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1. Introduction. The purpose of this paper is to initiate the study of poor modules
and their various related concepts. As usual, Mod-R denotes the category of all right
modules over a ring R and SSMod-R the class of all semisimple right R-modules.
Following [1], for any M ∈ Mod-R, we denote by In

−1(M) the class {N ∈ Mod-R :
M is N-injective}. Clearly, M is injective if In

−1(M) = Mod-R. In other words, M is
injective if its injectivity domain is as large as it can be. In this paper, we are interested
in the opposite situation. We will focus on modules that have a domain of injectivity
which is as small as possible. We will refer to such modules as being ‘poor’ (as opposed
to injective modules, which are ‘wealthy’ in terms of their injectivity domains). It is
easy to see that if M ∈ Mod-R and N ∈ SSMod-R, then N ∈ In

−1(M). In fact, even
more is true. Proposition 3.1 shows that

⋂
M∈Mod-R In

−1(M) = SSMod-R. For that
reason, it makes sense to define a module M to be ‘poor’ if for every N ∈ Mod-R, M
is N-injective only if N is semisimple.

Immediately several questions come to mind. For example, can the limit in
Proposition 3.1 be attained? In other words, does every ring R have (at least) one
poor module? In the hypothetical case of a ring R that does not have any poor right
modules, we say that R is a right utopia. In Section 3 we consider when a ring itself or
the direct sum of its simple modules may be poor.

Given a family A of modules, possibly the easiest question one may ask is what
happens when A contains at least one poor module. The significance of such an
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event should not be underestimated; for example, if a ring R has a nonsingular poor
module, then R is an SI-ring in the sense that all singular R-modules are injective
(Proposition 3.7) Along these lines, Section 4 explores the significance of the existence
of semisimple projective poor modules.

Another line of enquiry is considering when all modules of the family A are
poor (a situation we describe with the expression that A is destitute). Section 5
focuses on simple-destitute rings (i.e. the case when A = {simple modules} is destitute.)
Alternatively, one may investigate the significance of A not having any poor modules at
all (a situation we denote asA being a utopia). Note that the ring R is a right utopia ring
if and only if the class A = Mod-R is a utopia. As before, the expressions R is destitute
and R has no middle-class mean that the class A = Mod-R has those properties. Also,
one may consider the possibility that all modules of A are either injective or poor (a
situation we refer to as A not having a middle class). Such questions are among those
considered in Sections 4, 5 and 6.

Clearly, a module M is poor if and only if for every cyclic module xR ∈ In
−1(M),

xR is semisimple. This fact will be used freely throughout the paper.

2. Definitions, notation and preliminary remarks. In this paper, all rings have an
identity and all modules are right and unital. Our terminology and notation adheres to
that of the major references in the theory of rings and modules such as [1]. Other good
references are [6], [11] and [20]. We here highlight a few specific facts, notation and
terminology because they have been used in this paper. The socle, Jacobson radical and
singular submodules of a module M will be denoted as is customary by Soc(M), J(M)
and Z(M), respectively.

While, due to a classic result of Osofsky, a ring for which all cyclic modules are
injective must be semisimple artinian, a slight modification of this definition asking
only for proper cyclic modules to be injective yields a larger family. A ring R is said
to be right PCI ring if every cyclic module, which is not isomorphic to R, is injective.
The notion of right PCI rings was introduced by Faith in ref. [5]. Right PCI domains
play a central role in the study of right QI rings (those rings in which all quasi-injective
modules are injective). For example,it has been shown that every hereditary right QI
ring is Morita equivalent to a right PCI domain. Right PCI domains and right QI rings
are examples of right V-rings, namely, rings for which all simple modules are injective.
The notion of right V-rings may be generalized to that of right GV-rings (Generalized
V-rings), in which every simple module is either injective or projective. Right GV rings
were introduced in [10] and are discussed in [4]. References on these various related
topics include [2, 3, 4, 7, 12].

Yet another concept of interest is that of a right SI-ring. A ring R is right SI if
every singular module is injective. It is shown in Proposition 3.1 of [9] that a ring R is
right SI if and only if every singular module is semisimple. This result is of importance
for our Proposition 3.7. Furthermore, if R is a domain, then the notion of right PCI
and right SI are indeed equivalent. Right PCI domains are right Öre and, therefore, in
particular, every proper cyclic R-module is singular.

We recall that a module U is called uniserial if it has a unique composition series
of finite length. Furthermore, a module is generalized uniserial (or serial) if it is a direct
sum of finitely many uniserial modules. A ring R is said to be right generalized uniserial
if the module RR is generalized uniserial. The following lemma summarizes various
results from [16] and [17] that are instrumental in our search for poor modules over
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hereditary Noetherian prime rings in Proposition 3.4. A related and useful reference is
[18].

LEMMA 2.1.
(a) ([16, Lemma 1]) Any finitely generated torsion module over a hereditary

Noetherian prime ring R is a direct sum of finitely many uniserial modules.
(b) ([16, Lemma 2, part(i)]) If in an R-module M, an element x is a torsion element,

then xR is a torsion submodule with nonzero annihilator.
(c) ([16, Theorem 1]) Let R be a generalized uniserial ring. Then every R-module is

a direct sum of uniserial modules.
(d) ([17, Theorem 1]) Every proper factor ring of a hereditary Noetherian prime

ring is generalized uniserial.

Uniserial modules of length two are conspicuous in the paper. Therefore, it seems
reasonable to highlight the following fact.

REMARK 2.2. Given a ring R, the following are equivalent:
(a) There exists a uniserial R-module U of length two
(b) There exists a local module L with simple radical.
(c) There exists a simple module S which is not injective such that

Soc(E(S)/S) �= 0.

A semiperfect ring R has an indecomposable decomposition R = ⊕n
i=1 eiR such

that for every i, eiR/eiJ is simple. In that case, {eiR/eiJ|i = 1 . . . n} is a complete list
of simple modules (up to isomorphism) and for every i, j, eiR/eiJ ∼= ejR/ejJ if and
only if eiR ∼= ejR. In other words, when R is semiperfect, it is made up of projective
indecomposables that are uniquely determined by their tops.

A couple of elementary properties of poor modules are worth mentioning; their
proofs are left as an easy warm-up exercise for the reader. The first remark points out
that the conditions ‘all modules are wealthy’ and ‘all modules are poor’ are equivalent.

REMARK 2.3. For an arbitrary ring R, the following conditions are equivalent:
(a) R is semisimple artinian.
(b) Mod-R is destitute.
(c) There exists an injective poor module E.
(d) {0} is a poor module.

The second remark serves, in particular, to reject the notion that direct summands
of poor modules must necessarily be poor.

REMARK 2.4. If M is a poor module, then for all N ∈ Mod-R, M ⊕ N is poor.

3. Do all rings have poor modules?. We begin with the following proposition
which justifies our definition of a poor module and establishes that SSMod-R is a limit
for the domains of injectivity of the modules over a ring R.

PROPOSITION 3.1.
⋂

M∈Mod-R In
−1(M) = SSMod-R.

Proof. Clearly, SSMod-R ⊂ ⋂
M∈Mod-R In

−1(M). Now, let N be a element of⋂
M∈Mod-R In

−1(M) and T be a submodule of N. Then T is N-injective. So, T is
a direct summand of N and, hence, N is semisimple. So N ∈ SSMod-R, and this
completes the proof. �
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The obvious question now is whether, given an arbitrary ring R, the limit
SSMod-Ris always attained by some module over R; in other words, whether poor
modules over arbitrary rings do indeed exist.

Let us start with a situation in which the regular module RR is itself poor.

PROPOSITION 3.2. Let R be a right PCI domain. Then R has no middle class and RR

is a poor module.

Proof. If R is a division ring, then the result follows by Remark 2.3. Assume that
R is not a division ring, then the only cyclic R-modules that are not injective are those
that are isomorphic to R. The injective cyclics, on the other hand, are all semisimple.
So, if an R-module M is not injective, then it is poor. �

Next we show that our search for utopia cannot start with right artinian rings.

THEOREM 3.3. No right artinian ring is a right utopia; in fact, over a right artinian
ring R, it is always the case that the cyclic module M = R/J is poor.

Proof. Let M = R/J and N = aR be a nonzero cyclic module in In
−1(M). Let L1

be a simple submodule of aR. Then L1 is isomorphic to a submodule S0 of M and so
S0 is aR-injective. But then aR = L1 ⊕ K1 for some submodule K1 of aR. If K1 = 0,
then aR is semisimple. Otherwise, let L2 be a simple submodule of K1. Arguing as
before, K1 = L2 ⊕ K2 and so aR = L1 ⊕ L2 ⊕ K2, where L1 ⊕ L2 is semisimple and
K1 ⊇ K2. This process must stop after finite steps. Hence, aR is semisimple. Thus, R/J
is poor. �

In light of Theorem 3.3, as we ponder further the existence of poor modules,
it makes sense to focus on semisimple modules M ∈ SSMod-R that contain at least
one copy of each simple R-module. We will consider the case when R is a hereditary
Noetherian prime ring R. In light of Remark 2.4, this is strongly related to considering
when the specific module M that is the direct sum of exactly one member from each
isomorphism class of simple modules is poor.

PROPOSITION 3.4. Let R be a hereditary Noetherian domain and let M be a semisimple
module that contains exactly one copy of each simple R-module. Then M is either poor
or injective. In particular, if R has only one simple module (up to isomorphism), then
that module is either injective or poor. It also follows that for a ring R and module M
satisfying these hypotheses, M is poor unless R is a V-ring.

Proof. Let R be hereditary and Noetherian; and let M be as given in the
Proposition. Assume that M is not injective. Let xR ∈ In

−1(M). Because M is not
injective, then annR(x) is nonzero. Then by (a) and (b) of Lemma 2.1, xR is serial. So,
write xR = U1 ⊕ · · · ⊕ Un, where each Ui is uniserial. Then M is Ui-injective for each
i. Next we show that each Ui is simple, for if Ui is not simple, then it contains a simple
submodule, say S < Ui. But then the embedding map of S into M could be extended
to a monomorphism of Ui into M, which would be a contradiction. Hence, Ui must
be simple. It follows that xR is semisimple. �

COROLLARY 3.5. Let R be a hereditary Noetherian domain. If there exists a non-
simple and nonzero uniserial module U, then every semisimple module M that contains
every simple R-module is poor.

Proof. Assume that M is injective and U is a non-simple uniserial R-module.
Then U contains a simple submodule, say S < U is simple. It is clear that S is
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embedded in M, and hence S is U-injective. But then S is a direct summand of U , a
contradiction. �

The following example illustrates that both possibilities in Proposition 3.4 are
indeed possible.

EXAMPLE 3.6.
(i) Let R = �, the ring of integers. Then M = ⊕p is prime(�/p�) is a poor �-module,

while no proper summand of M is poor.
(ii) Let R be a right PCI domain. Then ⊕P⊂maxR(R/P) is injective. Notice however

that, in this case, RR itself is poor by Proposition 3.2 and, therefore, this is not
an example of a right utopia ring.

We close this section with an interesting proposition.

PROPOSITION 3.7. If a nonsingular ring R has a nonsingular poor module, then R is
an SI-ring.

Proof. Let M be a nonsingular poor R-module. As all singular modules belong to
In

−1(M), they are semisimple. The result then follows from Proposition 3.1 of [9]. �

4. No middle class: Families of modules where every module is either poor or injective.
Let A be a class of R-modules. Then we say R has no A-middle class if every element
of the class A is either poor or injective. In particular, if A = Mod-R (= the class
of simple modules, the class of projective modules etc.) we say that R has no middle
class(simple-middle class, projective-middle class etc.).

THEOREM 4.1. Let R be a ring such that J(R) is a simple and essential right ideal
of R. If you further assume that R/J(R) is semisimple, then R has no middle class. In
particular, J(R) is a poor R-module.

Proof. Let M be an R-module which is not injective and aR be a cyclic module. If
M is aR-injective, then annR(a) is a nonzero right ideal because M is not injective. So
J(R) ⊂ annR(a) because J(R) is essential and simple. As R/J(R) is semisimple, so is its
quotient module aR. �

EXAMPLE 4.2.
(i) A right PCI domain has no middle class.

(ii) A right V -ring has no simple-middle class.
(iii) A QF ring R has no projective-middle class.

(iv) If R =
[

F F
0 F

]
is the upper triangular matrix ring over a field F , then S =[

0 0
0 F

]
is a simple, projective and poor R-module. The only other simple

R-module is R⎡
⎣0 F

0 F

⎤
⎦

, which is injective. Hence, R has no simple-middle class.

This example motivates the next three results and is explained in Corollary
4.5.

Two modules are called orthogonal if they have no nonzero isomorphic submodules
[13]. The following is a key lemma to obtain other results.
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THEOREM 4.3. Let M be a projective semisimple poor module. Then any semisimple
module B orthogonal to M is injective.

Proof. We prove that for every X ⊆ E(B), Hom(X, M) = 0. Thus M is E(B)-
injective and therefore E(B) = B. Let X be a submodule of E(B) and let f be a
homomorphism from X into M. As f (X) is projective, we get that X = Y ⊕ Kerf ,
with Y ∼= f (X). In order to show that f (X) = 0, we will first show that f (X ∩ B) = 0.
If f (X ∩ B) �= 0, then, being a projective submodule of M, it follows that X ∩ B ∼=
f (X ∩ B) ⊕ (Kerf ∩ (X ∩ B)). This would contradict the hypothesis that B and M are
orthogonal. So f (X ∩ B) = 0 and hence, X ∩ B ⊂ Kerf . As X ∩ B <e X , f (X) = 0. So
M is E(B)-injective. Because M is poor, E(B) is semisimple and so E(B) = B. This
completes the proof. �

COROLLARY 4.4. Let R be an arbitrary ring. If R has a simple projective poor module
M, then R is a GV-ring.

COROLLARY 4.5. Let R be a ring which is not semisimple artinian. If there is a simple
projective poor module M, then

(a) every direct sum of simple injective modules is injective,
(b) R has no simple-middle class.

Recall that a ring R is called right Kasch if every simple R-module is embedded in
R.

THEOREM 4.6. If a right Kasch ring R has a nonzero semisimple projective poor
R-module, then R is semisimple artinian.

Proof. It is enough to show that every maximal right ideal is a direct summand of
R. By Corollary 4.4, every minimal right ideal is either projective or injective. Let T be
a maximal right ideal. Then R/T is either injective or projective. If R/T is projective,
then we are done. So, assume that R/T is injective. Then R/T is isomorphic to a
minimal right ideal S because R is right Kasch and S is a direct summand of R. But
then T is also a direct summand because R/T is projective. �

THEOREM 4.7. Let R be a semiperfect ring. If R has a projective simple poor
module, then R = R1 ⊕ R2, as rings direct sum, where R1 is semisimple artinian and
R2 is semiperfect with projective poor homogeneous socle.

Proof. Let S be a projective simple poor module. As R is semiperfect, there are
local idempotents ei, i ∈ F , such that F is a finite set and R = ⊕i∈F eiR. Let R1 be
the sum of eiR that are sums of injective minimal right ideals. Then R1 is semisimple
because each such ei is a local idempotent. Let R2 be the sum of the remaining eiR.
Then R = R1 ⊕ R2, is a ring direct sum. Moreover, R2 is a ring with nonzero socle and
all minimal right ideal of R2 are isomorphic, projective and poor (by Lemma 4.3). �

As a result from Theorem 4.7 and Corollary 4.4, we get the following corollary.

COROLLARY 4.8. If there is a projective semisimple poor R-module M, then Soc(R) is
projective. Indeed the socle of any projective R-module under this hypothesis is projective.

Proof. Let S be a minimal right ideal and so it is either projective or injective. If
S is injective, then S is direct summand of R and so S is also projective. Therefore,
all minimal right ideals are projective and so Soc(R) is also projective. The second
conclusion is clear from the first one. �
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THEOREM 4.9. A semiprime ring with a finite right uniform dimension and a projective
simple poor module is semisimple artinian.

Proof. As R has a projective simple poor module, it has a minimal right
ideal summand, which is projective and poor. Write R = M1 ⊕ S1, where M1 is a
maximal right ideal and S1 is a minimal right ideal, which is projective and poor. If
HomR(M1, S1) = 0, then we claim that S1 is M1-injective. It is enough to show that
HomR(X, S1) = 0 for any submodule X of M1. Assume to the contrary that there
exists a nonzero homomorphism from X onto S1. As S1 is projective, X = X∗ ⊕ S∗,
where S∗ is isomorphic to S1. As S∗ is a minimal right ideal of R and R is semiprime,
S∗ = eR, where e is an idempotent element of R. But then S∗ is a direct summand of M1

and so HomR(M1, S1) �= 0, a contradiction. Hence, the only homomorphism from any
submodule of M1 into S1 is the zero homomorphism. Therefore, S1 is M1-injective. In
this case M1 is semisimple because S1 is poor and we are done. If HomR(M1, S1) �= 0,
then M1 has a summand which is projective, poor and simple; say M1 = M2 ⊕ S2,
then R = M2 ⊕ S2 ⊕ S1. Repeating the same argument to the decomposition of
M1 = M2 ⊕ S2, we either have Ras semisimple artinian or M2 = M3 ⊕ S3, where S3 is
projective, poor and simple. In the later case R = M3 ⊕ S3 ⊕ S2 ⊕ S1. Continuing this
process, we must stop at a point where R is semisimple artinian becuase R has a finite
uniform dimension. �

5. Destituteness: When all modules in a family are poor. Let A be a class of
R-modules. Then R is called A-destitute ring if every element of class A is poor. In
particular, ifA = Mod-R (= the class of simple modules, the class of projective modules
etc.), we say that R is destitute(simple-destitute ring, projective-destitute ring etc.).

EXAMPLE 5.1.

(i) Let R = �/4� be the ring of integers modulo 4. Then S = 2�/4� is the only
minimal ideal of R, S is poor and every simple �/4�-module is isomorphic
to 2�/4� . So, �/4� is a simple-destitute ring.

(ii) More generally, let m = pe1
1 · · · pen

n ∈ �. Then �/m� is simple-destitute if and
only if n = 1 or ei = 1 for all i.

(iii) Let R be a semiperfect ring. It is known that any projective R-module is a direct
summand of indecomposable projective modules. Then R is a projective-
destitute ring if and only if all projective indecomposable R-modules are
poor. If this hold good, then R is poor as a right R-module.

(iv) Let R be a local ring. Then R is poor if and only if R is a projective-destitute
ring.

THEOREM 5.2. If a right artinian ring R has only one simple module (up to
isomorphism), then that module is poor (and thus R is a simple-destitute ring.)

Proof. Suppose R satisfies the hypotheses in the statement. Let M be a simple
and N-injective module for some nonzero cyclic module N = aR. Since aR contains a
simple submodule L1 which is isomorphic to M, let ϕ denote an isomorphism between
L1 and M. Then ϕ extends to a homomorphism ψ from aR onto M. Thus, ψ(aR) = M.
Hence, aR = L1 ⊕ K1 for some submodule K1 of aR. If K1 is semisimple, then the proof
is complete because L1 is simple. Otherwise, K1 has a simple submodule L2

∼= M and,
using the same argument, K1 = L2 ⊕ K2 and aR = L1 ⊕ L2 ⊕ K2, where L1 ⊕ L2 is

https://doi.org/10.1017/S001708951000025X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951000025X


14 ADEL N. ALAHMADI, MUSTAFA ALKAN AND SERGIO LÓPEZ-PERMOUTH

semisimple. Continuing this process, we must stop at a point where aR is semisimple
because aR has a finite uniform dimension. This completes the proof. �

It is well known that a simple module is either projective or singular. In the
following theorem, we show that all simple modules over a simple-destitute ring are
not projective unless the ring is semisimple artinian.

THEOREM 5.3. Let R be a simple-destitute ring which is not semisimple artinian.
Then every simple module is singular.

Proof. Let R be a simple-destitute ring which is not semisimple artinian. Then
R has no injective simple poor R-module. Furthermore, we will show that no simple
module is projective. If it were the case that there is a projective simple R-module,
then by Lemma 4.3, all simple modules would be (isomorphic to one another and)
projective. Take a maximal ideal T of R so that R/T is projective. It follows that T is a
direct summand of R. This means that every maximal right ideal is direct summand and
so R is semisimple artinian, a contradiction. Therefore, there is no projective simple
R-module. For any simple module is either projective or singular, we get that all simple
modules are singular, as claimed. �

Following [14], Module M is said to be an ACS-module if for every element
a ∈ M, aR = P ⊕ S, where P is projective and S is singular. ACS stands for annihilator-
CS and this property is named so because (by Lemma 2.9 of [14]) the condition is
equivalent to saying that for every a ∈ M, the right annihilator ideal r(a) is essential in
a direct summand of M.

COROLLARY 5.4. Let R be a simple-destitute ring such that R/SocR is a semisimple
R-module. Then

(i) R is semiprimary,
(ii) Soc(R) = J(R) = Z(R) unless R is semisimple artinian,

(iii) R(k) satisfies the C2 and ACS conditions for all k > 0,
(iv) Soc(R) is an essential ideal of R.

Proof. (i) Let R be a simple-destitute ring. By theorem 5.3, all simple modules
are singular and so all maximal right ideals are essential. Therefore, Soc(R) ⊂ J(R)
and Rad(R/Soc(R)) = J(R)/Soc(R). On the other hand, as R/Soc(R) is semisimple, it
follows that J(R) = Soc(R) and so J(R)2 = 0. Therefore, R is semiprimary.

(ii) By (i) and theorem 5.3, we have J(R) = Soc(R) = Z(R).
(iii) We have T = R(n), which satisfies the C2 condition by [21, Lemma 1.1] for

n ∈ �.
From (ii), we get that R is Soc-semiperfect and so by [15, Theorem 2.10], T is

Soc-semiperfect and so by the definitions of ACS-module, T is ACS-module because
all simple modules are singular.

(iv) If possible, let K be a nonzero right ideal of R such that Soc(R) ∩ K = 0.
Then K ∼= (K + Soc(R))/Soc(R), and is semisimple because R/Soc(R) is semisimple,
a contradiction. �

Following [19], module M is called a weak CS-module provided that for each
semisimple submodule S of M there exists a direct summand K of M such that S is
essential in K . We generalize this definition slightly; an R-module M is called SCS if
every closed simple module is a direct summand of M. Then, clearly a weak CS-module
is SCS and any summand of an SCS module is SCS. Then, as a result of Theorem 5.3,
we have the following proposition.
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PROPOSITION 5.5. Let R be a simple-destitute ring with the condition SCS and not
semisimple artinian. Then there is no closed simple submodule in RR.

Proof. Let S be a closed simple submodule in RR. Then S is a direct summand of
R and so it is projective. But from Theorem 5.3, since R is a simple-destitute ring, S is
singular, a contradiction because S is projective. �

THEOREM 5.6. Let R be a simple-destitute ring such that R/SocR is a semisimple
R-module. If R ⊕ R is SCS, then R is a QF-ring with J(R)2 = 0.

Proof. First, we show that R ⊕ R is a CS module. Let K be a closed submodule
of R ⊕ R. Then by Corollary 5.4(i), R is semiperfect and hence R ⊕ R has a projective
cover. Therefore, there is a decomposition R ⊕ R = A ⊕ B such that K = A ⊕ (B ∩ K)
and B ∩ K is small in B and is therefore contained in Rad(R ⊕ R). Consequently,
by Corollary 5.4(ii), B ∩ K is semisimple. Assume that B ∩ K is nonzero. Then if S
is a simple submodule of B ∩ K , by Lemma 5.5, S is not closed and so it has an
essential extension submodule Ŝ of R ⊕ R. Hence, K is essential in A ⊕ Ŝ ⊕ N, where
B ∩ K = N ⊕ S. As K is closed, we get that K = A ⊕ S ⊕ N = A ⊕ Ŝ ⊕ N. Then S = Ŝ
is also closed, which is a contradiction. Hence, B ∩ K = 0 and K is a direct summand
of R ⊕ R. Therefore, R ⊕ R is a CS module and so R ⊕ R is continuous by Corollary
5.4(iii). Then by [21, Proposition 1.21], R is right self-injective. On the other hand,
since R/SocR is semisimple, R has ACC on essential right ideals and so by [4, Theorem
18.12], R is QF-ring. �

The conclusion of Theorem 5.6 fails in the absence of some of its hypotheses, as is
shown by the following example.

EXAMPLE 5.7. Let R be the localization of � with respect to 2�. Then R is a
simple-destitute ring but not a QF-ring.

COROLLARY 5.8. Let R be a simple-destitute ring such that R/SocR is a semisimple
R-module. If R ⊕ R is SCS, then R is a finite direct sum of local modules Ri such that
Soc(Ri) = J(Ri) is simple.

Proof. Let R be a simple-destitute ring such that R/SocR is a semisimple R-module.
Then by Corollary 5.4, R is a semiperfect ring and so there are local idempotents {ei}n

i=1
such that R = e1R ⊕ · · · ⊕ enR. Then Soc(eiR) = J(eiR) is maximal in eiR. We also get
that R is a semiperfect, right continuous ring with essential right socle and so by [8,
Corollary 2.3], Soc(eiR) is simple. �

6. Utopia: When a family does not contain any poor modules. Let A be a class of
R-modules. Then A is called a utopia (and, in the case when A is easily identifiable,
R is called an A-utopia (ring)) if no element of the class A is poor. In particular,
in the cases where A = Mod-R, the class of simple modules, the class of projective
modules, the class of artinian modules etc., we, respectively, say that R is a utopia ring,
a simple-utopia ring, a projective-utopia ring, an artinian-utopia ring etc.).

EXAMPLE 6.1.
(i) A right PCI domain which is not a field is a singular-utopia ring.

(ii) A non-semisimple artinian right V -ring is a simple-utopia ring.
(iii) A non-semisimple artinian QF ring is a projective-utopia ring.

https://doi.org/10.1017/S001708951000025X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951000025X


16 ADEL N. ALAHMADI, MUSTAFA ALKAN AND SERGIO LÓPEZ-PERMOUTH

(iv) Let F be a field. Set R = ∏
α∈� Fα, where � is an infinite index set and

Fα = F for every α ∈ �. Then R � R ⊕ R. Hence, by Theorem 6.3, R is an
artinian-utopia ring.

THEOREM 6.2. Let R = R1 ⊕ R2 be a ring decomposition. If M is a poor R-module,
then Mi = MRi is a poor Ri-module for each i = 1, 2. However, Mi need not to be poor
as an R-module. For instance, if R2 is not semisimple artinian, then M1 = MR1 is not a
poor R-module.

Proof. For the first result, note that N ∈ In
−1(M) ⊂ Mod-R if and only if

N = N1 ⊕ N2, where Ni = NRi ∈ In
−1(Mi) ⊂ Mod-Ri for each i = 1, 2. Now, suppose

A is an Ri-module and Mi is A-injective as an Ri-module, then M is A-injective as an
R-module. So A ∈ In

−1(M) ⊂ Mod-R. But M is poor and, therefore, A is a semisimple
R-module. Clearly, ARi = A is a semisimple Ri-module and thus Mi is a poor
Ri-module.

Now concerning the second result, note that for any semisimple R1-module A,
M1 is A ⊕ R2-injective as an R-module. Since R2 is not a semisimple artinian ring, we
conclude that M1 is not as poor as an R-module. �

THEOREM 6.3. Let R be a ring that decomposes as a direct sum R1 ⊕ S1 of rings
R1 � R and S1, which is not semisimple artinian. Then R is an artinian-utopia.

Proof. Let M be a poor R-module. We will show that M contains an infinite
descending chain of R-submodules. By Theorem 6.2 M1 = MR1 is a poor R1-module,
which is not as poor as an R-module. Hence, M1 is a nonzero, proper R-submodule of
M. As R1 � R, write R1 = R2 ⊕ S2, where R2 � R1 and S2 is not semisimple artinian.
Repeating the same argument, we get that M2 = M1R2 is a poor R2-module and a
nonzero proper R-submodule of M1. Proceeding inductively we obtain an infinite
chain of R-submodules {Mn} of M. �
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