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Abstract

It is shown that the dn th Chebyshev polynomials on the Julia set JP , and on the equipotential curve
0P (R), of the polynomial P(z)= zd

− c, are identical and exactly equal to the nth iteration of P(z)
itself. As an application, the capacity of the Julia set JP is deduced, a result that was first obtained by
Brolin.
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1. Introduction

For a compact subset K of the complex plane C with at least n elements, there exists
a unique complex polynomial Fn of degree n and with leading coefficient 1 such that

max
z∈K
|Fn(z)| = inf

{
max
z∈K
|zn
+ a1zn−1

+ · · · + an| : a1, . . . , an ∈ C
}
.

The polynomial Fn is called the nth Chebyshev polynomial on the set K . For
example, if K is the unit circle {z ∈ C : |z| = 1}, then Fn(z)= zn . If K is the segment
[0, 4] on the real axis, then Fn is the classic nth Chebyshev polynomial, that is
Fn(z − 2)= wn

+ (1/wn), where z = w + (1/w)+ 2, |w|> 1. In [2], Barnsley et al.
showed that the 2nth Chebyshev polynomial on the Julia set of T (z)= (z − λ)2 is
T n(z)− λ, where T n(z)= T (T n−1(z)) for n ∈ {1, 2, 3, . . .} and T 0(z)= z. In this
case, the Julia set can be disconnected. Another example of Chebyshev polynomials
on disconnected compact sets was given by Fischer [7]. In this paper, we generalize the
conclusion of [2] to the Julia sets of polynomials P(z)= zd

− c for d ≥ 2 and c ∈ C.
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THEOREM 1. Let JP denote the Julia set of P(z)= zd
− c for d ≥ 2 and c ∈ C.

Then the dnth Chebyshev polynomial on JP is Pn(z), where Pn(z)= P(Pn−1(z))
for n ∈ {1, 2, 3, . . .} and P0(z)= z.

Another problem concerns the Chebyshev polynomials on the equipotential curves
for a compact set in C. Let K be a compact subset of C and AK be the unbounded
component of C \ K . By definition, an equipotential curve 0K (R) of level R > 1 for
K is the set

0K (R)= {z ∈ AK : G K (z)= log R}, R > 1,

where G K (z) is Green’s function for AK with pole at∞.
For the unit circle {z : |z| = 1}, the equipotential curves are given by {z : |z| = R}

for R > 1. It is obvious that Fn(z)= zn is also the nth Chebyshev polynomial on any
circle {z : |z| = R}. This shows that the Chebyshev polynomials on {z : |z| = 1} and on
{z : |z| = R} (R > 1) are identical. For the real segment [0, 4], the equipotential curves
are ellipses with foci 0 and 4. It was proved by Faber [5] that the classical Chebyshev
polynomials are also polynomials with minimal uniform norm on such curves, and
are thus the Chebyshev polynomials on the equipotential curves. It is reasonable to
ask if it is always true for a compact planar set K that the Chebyshev polynomials
on K (or at least a subsequence of them) are also the Chebyshev polynomials on
equipotential curves 0K (R) for any R > 1 (refer to [11]). Fischer [7] showed that
this is the case when K is the union of a certain pair of disjoint real segments. In [11],
Stawiska studied the problem for Julia sets of quadratic polynomials Tλ(z)= (z − λ)2

and proved that, when λ ∈ [0, 2], the 2nth Chebyshev polynomial T n(z)− λ on the
Julia set of Tλ is also the 2nth Chebyshev polynomial on the equipotential curves.
Note that the Julia sets of Tλ(z) are connected in this case, and the unit circle and
the real line segment [0, 4] appear as special cases. In this paper, we show that the
restriction λ ∈ [0, 2] is not required. In fact, we extend Stawiska’s result [11] to the
Julia sets of polynomials P(z)= zd

− c with degree d ≥ 2 and any c ∈ C.

THEOREM 2. Let P(z)= zd
− c with d ≥ 2 and c ∈ C. Let JP be the Julia set of

P(z). Then the dnth Chebyshev polynomial on the equipotential curve 0P(R) for
R > 1 is Pn(z), where Pn(z)= P(Pn−1(z)) for n ∈ {1, 2, 3, . . .} and P0(z)= z.

From Theorems 1 and 2, we have the following conclusion.

COROLLARY 3. For the polynomial P(z)= zd
− c with d ≥ 2 and c ∈ C, the dnth

Chebyshev polynomial on the Julia set JP is also the Chebyshev polynomial on any
equipotential curve of level R > 1 for JP .

Note that in our result the Julia set JP can be disconnected.
The paper is organized as follows. In Section 2 we introduce some definitions and

results from holomorphic dynamics, which will be used in the remainder of the paper.
For general background in complex dynamics, we refer to [3, 4, 9]. The proofs of
Theorem 1 and 2 appear in Section 3. In Section 4, as an application of the results given
in Section 3, we calculate the capacities of the Julia sets and the equipotential curves
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for the family P(z)= zd
− c. The capacities of the Julia sets of monic polynomials

were first given by Brolin [4].

2. Preliminaries

Let P : C→ C be a polynomial of degree d ≥ 2. Let Pn(z) be the nth iteration of
the polynomial P(z), namely,

Pn(z)= P(Pn−1(z)) for n ∈ {1, 2, 3, . . .} and P0(z)= z.

The Julia set JP for P is defined to be the set of points at which the family of iterates
of P fails to be a normal family in the sense of Montel [10]. Equivalently, the Julia set
is the closure of the union of repulsive fixed points of Pn(z) for all n ∈ {1, 2, 3, . . .}
(see [4, 6, 8]). For properties of Julia sets, we refer to [3, 4, 9].

It is well known that the Julia set is a compact subset of C and there exists no
interior point in JP . The set JP is completely invariant under P , in other words,

P−1(JP)= P(JP)= JP .

It follows that, for any positive integer n, the maximum modulus of Pn(z) on JP is
given by

max
z∈JP
|Pn(z)| =max

z∈JP
|z|.

Let AP(∞) denote the set of points z ∈ C such that the iterate sequence {Pn(z)} is
unbounded. Equivalently,

AP(∞)= {z ∈ C : Pn(z)→∞}.

The set AP(∞) is called the attractive basin of∞, is an open subset of C and contains
a neighborhood of∞.

The complement K P of AP(∞), that is,

K P = {z ∈ C : Pn(z)9∞},

is called the filled Julia set, and is compact in C. Both AP(∞) and K P are completely
invariant under P . Their common boundary

∂K P = ∂AP(∞)= JP

is the Julia set of the polynomial P . It is well known from Fatou [6] that if all critical
points of P , that is, the points satisfying P ′(z)= 0, belong to K P , then K P and JP are
connected. Otherwise, JP is disconnected.

Define the function
G : C→ R+ ∪ {0}

by

G(z)= lim
n→∞

1
dn log+ |P

n(z)|,

where log+ |z| =max{0, log |z|}. It is known (see [9]) that G(z) is harmonic in
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C \ K P and K P is the set of zeros of G(z). In fact, G(z) is Green’s function for
C \ K P with pole at∞. Consequently, for R > 1, the curve

0P(R)= {z ∈ C \ K P : G(z)= log R}

is the equipotential curve of level R. From the definition,

P(0P(R))= 0P(R
d) and 0P(R)= P−1(0P(R

d)).

It follows that, for any positive integer n,

max
z∈0P (R)

|Pn(z)| = max
z∈0P (Rdn

)

|z|, R > 1.

When the Julia set JP is connected, then there exists a conformal mapping
8 : C \ K P → {w ∈ C : |w|> 1} satisfying limz→∞(8(z)/z)= 1. In this case,
G(z)= log |8(z)| for z ∈ C \ K P . So the equipotential curves are given by

0P(R)= {z : |8(z)| = R},

which are simple closed analytic curves surrounding JP for R > 1.

3. Proof of theorems

In this section, we restrict our attention to the family of polynomials P(z)= zd
− c,

where d ≥ 2 is an integer and c ∈ C. Let ωk = e(2πk/d)i for k = 0, 1, . . . , d − 1 be
the roots of the equation zd

= 1. Then P(ωk z)= P(z) for any k = 0, 1, . . . , d − 1.
It follows that both the Julia set JP and the equipotential curves 0P(R) of P(z) are
invariant under multiplication by any ωk . That is, we have the following lemma.

LEMMA 4. z ∈ JP (z ∈ 0P(R)) implies that, for every k, ωk z ∈ JP (ωk z ∈ 0P(R),
respectively).

To obtain the Chebyshev polynomials on JP and 0P(R), we need the following
lemma.

LEMMA 5. Let ω0, ω1, . . . , ωd−1 be the roots of the equation zd
= 1. Then for any

integer n > 0, and a, a1, a2, . . . , an ∈ C and l1, l2, . . . , ln ∈ N with 1≤ l j ≤ d − 1,
for j = 1, 2, . . . , n, there exists at least one integer k with 0≤ k ≤ d − 1 such that

|a + a1ω
l1
k + a2ω

l2
k + · · · + anω

ln
k | ≥ |a|.

PROOF. Let Sk = a + a1ω
l1
k + a2ω

l2
k + · · · + anω

ln
k . Then∣∣∣∣d−1∑

k=0

Sk

∣∣∣∣= ∣∣∣∣d−1∑
k=0

(a + a1ω
l1
k + a2ω

l2
k + · · · + anω

ln
k )

∣∣∣∣= ∣∣∣∣da +
n∑

j=1

a j

d−1∑
k=0

ω
l j
k

∣∣∣∣.
Note that

∑d−1
k=0 ω

l j
k = 0 for 1≤ l j ≤ d − 1. Thus there exists a k, with 0≤ k ≤ d − 1,

such that |Sk | ≥ |a|. 2

Now we give the proof of Theorem 1.
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PROOF OF THEOREM 1. Let Q be a polynomial of degree dn with leading
coefficient 1. Denote by W the set of d roots of the equation zd

= 1, that is,

W = {ωk = e(2πk/d)i
: k = 0, 1, . . . , d − 1}.

Let z0 ∈ JP satisfy maxz∈JP |P
n(z)| =maxz∈JP |z| = |z0|. The purpose is to show

that there exists a root z of Pn(z)= w0z0 for some w0 ∈W , such that |Q(z)| ≥ |z0|.
For a given integer j , with 0< j ≤ dn

− 1, we can choose (l1, n1), . . . , (l j , n j ) ∈

N× N satisfying 0≤ n1 < n2 < · · ·< n j < n and 1≤ l1, l2, . . . , l j ≤ d − 1 such
that

j = l1 dn1 + l2 dn2 + · · · + l j dn j .

Set U0(z)≡ 1. Thus, we can represent Q as the sum

Q(z)= Pn(z)+
dn
−1∑

j=0

a jU j (z),

where a j are complex coefficients and

U j (z)= (P
n1(z))l1(Pn2(z))l2 . . . (Pn j (z))l j for j > 0.

When j > 0, we define the index of the polynomial U j to be the integer n1, denoted
by index U j = n1. The index of U0 ≡ 1 is set to be n. Then we regroup terms by index,
that is,

Q(z)= Pn(z)+
n∑

k=0

qk(z),

where qk(z)=
∑

index U j=k a jU j (z).
Lastly, we introduce

Lm(z)= Pn(z)+
n∑

k=n−m

qk(z) for m = 0, 1, 2, . . . , n.

We have Lm(z)= Lm−1(z)+ qn−m(z) and Ln(z)= Q(z).
Note that any root z of the equation Pn(z)= w0z0 can be written as

z = wn
d

√
c + wn−1

d
√

c + · · · + w1
d
√

c + w0z0,

where w j ∈W for j = 0, 1, . . . , n. We claim that, for each k = 0, 1, 2, . . . , n,
there are unit roots w j ∈W for j = 0, 1, 2, . . . , k, such that for any w j ∈W with
j = k + 1, . . . , n, we have |Lk(z)| ≥ |z0| where

z = wn
d

√
c + wn−1

d
√

c + · · · + w1
d
√

c + w0z0.
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In particular, for k = n, there will be a point z on JP such that |Q(z)| = |Ln(z)| ≥ |z0|,
which is what we need to show.

We will prove the claim by induction. First let k = 0. No matter how
w0, w1, . . . , wn are chosen to determine z,

|L0(z)| = |P
n(z)+ a0| = |w0z0 + a0|.

Now we can choose a w0 ∈W to ensure |w0z0 + a0| ≥ |z0|.
Let us assume that the claim is true for k = m − 1< n. We will show that it is also

true for k = m. Suppose that w0, w1, . . . , wm−1 ∈W are taken as in the statement for
k = m − 1, and we defer choosing wm . With z as in the claim,

Pn−m(z) = wm
d

√
c + wm−1

d
√

c + · · · + w1
d
√

c + w0z0

= wm × (quantity independent of wm).

For n − m < k ≤ n,

Pk(z)= wn−k
d

√
c + wn−k−1

d
√

c + · · · + w1
d
√

c + w0z0,

which is also independent of wm . So

qn−m(z) =
∑

index U j=n−m

a jU j (z)

=

∑
i

(Pn−m(z))li × (terms independent of wm)

=

∑
i

wli
m × (terms independent of wm).

Now w0, w1, . . . , wm−1 have been determined and Lm−1(z) is independent of wm .
By Lemma 5, we can choose wm ∈W such that

|Lm(z)| = |qn−m(z)+ Lm−1(z)| ≥ |Lm−1(z)| ≥ |z0|.

The second inequality follows from the inductive hypothesis. The claim is proved.
For m = n, we have |Q(z)| = |Ln(z)| ≥ |z0| =maxz∈JP |P

n(z)|. This completes the
proof. 2

PROOF OF THEOREM 2. The proof is quite similar to the proof of Theorem 1. To show
that Pn(z) is the dnth Chebyshev polynomial on the equipotential curve 0P(R) for
R > 1, we take z0 such that |z0| =maxz∈0P (Rdn

) |z|. Since 0P(R)= P−n(0P(Rdn
)),

we have maxz∈0P (R) |P
n(z)| = |z0|. Noting that the equipotential curves are invariant

under multiplication by ωk , all roots of the equation Pn(z)= w0z0 for some w0 ∈W
are in 0P(R). So, as in the proof of Theorem 1, for any polynomial Q(z) of degree
dn with leading coefficient one, we need only to show that there exists a root z of
Pn(z)= w0z0 for some w0 ∈W , |Q(z)| ≥ |z0|. This follows the proof of Theorem 1.
We omit the details. 2
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Corollary 3 is a direct consequence of Theorems 1 and 2.

4. Application

Brolin [4] proved that the capacity of the Julia set for a complex polynomial P of
degree d with leading coefficient one is 1. For the family P(z)= zd

− c, Theorem 1
leads to a new proof of this result. To see this, we recall some definitions and results
on capacity, which can be found in [1].

Let E be a compact set in the complex plane C. The diameter of order n for E is
defined by

dn(E)=max
{∏

i< j

|zi − z j |
(2/n(n−1))

: zi ∈ E, i = 1, . . . , n

}
.

It is readily seen that dn−1(E)≤ dn(E), so the limit limn→∞ dn(E) exists. We
define d∞(E)= limn→∞ dn(E) to be the transfinite diameter of E .

If Pn(z) is the nth Chebyshev polynomial on E , we denote its maximum modulus
on E by ρn

n (E). Then we have the following proposition (see [1]).

PROPOSITION 6. limn→∞ ρn(E)= d∞(E).

Let µ be a positive mass distribution on E of finite total mass. The logarithmic
potential on E is defined by

u(z)=
∫

E
log

1
|z − ζ |

dµ(ζ ),

and the energy integral is

I (µ)=
∫ ∫

E×E
log

1
|z − ζ |

dµ(ζ ) dµ(z).

Set
V = inf

µ, µ(E)=1
I (µ).

Then the capacity γ (E) of E is defined by

γ (E)= e−V .

The following proposition tells us the relation between the capacity and the transfinite
diameter (see [1]).

PROPOSITION 7. The capacity of a closed bounded set is equal to its transfinite
diameter.

From Propositions 6 and 7, we have the following theorem.

THEOREM 8. For the family P(z)= zd
− c, γ (JP)= 1 and γ (0P(R))= R.
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PROOF. From Theorem 1, we know that the dnth Chebyshev polynomial on JP is
Pn(z) and

ρdn

dn (JP)=max
z∈Jp
|Pn(z)| =max

z∈Jp
|z| = |z0|.

It follows from Propositions 6 and 7 that

γ (JP)= d∞(JP)= lim
n→∞

ρdn (E)= lim
n→∞

dn√
|z0| = 1.

From Theorem 2, the dnth Chebyshev polynomial on 0P(R) is Pn(z). Let zn be in
0P(Rdn

) and it satisfies maxz∈0P (Rdn
) |z| = |zn|. Then, as above,

ρdn

dn (0P(R))= max
z∈0P (R)

|Pn(z)| = |zn|.

By definition, log G(zn)= log Rdn
= dn log R. It is evident that zn→∞ as n→∞

and log G(z)∼ log |z| as z→∞. We have

log |zn| ∼ dn log R as n→∞.

This implies that

lim
n→∞

1
dn log |zn| = log R.

So we have, from Propositions 6 and 7,

γ (0P(R))= lim
n→∞

ρdn (0P(R))= lim
n→∞

dn√
|zn| = R.

This completes the proof. 2
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