Bull. Aust. Math. Soc. 108 (2023), 422–427 doi:10.1017/S0004972722001599

A NOTE ON SUBNORMAL SUBGROUPS IN DIVISION RINGS CONTAINING SOLVABLE SUBGROUPS

LE QUI DANH[™] and TRINH THANH DEO[™]

(Received 5 November 2022; accepted 17 November 2022; first published online 11 January 2023)

Abstract

Let *D* be a division ring and *N* be a subnormal subgroup of the multiplicative group D^* . We show that if *N* contains a nonabelian solvable subgroup, then *N* contains a nonabelian free subgroup.

2020 Mathematics subject classification: primary 16K20; secondary 16S85, 16S36, 20E05.

Keywords and phrases: division ring, free subgroup, solvable subgroup, subnormal subgroup.

1. Introduction

Let *D* be a division ring and D^* denote the multiplicative group of *D*. Recall that a subgroup *N* of D^* is *subnormal* in D^* if there is a finite sequence of subgroups

$$N = N_r \trianglelefteq N_{r-1} \trianglelefteq \cdots N_1 \trianglelefteq N_0 = D^*.$$

The motivation of this paper is a result of Tits for linear groups. Tits showed that if N is a finitely generated subgroup of the general linear group $GL_n(F)$ over a field F, then N contains either a nonabelian free subgroup or a nilpotent normal subgroup H of finite index in N [13]. This famous result of Tits is now referred to as the Tits Alternative. For general linear groups over division rings, Lichtman [10] proved that there exists a division ring D such that D^* contains a finitely generated group which is not solvable-by-finite. Therefore, the Tits Alternative fails even for matrices of degree one over D^* . Also in [10], Lichtman remarked that it was not known whether the multiplicative group of a noncommutative division ring contains a nonabelian free subgroup. One year later, Lichtman showed in [11] that if N is a normal subgroup of D^* such that N contains a nonabelian nilpotent-by-finite subgroup, then N contains a nonabelian free subgroup. After that, Gonçalves and Mandel proposed the following conjecture.

CONJECTURE 1.1 [5, Conjecture 2]. For a division ring D with centre F and a subnormal subgroup N of D^* , if $N \not\subseteq F$, then N contains a nonabelian free subgroup.

The first author is funded by Vietnam National University Ho Chi Minh City (VNUHCM) under grant number T2022-18-03.

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

We give an affirmative answer to this conjecture in the case when N contains a nonabelian solvable subgroup. This result can be seen as a generalisation of Lichtman's result in [11].

THEOREM 1.2 (Main Theorem). Let D be a division ring and N a subnormal subgroup of the multiplicative group D^* . If N contains a nonabelian solvable subgroup, then N contains a nonabelian free subgroup.

We note that many special cases of the Main Theorem have been studied by many authors. For example, a subgroup N of D^* will contain nonabelian free subgroups if N satisfies any of the following assumptions:

- N is normal in D^{*} and N contains a nonabelian nilpotent-by-finite subgroup (Lichtman [11]);
- *N* is normal in *D*^{*} and *N* contains a nonabelian locally solvable-by-locally-finite subgroup (Bell and Gonçalves [1]);
- N is subnormal in D^* , N contains a nonabelian locally solvable subgroup and the transcendence degree of the centre of D over its prime subfield is infinite (Bien and Hai [2]).

For convenience, throughout this paper, the phrase 'free subgroup' means 'nonabelian free subgroup'. The idea of the proof of the Main Theorem comes from [1]. We can sketch the proof as follows. Assume that N is a subnormal subgroup of D^* containing a nonabelian solvable subgroup. First, we will study the existence of free subgroups in subnormal subgroups of the division ring of fractions $K(x, \sigma)$ of the skew polynomial ring $K[x, \sigma]$ in a single-variable x twisted by a nonidentity automorphism σ over a field K. Namely, we will prove that every subnormal subgroup of $K(x, \sigma)^*$ containing x contains a free subgroup. After that, we shall build a subring of D which is isomorphic to $K[x, \sigma]$, and based on the result on $K(x, \sigma)$, the Main Theorem will follow.

Some special cases for the existence of free subgroups have also been considered. For example, the following conjecture was proposed by Hai and Thin [8].

CONJECTURE 1.3 [8, Conjecture 1]. Every locally solvable subnormal subgroup of D^* is central.

In [7, Theorem 2.2], Hai and Thin proved that Conjecture 1.3 is true in the case of a locally nilpotent subnormal subgroup in an arbitrary division ring D and, in [7, Theorem 2.4], for the case of a division ring which is algebraic over its centre. After that, in [8], Conjecture 1.3 holds if D is a *weakly locally finite* division ring, that is, D satisfies the condition: for every finite subset S of D, the division subring P(S) generated by S and a prime subfield P of D is finite-dimensional over the centre Z(P(S)). Recently, Conjecture 1.3 was fully confirmed in [3, Theorem 1]. By applying the Main Theorem, we can also show that Conjecture 1.3 is true.

2. Proof of the main theorem

The fundamental result used in proving the Main Theorem is Theorem 2.6. Our approach to the proof of Theorem 2.6 comes from [1]. However, thanks to insights from [2], our proof is more straightforward than that in [1].

Let *K* be a field and σ be a field automorphism of *K*. Let us denote by $K[x, \sigma]$ the skew polynomial ring in an indeterminate *x* twisted by σ over *K*. Then $K[x, \sigma]$ is a principal left ideal domain and also a principal right ideal domain, that is, every one-sided ideal of $K[x, \sigma]$ can be generated by one element (see [6, Theorem 2.8]). The division ring of fractions of $K[x, \sigma]$ is denoted by $K(x, \sigma)$. Every element of $K(x, \sigma)$ is of the form $f(x) \cdot g(x)^{-1}$, where f(x) and g(x) are in $K[x, \sigma]$. Additionally, we denote by $K((x, \sigma))$ the skew Laurent series ring in the indeterminate *x* twisted by σ over *K*. It is well known that $K((x, \sigma))$ is a division ring (see [9, Example 1.8]). Clearly, $K[x, \sigma]$ can be embedded into $K((x, \sigma))$, and so $K(x, \sigma)$ can be seen as a division subring of $K((x, \sigma))$.

Let *D* be a division ring with the centre *F*. We can regard *D* as an *F*-algebra. If $\dim_F(D) < \infty$, then *D* is called *centrally finite*. From [9, Proposition 14.2], $K((x, \sigma))$ is centrally finite if and only if the order of σ is finite. As a corollary, if the order of σ is finite, then $K(x, \sigma)$ is centrally finite. We give some results about the existence of free subgroups in $K(x, \sigma)$. We need the following property.

LEMMA 2.1 [4, Theorem 2.1]. Let D be a noncommutative centrally finite division ring and N a noncentral subnormal subgroup of D^* . Then N contains a free subgroup.

We immediately have the following result.

COROLLARY 2.2. Let $K(x, \sigma)$ be the division ring of fractions of $K[x, \sigma]$ and N a noncentral subnormal subgroup of $K(x, \sigma)^*$. If σ has a finite order, then N contains a free subgroup.

For an arbitrary automorphism σ of K, whether a subnormal subgroup N of $K(x, \sigma)^*$ contains a free subgroup is an open question. In this section, we shall answer the question in case σ is a nonidentity and $x \in N$.

LEMMA 2.3 [2]. Let *K* be a field and σ a nonidentity automorphism of *K* with fixed subfield $k = \{a \in K : \sigma(a) = a\}$. Assume that there exists an element $a \in K \setminus k$ such that $k(a, \sigma(a), \sigma^2(a), \ldots)$ is not a finitely generated extension of *k*. If *N* is a subnormal subgroup of $K(x, \sigma)^*$ containing *x*, then *N* contains a free subgroup.

PROOF. This is the assertion (i) of [2, Theorem 2.5].

With the notation as in Lemma 2.3, we shall now consider the remaining case, that is, $k(a, \sigma(a), \sigma^2(a), ...)$ is a finitely generated extension of k. The next lemma is the key lemma to resolve this case.

LEMMA 2.4. Let *K* be a field and σ an automorphism of *K* with fixed subfield $k = \{a \in K : \sigma(a) = a\}$. Assume that there exists an element $a \in K \setminus k$ such that $E = k(a, \sigma(a), \sigma^2(a), \ldots)$ is a finitely generated extension of *k*. Then, the following hold.

- (i) $E = k(\sigma^{n_1}(a), \sigma^{n_2}(a), \dots, \sigma^{n_r}(a))$, where the n_i are integers with $0 \le n_1 < n_2 < \dots < n_r$.
- (ii) The restriction of σ to the subfield *E* is an automorphism of *E* of finite order.

PROOF. (i) Since E/k is a finitely generated extension, $E = k(a_1, a_2, ..., a_s)$ for some $a_1, a_2, ..., a_s$ in E. For each $i \in \overline{1, s}$, there exist f_i and g_i in $k[a, \sigma(a), \sigma^2(a), ...]$ such that $a_i = f_i g_i^{-1}$. We can select a finite number of elements $\sigma^{n_{i,1}}(a), \sigma^{n_{i,2}}(a), ..., \sigma^{n_{i,\ell_i}}(a)$ such that f_i and g_i are in $k[\sigma^{n_{i,1}}(a), \sigma^{n_{i,2}}(a), ..., \sigma^{n_{i,\ell_i}}(a)]$. It follows that $a_i \in k(\sigma^{n_{i,1}}(a), \sigma^{n_{i,2}}(a), ..., \sigma^{n_{i,\ell_i}}(a))$. We have

$$E = k(a_i \mid 1 \le i \le s) \subseteq k(\sigma^{n_{ij}}(a) \mid 1 \le i \le s, 1 \le j \le \ell_i) \subseteq k(a, \sigma(a), \sigma^2(a), \ldots) = E.$$

This leads to $E = k(\sigma^{n_{ij}}(a) \mid 1 \le i \le s, 1 \le j \le \ell_i)$. Hence, we can write $E = k(\sigma^{n_1}(a), \sigma^{n_2}(a), \dots, \sigma^{n_r}(a))$ for $0 \le n_1 < n_2 < \dots < n_r$.

(ii) We have $\sigma(E) \subseteq E$ because $\sigma(\sigma^n(a)) = \sigma^{n+1}(a) \in E$. From assertion (i), $E = k(\sigma^{n_1}(a), \sigma^{n_2}(a), \dots, \sigma^{n_r}(a))$ for $0 \le n_1 < n_2 < \dots < n_r$. Put $t_i = \sigma^{n_i}(a)$, and so $E = k(t_1, t_2, \dots, t_r)$. Remark that

$$\sigma^{n_i-n_j}(t_j) = \sigma^{n_i-n_j}(\sigma^{n_j}(a)) = \sigma^{n_i}(a) = t_i \quad \text{for } 1 \le i, j \le r.$$

Put $n = (n_1 - n_2)(n_2 - n_3) \dots (n_{r-1} - n_r)(n_r - n_1)$. For each $i = \overline{1, r}$,

$$n = (n_i - n_{i+1})(n_{i+1} - n_{i+2}) \dots (n_{r-1} - n_r)(n_r - n_1)(n_1 - n_2) \dots (n_{i-1} - n_i),$$

and so

$$\begin{aligned} \sigma^{n}(t_{i}) &= \sigma^{(n_{i}-n_{i+1})(n_{i+1}-n_{i+2})\cdots(n_{r-1}-n_{r})(n_{r}-n_{1})(n_{1}-n_{2})\cdots(n_{i-1}-n_{i})}(t_{i}) \\ &= \sigma^{n_{i}-n_{i+1}}(\sigma^{n_{i+1}-n_{i+2}}(\cdots(\sigma^{n_{r-1}-n_{r}}(\sigma^{n_{r}-n_{1}}(\sigma^{n_{1}-n_{2}}(\cdots(\sigma^{n_{i-1}-n_{i}}(t_{i})))\cdots) = t_{i}. \end{aligned}$$

Thus, the restriction $\sigma|_E$ has finite order. Suppose that the order of $\sigma|_E$ is d > 0. Since $\sigma(E) \subseteq E$, we have

$$E = \sigma^d(E) \subseteq \sigma^{d-1}(E) \subseteq \cdots \subseteq \sigma^1(E).$$

Hence, $\sigma|_E$ is an automorphism of *E*.

Lemma 2.4 enables us to prove the next lemma.

LEMMA 2.5. Let *K* be a field and σ a nonidentity automorphism of *K* with fixed subfield $k = \{a \in K : \sigma(a) = a\}$. Assume that there exists $a \in K \setminus k$ such that $E = k(a, \sigma(a), \sigma^2(a), \ldots)$ is a finitely generated extension of *k*. If *N* is a subnormal subgroup of $K(x, \sigma)^*$ containing *x*, then *N* contains a free subgroup.

PROOF. By Lemma 2.4, the restriction $\sigma|_E$ is an automorphism of *E* of finite order. Since $\sigma|_E(a) = \sigma(a) \neq a$, the automorphism $\sigma|_E$ is a nonidentity. Thus, $R = E(x, \sigma|_E)$ is a noncommutative centrally finite division subring of $K(x, \sigma)$. Because *N* is subnormal in $K(x, \sigma)^*$, also $H = N \cap R^*$ is subnormal in R^* . However, *H* is noncentral since $x \in H$. According to Lemma 2.2, *H* contains a nonabelian free subgroup. Hence, *N* contains a free subgroup.

[4]

THEOREM 2.6. Let K be a field and σ a nonidentity automorphism of K. Assume that N is a subnormal subgroup of $K(x, \sigma)^*$. If $x \in N$, then N contains a free subgroup.

PROOF. Let $D = K(x, \sigma)$, where *K* is a field and σ is a nonidentity automorphism of *K* with fixed subfield $k = \{a \in K : \sigma(a) = a\}$. Select $a \in K \setminus k$. Put $E = k(a, \sigma(a), \sigma^2(a), \ldots), R = E(x, \sigma|_E)$ and $H = N \cap E^*$. Then *H* is a subnormal subgroup of R^* containing *x*. It follows from Lemma 2.5 that if E/k is a finitely generated extension, then *H* contains a free subgroup. Otherwise, by Lemma 2.3, *H* also contains a free subgroup. Hence, in both cases, *N* contains a free subgroup. The proof is complete.

PROOF OF THE MAIN THEOREM. Assume that N is a subnormal subgroup of D^* containing a nonabelian solvable subgroup G. Suppose that the derived length of G is $r \ge 1$ with the derived series

$$\langle 1 \rangle = G^{(r)} \trianglelefteq G^{(r-1)} \trianglelefteq \ldots \trianglelefteq G^{(1)} \trianglelefteq G^{(0)} = G.$$

Clearly, $G^{(r-2)}$ is a nonabelian solvable subgroup. Replace G by $G^{(r-2)}$. Then G' is a nontrivial abelian subgroup of G. By Zorn's lemma, the set

$$\mathcal{U} = \{A \le G : A \text{ is abelian and } G' \subseteq A\}$$

has a maximal element *M*. Due to the maximality, $M \not\subseteq Z(G)$. Additionally, since $G' \subseteq M$, *M* is normal in *G*. Select $g \in G$ and $u \in M$ such that $ug \neq gu$. The normality of *M* in *G* leads to $u_n := g^n u g^{-n} \in M$ for every $n \in \mathbb{Z}$, and so all these elements commute. Put F = Z(D). Then the division subring $K = F(u_n \mid n \in \mathbb{Z})$ is a field and the map $\sigma : K \to K$, $z \mapsto gzg^{-1}$ is a nonidentity automorphism of *K*.

Let R = K[g] be the subring of *D* generated by $K \cup \{g\}$ and $K[x, \sigma]$ the ring of skew polynomials in an indeterminate *x*. We observe that the map $\phi : K[x, \sigma] \to R$, $\sum_i a_i x^i \mapsto \sum_i a_i g^i$ is a surjective *F*-algebra homomorphism. Put $I = \text{ker}\phi$. We consider two cases.

Case 1: I = (0). Then $R \cong K[x, \sigma]$, and thus the division ring of fractions \overline{R} of R is isomorphic to $K(x, \sigma)$. The image of $N \cap \overline{R}^*$ is a subnormal subgroup of $K(x, \sigma)^*$ and contains x. By Theorem 2.6, this subgroup contains a free subgroup. Consequently, $N \cap \overline{R}^*$ and also N contain a free subgroup.

Case 2: $I \neq (0)$. Then $R \cong K[x, \sigma]/I$. This means $K[x, \sigma]/I$ is a domain and I is a prime ideal. Additionally, $K[x, \sigma]$ is a principal left ideal domain. This implies that I = (p) for some irreducible polynomial p in $K[x, \sigma]$, that is, I is a maximal ideal of $K[x, \sigma]$, and so $K[x, \sigma]/I$ is a division ring. However, by the divide algorithm for $K[x, \sigma]$ (see [12, The Euclidean algorithm]), $K[x, \sigma]/I$ is a finite dimensional K-vector space. Therefore, R is a centrally finite division subring. By Lemma 2.1, $N \cap R^*$ contains a free subgroup. \Box

Finally, the Main Theorem gives the affirmation of Conjecture 1.3 as follows.

COROLLARY 2.7. Let D be a division ring. Then every locally solvable subnormal subgroup of D^* is central.

PROOF. Let *D* be a division ring and *N* be a locally solvable subnormal subgroup of D^* . Assume that *N* is noncentral. Then *N* contains a finitely generated subgroup that is nonabelian and solvable. It follows from the Main Theorem that *N* contains a free subgroup. This is a contradiction to the local solvability of *N*. Hence, *N* is central. \Box

References

- [1] J. P. Bell and J. Gonçalves, 'On free subgroups in division rings', *Proc. Amer. Math. Soc.* 148 (2020), 1953–1962.
- [2] M. H. Bien and B. X. Hai, 'On subnormal subgroups in division rings containing a non-abelian solvable subgroup', *Bull. Math. Soc. Sci. Math. Roumanie* (N.S.) 63(111)(2) (2020), 151–162.
- [3] L. Q. Danh and H. V. Khanh, 'Locally solvable subnormal and quasinormal subgroups in division rings', *Hiroshima Math. J.* 51 (2021), 267–274.
- [4] J. Z. Gonçalves, 'Free groups in subnormal subgroups and the residual nilpotence of the group of units of group rings', *Canad. Math. Bull.* 27 (1984), 365–370.
- [5] J. Z. Gonçalves and A. Mandel, 'Are there free groups in division rings?', *Israel J. Math.* 53 (1986), 69–80.
- [6] K. R. Goodearl and R. B. Warfield Jr, An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, 61 (Cambridge University Press, Cambridge, 2004).
- [7] B. X. Hai and N. V. Thin, 'On locally nilpotent subgroups of $GL_1(D)$ ', *Comm. Algebra* **37**(2) (2009), 712–718.
- [8] B. X. Hai and N. V. Thin, 'On subnormal subgroups in general skew linear groups', Vestnik St. Petersburg Univ. Math. 46 (2013), 43–48.
- [9] T. Y. Lam, *A First Course in Noncommutative Rings*, Graduate Texts in Mathematics, 131 (Springer, Berlin, 2001).
- [10] A. I. Lichtman, 'On subgroups of the multiplicative group of skew fields', *Proc. Amer. Math. Soc.* 63(1) (1977), 15–16.
- [11] A. I. Lichtman, 'Free subgroups of normal subgroups of the multiplicative group of skew fields', *Proc. Amer. Math. Soc.* 7 (1978), 174–178.
- [12] O. Ore, 'Theory of non-commutative polynomials', Ann. of Math. (2) 34(3) (1933), 480–508.
- [13] J. Tits, 'Free subgroups in linear groups', J. Algebra 20 (1972), 250–270.

LE QUI DANH, Faculty of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam and

University of Architecture Ho Chi Minh City, 196 Pasteur Street, District 3, Ho Chi Minh City, Vietnam

e-mail: danh.lequi@uah.edu.vn

TRINH THANH DEO, Faculty of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam and Vietnam National University, Ho Chi Minh City, Vietnam

e-mail: ttdeo@hcmus.edu.vn