BULL. AUSTRAL. MATH. SOC. 18D15, 46M99
VOL. 15 (1976), 65-72.

Categories whose objects are
determined by their rings

of endomorphisms

Grigore Calugareanu jr

In an additive category A0 , objects are said to be determined

by their rings of endomorphisms if for each ring-isomorphism F

of the rings of endomorphisms of two objects A4, B in A0 there
is an isomorphism f : A *+ B in A0 such that F(a) = fhfrl s

for every endomorphism o of A . Considering this problem in
the context of closed cdtegories (in Eilenberg and Kelly's sense),
the author proves a general theorem which generalises results of
Eidelheit (for real Banach spaces) and of Kasahara (for real

locally convex spaces).

0. Introduction
Let A, B be two objects in an additive category A0 . We consider
the following problem: under what conditions on AO does a ring
isomorphism F : AO(A, A) ~» AO(B, B) induce an isomorphism f : A + B 1in
AO , such that F = Ao(fﬁl, fj , or equivalently, F(a) = fhf'l , for every
o € AO(A, A) 2
Examples of categories in which this problem has an affirmative answer

are abundant. We concentrate on three of them, namely: the category of

vector spaces and linear transformations over a division ring, the category
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of real Banach spaces and linear continuous transformations (see [1]) and
the category of real locally convex spaces and linear continuous trans-

formations (see [3]).

Having these in mind, the notion of closed category (in the sense of
[2]) is easily seen to be needed. According to this, we rephrase our

initial problem in the following terms.

Let F : (AA) = (BB) be an isomorphism in the closed category

A= (A, V, hom A, I, 2, §, L) , the subjacency of which is a ring

0’

homomorphism (and thus a ring-isomorphism). Under what conditions on A
is there an isomorphism f : 4 +B in AO such that F = (frl, f) 2

We shall use the notations in the paper by Eilenberg and Kelly [2] and
shall also denote by E(A) the ring AO(A, A) of the endomorphisms of

A

1. Preliminaries at the subjacent level
From now on, let AO be an additive category with kernels and finite

products (coproducts), and let A, B be two objects in A0 .

LEMMA 1. If P(4), P(B) denote the sets of direct factors
(summands) of A and B , respectively, then each ring-isomorphism
F : E(4) » E(B) induces a canonical bijection F* : P(A) - P(B) .

Proof. By natural restriction, F obviously induces a bijection
between EI{(4) and EI(B) , the sets of idempotent endomorphisms of A4
and B , respectively. It is then sufficient to indicate, for each object

A in A0 , & bijection Uy - P(4) = EI(4) . 1If Al is a direct factor of

A , and Py % are the canonical projection and injection, respectively,

1

then defining qAﬂAl) = u and u;l(e) = ker(1-8) for every

1P1

8 € EI(4) , QA and U;l are easily seen to be mutually inverse (see [4],

O

.

o1
I, 18.5). So F* =Ug Fler(a)Y%

REMARK. Considering P(A) preordered by the well-known relation of

comparing subobjects, one can easily verify that F* 1is actually a
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preorder isomorphism. Indeed, one has to show that if (.41, ul) = (Az, u2)

then (F* (Al), ui‘) = [F* [‘42) s u’z‘) ;5 but this follows immediately from

(lB—F(uepa)).ui =0.

COROLLARY. Under the assumptions of the previous lemma, if

n n
a=TT4a, then B=T] F*(a;)
i=1 v

=1

Proof. Let (ui : Ai - A)Z__ and (pt : A > Ai):;l be the

1
injections and projections of the biproduct A4 . We then have piuj = 612.7'

n
and igl up, =1 4 The morphisms u:p; being idempotent, F(uipi] have
the same property, and we have F* (Ai] = ker (lB_F(uipi)) . From
(lB-F(uipi]) .F(uipi) = 0 follows the unique existence of morphisms p;'!
such that F(uipi) = u}.p} , u} denoting the injection of the direct
factor F* [A_L) in B .

n
According to ([4], I, 18.1) we only have to show that ) ugpg =1y
i=1
and pjbf.u;. = 611,7’ . The first equality is obvious because
> 3 plup,) = #[ 5 (1)
u¥.pt = Flu.p. =FL u.p.] =FQ,] =1, ,
i=p ° T ;1 171 =) 171 A B
any ring-isomorphism being unital. As for the second, from
u,z = ker (lB-F(uipi)) = equ(lB, F(uipi]) we derive
4 = A = yi.prout
u} = P(up,) .u} = ul.p}.u} ,
and uz being mono, we have p_l’f.u‘z =1. For 1 #J we also have
= p.) = ut.pt.ut.pt =0 .
u;-pg-4;-P; = O , and then F[utpz) F[quJ] uf.pj.utpt =0 . So
p;!.u:; = 0 follows, p;. being epi (in fact, a retraction). a

REMARK. Applying this corollary to F' and (l""‘)"l , one verifies
that A' 1is an indecomposable factor of A4 iff F*(4') is an
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indecomposable factor of B .

LEMMA 2, If [Al; Uy pl) is a direct factor of A then there is a
ring-isomorphism E(4;) » (u,p,)E(4) (up,)

Proof. If we define W, : E(4;) ~ (w,p1)E(4) (wyp;) and

-1
W™ (ugpy)E(A) (wypy) ~ E(4)) vy W (e)) = u p, 8 u,p; and

~1 _ . ] .
Wl (ulpleulpl) = pleul , respectively; these are easily seen to be
mutually inverse ring-homomorphisms. (]

COROLLARY. Under the assumptions of the previous lemma we have a
ring-isomorphism E(A,) ~ E(F*(4,)) .

Proof. We have only to notice that if £E(4) and E(B) are ring-

isomorphic then w. p.E(4)u and ui.piE(B)ui.pi are also ring-

1P 1P1

isomorphic. O
We are now in a position to prove the main subjacent-level result:
THEOREM 1. Let AO be an additive category with kermels and finite
products (ecoproducts), let A, B be objects in A0 ,and let U be a

direct factor of A . If F : E(4) » E(B) <s a ring-isomorphism then
there 18 a semi-linear isomorphism of abelian groups

Fy o AU, 4) > A (F*(0), B) , that is to eay, F,

and FU(aS) =F(a).FU(6) holds for each o in E(A) and 6 1in

18 a group homomorphism

AO(U, 4) .

Proof. Let u and p , respectively, be the injection and the
projection of U in A . Define FU(e) = F(6p).u* , for each
0 € AO(U, A) , where wu*, p* denote the injection and the projection of

F*(U) in B , respectively. It is only routine to verify that F, is a

U
group-homomorphism which is semi-linear (in the sense described above).
F[_jl : A (FH(), B) > A (U, 4) , defined by Fgl(e*) = Fl(etp*).u , is
easily checked to be a two-sided inverse for F, . ]

U
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2. The main theorem
Let A= (AO’ V, hom A, I, %, J, L) be a closed category. We shall
be concerned with the following conditions:

Al: AO is an additive category with kernels and finite (bi)-
products;

A2: TV is a faithful functor;

A3: for each nonzero object 4 in A0 . AO(I, A) contains a
coretraction;

Abkl: the object I is indecomposable (into direct (bi)products);

Ak2: according to A3, considering I as a direct factor of 4 ,
for each ring-isomorphism F : E(4) » E(B) there exists an

isomorphism vy I » F*(I) .

THEOREM 2. Let A be a closed category which satisfies the
conditions Al, A2, A3, and one of the conditions ALl, AL2. If for two
objeets A, B 1in AO there is an isomorphism F : (4A) -+ (BB) 1in Ao »
the subjacency of which is a ring-homomorphism, then there is a canonical
igomorphism f : A ~ B ; that is F = (f, f’l)

Proof. According to A3 we shall denote by pA and Uy s
respectively, the projection and the injection of I in A4 , and by
pg, ué the projection and the injection of F#*(I) in B , respectively.

First, let us show that the morphism FI : (I4) ~» (F*(I), B) in AO
given by FI = (ug, lB).F.QZA, lA) is an isomorphism. We note that if
F=V(F) , then F,=V(F;) . We shall prove that
L. (P*(1), B) » (14) iven by FrL - (w,, 1,) Fi (P2, 1) , is a two-

I . 3 3 g I A’ A . . B’ B k]

sided inverse for FI . In order to prove that

-1
FI 'FI = (uA, lA)'F .(ugpg, lB).F.(pA, lA) .

-1
Fr o= (s lB).F.(uApA, 1,).F . (ph, 1)
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are both identities, it is sufficient to prove that
(uépg, ?‘B)‘F = F.(uApA, lA) ,
because p,u, =1, P§u§ = 1 . The subjacency functor being faithful, it

is sufficient to check this equality at the subjacent level, namely,
yy X =
Ao(ugphs 15) .F = F.A (wp,, 1,) .
Applying both members to e 0 € E(4) , one has ujp} = F(uApA) , which is
true (see the proof of the corollary of the first lemma).

Now, using the remark following the same corollary, from Akl, I
being indecomposable, F#*(I) is also indecomposable and so, again by A3,

there is an isomorphism w., : I + F*(I) . If we choose the condition A42

I

instead of A4%l, such an isomorphism w

T also exists, by hypothesis.

We are now in a position to define the canonical isomorphism

-l . .
f :+: A+ B as follows: f = ip .(wI, lB]. %4 where ¢ is the natural

isomorphism given with the closed category structure in A . It is clear

that f , as composite of isomorphisms, is also an isomorphism.
The functor V being faithful, the two ways of requiring the

canonicity of f , namely, V(F)(a) = f.a.f‘-l and F = (_f_l, f) , are
equivalent. We adopt the first one, which is also equivalent to
F(a).f = f.a for each a € E(4) .

One has to verify that

l'(

F(a).ig . (wy, 15). (g, 15).F. (b, 1,).%, =

First, we note that

‘LA o i;l = (11', a)
and
iB.F(a).i;l = (1, F(a))
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are true, because of the naturality of the isomorphism < . Thus it only

remains to show that
(ug.wl., F((!)).F. (pA, lA) = (ué-wl': lB)'F' (PA’ 0’) N

But this can be readily checked at the subjactnt level: the equality
Fa).Fla.p,) . upw, = F(a.8.p,) .uf.w, is true for every 6 € A(I,4) , F

being a ring homomorphism. This completes our proof. ]

3. Several applications and comments

Let us denote by K the category of vector spaces and linear
transformations over a division ring X , by B the category of real
Banach spaces and linear continuous transformations, and by L the
category of real locally convex spaces and linear continuous

transformations.

First, it is obvious that Al is fulfilled in any one of the three
categories considered above. K and B have well-known structures of
closed categories, and L also admits such a structure, obtained by
considering on the vector space of the linear continuous transformations
the locally convex topology of O-convergence, with o0 the family of the

bounded subsets of the domain.

Next, for these closed categories, the division ring K in K and
the real line in B and L are the corresponding objects I .
Indecomposables are one-dimensional spaces and so A4l is fulfilled. All
these categories being concrete, the Condition A2 is satisfied. Finally,
Condition A3 holds in all of these categories, because for each nonzero
element in a space in any of these categories, there is a nontrivial
functional which takes the value 1 (identity of X or real number,

respectively) on this element.

In fact, the largest category of topological vector spaces in which
Condition A3 is satisfied contains all the spaces which admit a nontrivial
functional, or equivalently (by a theorem of LaSalle), those which contain
a proper open and convex subset. Unfortunately this is not a "nice"

category for the rest of our conditions.

From another point of view, let R be an associative ring with

identity, and let R-mod be the closed category of left unitary
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R-modules. One can now raise the problem: Al, A2 being satisfied in
R-mod, under what conditions on the ring R are Condition A3 and one of

the Conditions All and Ah2 satisfied?

Unfortunately again, the answer is a deceiving one: R must be a
division ring. Indeed, Condition A3 implies the following concrete

condition: the left R-module RR must be a direct summand of every non-
zero left R-module.
Let us suppose that for a ring A +this condition holds. Let RM be

a simple left R-module (such ones do exist, for example, R/m for a left

maximal ideal m in R , considered as a left R-module). RR being
isomorphic with a cyclic submodule of RM , it follows that RR is
actually isomorphic with RM , and so simple as a left R-module.

Then R is a not necessarily commutative division ring. For this

last comment, I am indebted to Mr Nae Popescu.
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