%, and the risk of
an additional third generation will increase from presently 0–2% to 100%. Projected warming
patterns will result in forced applications of additional spray to control for second and third gener-
ations. Consumers are increasingly demanding fresh fruits with a reduced number of chemical
applications. Therefore, only limited options would be available for growers to manage pests
and diseases (Jones et al., 2010; Simon et al., 2011), which could reduce apple yields. Under this
scenario, a decline in yields of organic apples is more prominent than those of conventional
apples. Previous research suggests that fruit damage from pests and diseases is more severe in
organic (between 0.1% and 23.7%) compared to conventional (between 0% and 2.1%) production
methods (Simon et al., 2011).6

5The growth rates of population and yield rate were about 0.9% and 1% from 1980 to 2019 in the U.S., respectively.
6In Simon et al. (2011), the average organic fruit damage from total disease and pest was about five times the conventional.
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The fourth scenario presents a situation where organic apple growers face a pest or disease
outbreak and decide to increase the number of chemical applications or use synthetic chemicals
not approved for organic production. The bacteria (E. amylovora) causing fire blight in apple
and pear trees is difficult to control without antibiotics. With new regulations in the U.S. preventing
antibiotic use in organic orchards after 2014, however, organic farmers face a difficult choice—spray
their apple plants with antibiotics and lose their organic certification or risk the disaster of a fire blight
outbreak. Moreover, since the current production system for apples and pears was built on the high
yields that were only possible with this practical tool against fire blight, even small outbreaks of fire
blight can cause significant yield losses. For example, a 10% fire blight infection that has spread to the
roots of a 4-year-old apple orchard can result in losses of around $12,000–15,000 per acre (Johnson,
2021). Therefore, in some pest outbreaks, organic farmers use antibiotics to control the devastating
disease, deterring compliance with organic standards. Under this fourth scenario, organic apple
production would decrease by 5%, increasing conventional and declining organic production.

The fifth scenario investigates the response of apple-importing countries to pest or disease
outbreaks. The spread of pests and diseases results in increased concerns from apple-importing
countries to introducing and distributing new pests and diseases in their countries. For example,
China, British Columbia, and Canada require all apples shipped from the U.S. to be certified as
apple maggot-free. Washington State has implemented a quarantine program7 to prevent apple
maggot dissemination (Hong et al., 2019). Following Hong et al. (2019), apples from quarantine
areas must be stored at 1°C for 40 days, with the cost burden from cold treatment at $11 per 40 lb
box. Under the fifth scenario, all producers must implement cold treatment to export fresh prod-
ucts and face the cost ($0.275 per pound) as a trade barrier.

The exogenous shocks to the system occurred in 2016 under scenarios 2–5, and all models are
simulated for over 10 years. Although there are still many unknowns related to climate change, a
more advanced, proactive, and scientific approach will be applied to deal with the pest and disease
outbreak-related problems caused by climate change. With this assumption, we assumed the
shock is not a continuing event in each scenario.

5. Results
5.1. Bearing Acres Model

From the data listed above, we modeled the bearing acres for organic and conventional industries,
respectively8:

ΔAc
r � �42:05���t � 0:64���BAo

t�1 � 0:84���BAo
t�2 � 0:32���BAo

t�5

(12.70) (0.10) (0.13) (0.09)

� 1164:31���premiumt�2 � 459:12���pF; ot�2 � 964:06���pF;ot�3 � 711:53���pF;ot�5 (22)

(323.70) (167.56) (229.56) (225.03)

ΔAc
t � 0:607� � 0:0007� t � 0:046 �lnBAc

t�1 � 0:769���Δ%BAc
t�1

(0.35) (0.0004) (0.03) (0.13)

� 0:037���Δ%pF;ct�1 � 0:023��Δ%pF;ct�2 (23)

(0.01) (0.01)

7Apples from quarantine areas must be stored at 1°C for 40 days with the cost burden from cold treatment at $11 per 40 lb
box (Hong et al. 2019).

8Bearing area model was first specified with a full set of explanatory variables (acres, price, organic premium) and then
removed insignificant variables.
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where Adj.R2 is 0.689 (for the organic model) and 0.706 (for the conventional model),
and ***, **, and *indicate significance with 99%, 95%, and 90% confidence, respectively.

premiumt =
P

2
j�0 pF;ot�j � pF;ct�j

� �
=3 represents the average organic price premium over 3 years,

and pF;dt represents the farmgate prices of apples where d= {o, c}.
Farms need 3 years to transition from conventional to certified organic production in the U.S.,

with no regulation for the conventional sector. Therefore, it is reasonable to assume that the bearing
area (acreage) and the output prices for organic during the first 3 years of production, that is, the
years of transition to organic, are more volatile than conventional production. This study assumes
that for organic, the prices change considering lags of 2, 3, and 5 years, and the acreages change
considering lags of 1, 2, and 5 years. This study also assumes that for conventional, the price changes
considering lags of 1 and 2 years and acreage changes at a lag of 1 year. In sum, the bearing area of
conventional production is quickly affected by changes during the previous period. Organic produc-
tion takes longer to adjust due to the 3-year transition requirement.

5.2. Simulation Results

Results from the baseline scenario, without any exogenous shock, show that the bearing area of
organic apples will increase while the area of conventional apples will decrease. The average
annual growth rates of the bearing acreage of organic apples are 1.6%, and conventional apples
are −1.8% (see Table 2). Organic apple production increased by approximately 30% throughout
the study, while conventional fresh apples decreased by about 8%. However, the share for conven-
tional apples will still be more prominent because the bearing acres and production of the conven-
tional production will still account for over 90% of the apple industry.

As shown in Table 3, the price for organic apples will decrease gradually as production grows,
while conventional apple prices increase as production is reduced. Therefore, the organic price
premium will decrease gradually over the study period. The net trade of organic apples increases,
whereas the net trade of conventional apples decreases. This may be because declining prices of
domestic organic crops make domestically grown crops more attractive; consequently, the imports
of organic crops decrease, and exports increase. Domestic conventional crops become less

Table 2. Trends of bearing area and apple supply without shock, baseline

Area in acres Apples distributed into fresh market (lb)

Year Organic Conventional Organic Conventional

0 15,037 313,763 448,224,954 7,261,841,653

1 14,497 308,465 436,456,138 7,210,623,485

2 14,596 302,263 443,811,136 7,136,297,654

3 15,551 296,266 477,588,210 7,064,659,318

4 16,874 290,507 523,403,884 6,996,609,407

5 17,932 284,987 561,797,135 6,932,298,506

6 18,340 279,714 580,298,645 6,872,070,446

7 18,098 274,697 578,391,660 6,816,302,110

8 17,604 269,936 568,230,399 6,765,129,360

9 17,356 265,412 565,806,766 6,718,265,637

10 17,642 261,092 580,898,705 6,675,006,450
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appealing to foreign consumers due to increased prices; thus, exports decrease, and imports
increase. Results in Appendix A are aligned with the results in this section.

In scenario 2, considering the negative supply shock on the bearing acreage, all the net
changes in economic surplus are negative in both the organic and conventional sectors (see
Table 5 and Figure 1). Figure 1 shows trends for consumer and producer surpluses. The
changes in surpluses for conventional and organic industries are plotted on the left and right
sides of the graphs. Consumers are worse off since decreased production increases retail prices
relative to baseline. Domestic consumption for both production methods decreases as higher
prices require consumers to increase their food expenditure, and, therefore, the consumer
surplus decreases.

On the other hand, the positive effects on producer surplus signal that the price increases
outweigh the losses from the reduced production. However, it would be possible that subsequent
replanting follows, leading to re-gains in the bearing area and allowing production to increase
and prices to decrease, gradually decreasing producer surplus. As the price increases, there also
exists a negative net-trade effect, where imports of apples increase while exports decrease in both
organic and conventional industries (see Table 4). This is because higher prices for domestic
crops make foreign crops relatively more attractive to domestic consumers, while domestic
crops become less appealing to foreign countries. To test the robustness of these results, addi-
tional analyses considering different own and cross-price elasticities are presented in
Appendix A.9

Figure 2 shows the results of changes in yields represented by scenario 3. Consumer surplus is
reduced right after the yield shock due to increases in retail prices and then rebounds and remains
relatively constant in the following periods in both sectors. The change in the producer surplus
also rebounds right after the yield shock, but the recovery speed is relatively slow in the conven-
tional sector. This is because a vast yield shock in the organic industry leads to higher increases in

Table 3. Trends of prices, exports, and imports without shock, baseline

Year

Farmgate prices ($/lb) Exports (lb) Imports (lb)

Organic Conventional Organic Conventional Organic Conventional

0 0.405 0.224 136,914,570 4,614,757,977 105,349,190 904,346,889

1 0.414 0.226 133,158,846 4,565,336,355 108,239,039 914,031,966

2 0.412 0.229 133,883,411 4,508,567,459 107,650,072 925,397,741

3 0.396 0.231 140,685,907 4,460,309,270 102,180,469 935,302,887

4 0.375 0.234 150,387,430 4,416,886,138 95,134,232 944,408,485

5 0.359 0.236 158,472,027 4,373,467,988 90,019,962 953,692,054

6 0.353 0.238 161,770,583 4,327,721,711 88,146,218 963,667,630

7 0.356 0.241 160,056,830 4,280,134,868 89,080,015 974,263,945

8 0.363 0.244 156,367,145 4,233,502,509 91,133,519 984,878,616

9 0.366 0.246 154,594,586 4,191,059,359 92,166,597 994,752,556

10 0.361 0.248 156,975,605 4,154,475,395 90,747,075 1,003,435,800

9Note that robustness tests were applied to Scenarios 2 and 3 because these two are modeling pest and disease outbreaks
that directly impact yields. Given this direct effect, it makes sense to consider a few additional shock levels outside of the
range of the historical examples we cite. The other scenarios incorporate a wide range of political and social factors, with no
clear sense of the potential range of changes. Doing more sensitivity analysis on these other scenarios is less relevant to
stakeholders.
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Table 4. Comparison of net-trade effects between scenario 2 and baseline

Year

Organic Conventional

Scenario 2 Baseline Scenario 2 Baseline

0 31,565,381 31,565,381 3,710,411,089 3,710,411,089

1 22,209,209 24,919,807 3,634,415,394 3,651,304,388

2 21,753,930 26,233,339 3,555,103,208 3,583,169,718

3 33,547,699 38,505,438 3,491,106,945 3,525,006,382

4 50,965,298 55,253,198 3,436,850,348 3,472,477,654

5 65,560,183 68,452,065 3,385,259,550 3,419,775,934

6 71,643,745 73,624,365 3,331,857,007 3,364,054,081

7 68,857,111 70,976,815 3,276,262,893 3,305,870,923

8 61,965,445 65,233,626 3,221,492,655 3,248,623,893

9 57,540,594 62,427,989 3,171,595,770 3,196,306,802

10 60,092,997 66,228,531 3,129,064,122 3,151,039,595

Table 5. Net present value of welfare impacts10

Scenarios
Change in consumer surplus U.S.

million dollars
Change in producer surplus U.S.

million dollars
Net change in surplus U.S.

million dollars

(a) Organic production

2 −73.52 1.29 −72.23

3 13.00 −23.56 −10.56

4 −1.33 −9.93 −11.26

5 26.73 −4.53 22.20

(b) Conventional production

2 −161.39 54.48 −106.91

3 −266.83 −45.45 −312.28

4 −35.02 −42.17 −77.18

5 805.34 −332.97 472.36

(c) Entire industry

2 −234.92 55.77 −179.14

3 −253.82 −69.01 −322.84

4 −36.35 −52.10 −88.44

5 832.07 −337.51 494.56

Notes: The discount rate is set as 4%.

10The change in surplus is the difference between surpluses in the shock scenario and baseline. Change in consumer surplus
is
R
x
P1 Q1dP � R

x
P0 Q0dP � � 1� ε� ��1P0Q0 e 1�ε� �EP � 1

� �
. Change in producer surplus is TPs � TPbaseline, where TP = Total

revenue–Total cost. Following Taylor & Granatstein (2013), we assumed the costs of organic and conventional systems are
$5153/acre and $4621/acre in 2016 dollars, respectively. Net change in surplus is: Change in consumer surplus�Change in
producer surplus.
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retail prices and organic production than conventional. To test the robustness of these results,
additional analyses considering different own and cross-price elasticities are presented in
Appendix A.

Figure 3 shows the welfare changes under scenario 4, where some initially grown organic apples
are sold as conventional. Consumer and producer surpluses for organic apples decrease while the
surpluses of conventional apples increase right after the shock. The positive effects on surplus for
the conventional sector suggest that the impacts of an increase in production sold as conventional
outweigh the losses from the decreased prices.

From the trade cost shock in scenario 5, organic and conventional industries show similar
results (Figure 4). As the trade costs are imposed on organic and conventional apples, the exports
of both apples decrease right after the shock. Immediately after the trade cost shock, declines in
exports are rerouted to domestic supply, reducing the equilibrium prices in both sectors; producer
surpluses fall while consumer surpluses increase.

Table 5 reports the net present values of welfare changes over the analysis period. For the
organic industry, a negative supply shock on the bearing acreage represented by scenario 2
has the largest impact on surplus (-$72.23 million). In comparison, the trade cost shock in
scenario 5 has the largest effect on conventional ($472.36 million). According to the USDA

Figure 1. Change in economic surplus under scenario 2: negative supply shock on the bearing acreage (5% and 2% reduc-
tions of organic and conventional bearing acreage, respectively).
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(2022), aggregate sales of all apples and certified organic apples were $3,032 and $628 million,
respectively, in 2021. Therefore, welfare changes under scenarios 2 and 5 can be considered a
means for the organic and conventional industries.

6. Conclusions
This study specifies a dynamic economic model to consider the direct and indirect consequences
of pest and disease outbreak shocks on conventional and organic U.S. apple production. Our
model is based on a dynamic change in the bearing area for organic and conventional apples that
predicts changes in welfare as economic agents respond to outbreaks. Though we parameterize
our model using the U.S. apple industry, it is general enough to be easily adapted to consider
organic and conventional interactions for other agricultural commodities, which is an under-
studied research question.

We model a baseline and four scenarios representing pest or disease outbreaks motivated by
recent events to increase the salience of the results to key stakeholders. The outcome variables
modeled include changes in bearing acreage, yield shock, and trade. Scenarios 2 and 3, where
pest and disease outbreaks cause supply shocks through bearing area and yield, show negative
net changes in total surplus. The empirical simulation results also show that, due to the

Figure 2. Change in economic surplus under scenario 3: negative supply shock on the yields (10% and 2% reductions in
organic and conventional production, respectively).
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differences between the organic and conventional sectors, the impacts of pests and disease
shocks vary across industries. The extent of such effects on producer and consumer surpluses
is different.

Models like the one examined in this study should be essential to building a proactive and
advanced scientific approach for mitigating more frequent and severe pest and disease
outbreaks, particularly given the continued expansion in certified organic production.
Findings in this study demonstrate that the effects of pest or disease outbreaks on producer
and consumer welfare vary between organic and conventional industries and by the types of
shock. Farmers can refer to the results of this study to assess potential economic losses from
alternative land allocations between organic and conventional. Also, since the ability to
adapt pest management practices depends on their physical and financial resources, govern-
ment support will be required for planning and conducting adaptation and mitigation strate-
gies. In this context, policy makers should analyze representative crops and production
methods, in this case, organic versus conventional, and determine the amount of financial
and technical support for farmers by considering the changes in consumer and producer
surpluses and crop losses.

Figure 3. Change in economic surplus under scenario 4: 5% of initially grown organic apple production is sold as
conventional.
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Data availability statement. The data supporting this study's findings are available from the Noncitrus Fruits and Nuts
(USDA-NASS 2016) and Organic Survey (USDA-NASS 2016). Imports and exports of apples are obtained from the
USDA-ERS (2016). For the farm-level prices of apples, this study uses the value of sales per pound from the USDA
Noncitrus Fruits and Nuts (USDA-NASS 2016) and the Organic Survey (USDA-NASS 2016). Retail prices of apples are
obtained from the USDA-AMS (2016). The wholesale prices are calculated using the information in Tozer & Marsh
(2018). We also use the free on board (FOB) price from various Washington State University Tree Fruit Research and
Extension reports considering 2004 to 2018 (Granatstein & Kirby, 2019). We use the bearing acres and grower price data
from 1980 to 2015 from the USDA Noncitrus Fruits and Nuts annual reports to estimate the function of conventional bearing
acres.
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Figure 4. Change in economic surplus under scenario 5: apple-importing countries must implement cold treatment to
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Appendix A. Robustness test for scenarios 2 and 3.

We conducted an additional analysis with different parameters under scenario 2 (Figures A1–A4) and scenario 3
(Figures A5–A8).

(1) Since some previous research (reported in Tozer and Marsh) had used lower own-price elasticities than those
utilized in this paper, we analyzed them with lower own-price elasticities. Figures A1 and A5 present simulation
results with lower own-price elasticities (−0.6 and −0.3 for organic and conventional, respectively).

(2) Figures A2 and A6 present results with −0.5 and −0.2 for organic and conventional own-price elasticities.
(3) The range of cross-price elasticities in previous research is 0.03–0.32 (Lin et al. 2009; Nelson et al. 2017).

Figures A3 and A7 present simulation results with lower cross-price elasticities (0.05) than in Figure 1 (0.1).
(4) Figures A4 and A8 present simulation results under scenario 2 with larger cross-price elasticities (0.15) than in

Figure 1 (0.1).

For scenario 2, the different parameterization has no significant impact on the trends of changes in consumer and producer
surpluses (see Figures A1–A4). On the other hand, for scenario 3, Figures A5–A7 show that the changes in producer surplus
are different right after the shock, compared to Figure 2. However, comparison results from Table A1 show that simulations
with different parameters have no significant impacts on the net present values of welfare changes over the analysis period.

Figure A1. Simulation results under scenario 2 with lower own-price elasticities (−0.6 and −0.3 for organic and
conventional, respectively).
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Figure A2. Simulation results under scenario 2 with lower own-price elasticities (−0.5 and −0.2 for organic and conven-
tional, respectively).

276 Hyun Jin Lim et al.

https://doi.org/10.1017/aae.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2023.11


Figure A3. Simulation results under scenario 2 with lower cross-price elasticities (0.05).

Journal of Agricultural and Applied Economics 277

https://doi.org/10.1017/aae.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2023.11


Figure A4. Simulation results under scenario 2 with larger cross-price elasticities (0.15).
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Figure A5. Simulation results under scenario 3 with lower own-price elasticities (−0.6 and −0.3 for organic and conven-
tional, respectively).
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Figure A6. Simulation results under scenario 3 with lower own-price elasticities (−0.5 and −0.2 for organic and conven-
tional, respectively).
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Figure A7. Simulation results under scenario 3 with lower cross-price elasticities (0.05).
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Figure A8. Simulation results under scenario 3 with larger cross-price elasticities (0.15).

Table A1. Net present values of welfare impacts

Changes in consumer surplus Changes in producer surplus

Organic Conventional Organic Conventional

Scenario 2 Figure 1 −73.52 −161.39 1.29 54.48

Figure A1 −95.67 −218.83 7.67 76.47

Figure A2 −102.09 −235.07 9.55 82.62

Figure A3 −62.45 −196.35 1.06 51.37

Figure A4 −84.19 −128.39 1.53 57.66

Scenario 3 Figure 2 13.00 −266.83 −23.56 −45.45

Figure A5 24.07 −354.17 −26.82 −19.36

Figure A6 14.12 −267.51 −28.42 −13.72

Figure A7 11.91 −266.17 −23.84 −45.50

Figure A8 11.91 −266.17 −23.29 −45.42
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