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Abstract

In this paper, we consider the family of hyperelliptic curves over Q having a fixed
genus n and a marked rational non-Weierstrass point. We show that when n > 9,
a positive proportion of these curves have exactly two rational points, and that this
proportion tends to one as n tends to infinity. We study rational points on these
curves by first obtaining results on the 2-Selmer groups of their Jacobians. In this
direction, we prove that the average size of the 2-Selmer groups of the Jacobians of
curves in our family is bounded above by 6, which implies a bound of 5/2 on the
average rank of these Jacobians. Our results are natural extensions of Poonen and Stoll
[Most odd degree hyperelliptic curves have only one rational point, Ann. of Math. (2)
180 (2014), 1137–1166] and Bhargava and Gross [The average size of the 2-Selmer group
of Jacobians of hyperelliptic curves having a rational Weierstrass point, in Automorphic
representations and L-functions, Tata Inst. Fundam. Res. Stud. Math., vol. 22 (Tata
Institute of Fundamental Research, Mumbai, 2013), 23–91], where the analogous results
are proved for the family of hyperelliptic curves with a marked rational Weierstrass
point.

1. Introduction

In this paper, we prove that most monic even hyperelliptic curves have exactly two rational
points. Consider the family of monic even hyperelliptic curves over Q, namely complete genus-n
curves given by the affine equation

Cf := y2 = f(x) = x2n+2 + c2x
2n + · · ·+ c2n+2, (1)

where n > 2 and the ci are elements of Q such that the polynomial f(x) has distinct roots, or
equivalently the discriminant ∆(f) of f is non-zero. We can realize Cf as a smooth curve in the
weighted projective space P1,n+1,1 by homogenizing f to obtain F (x, z), where F (x, 1) = f(x),
and considering the projective curve given by y2 = F (x, z). Every curve in this family has a pair
of non-Weierstrass points at infinity, denoted by ∞ = [1 : 1 : 0] and ∞′ = [1 : −1 : 0], which are
conjugate to each other by the hyperelliptic involution sending [x : y : z] to [x : −y : z]. Scaling
each ci by λ2i for λ ∈ Q× gives isomorphic curves. We then define a height on this family by
setting

h(Cf ) = max
i
{|ci|1/i},

where the ci have been appropriately scaled so that ci ∈ Z and there is no prime p such that
p2i | ci for all i. Throughout this paper, we order curves in our family by this height. The main
result of our paper is the following theorem.
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Rational points on hyperelliptic curves

Theorem 1. As n tends to infinity, a proportion approaching 100% of monic even hyperelliptic
curves have exactly two rational points, namely ∞ and ∞′. More precisely, the proportion of
monic even hyperelliptic curves having genus n that have exactly two rational points is at least
1− (24n+ 60)2−n.

Note that the lower bound 1−(24n+ 60)2−n is positive when n> 9. Theorem 1 adds to recent
works on the study of rational points on curves as they vary across families. Bhargava [Bha13] uses
geometry-of-numbers techniques to prove that most hyperelliptic curves have no rational points.
Using Chabauty’s method in conjunction with the results and techniques of [BG13], Poonen and
Stoll [PS14] prove that most odd hyperelliptic curves have exactly one rational point. Our result
adds evidence to the minimalist belief that when curves vary over a family, most of them have
only the rational points that are forced on them. See [BMSW07] for a beautiful exposition on
the implications of this belief for the distribution of ranks of elliptic curves.

There are three main steps in our proof of Theorem 1. First, we determine an upper bound
on the average size of the 2-Selmer groups of Jacobians of curves in our family. More precisely,
we prove the following theorem.

Theorem 2. When all hyperelliptic curves of fixed genus n > 2 over Q having a marked rational
non-Weierstrass point are ordered by height, the average size of the 2-Selmer groups of their
Jacobians is at most 6.

Theorem 2 is proved by constructing and counting locally soluble 2-covers of these Jacobians.
Our proof naturally yields an equidistribution result (Theorem 34), which is important to our
applications to rational points on these curves.

Next, we use these counting and equidistribution results in conjunction with Chabauty’s
method [Cha41, Col85], as refined by Poonen and Stoll [PS14], to prove that a positive proportion
(the same proportion as in Theorem 1) of curves C in our family satisfy the following property:
if P ∈ C(Q), then (P )−(∞) is a rational multiple of (∞′)−(∞). Since our global results concern
the 2-Selmer group, we need to work 2-adically in this step.

Finally, we use elimination theory over Zp, especially the theory of p-adic subanalytic sets, to
prove that 0% of curves C in our family have rational points P such that (P )− (∞) is a rational
multiple of (∞′)− (∞). This step is entirely local, and we work over large primes p.

In [BG13], Bhargava and Gross study odd hyperelliptic curves over Q, and prove that the
average size of the 2-Selmer groups of their Jacobians is bounded above by 3. We will show
in Proposition 30 that the class (∞′) − (∞) is not divisible by 2 in J(Q) for 100% of monic
even hyperelliptic curves. Hence we expect the 2-Selmer groups of these Jacobians to have, on
average, one extra generator compared to the Jacobians of monic odd hyperelliptic curves. This
gives a heuristic reason for the ratio of these average values to be 2. In fact, we expect that these
average values are indeed equal to 6 and 3.

For the 100% of curves where (∞′) − (∞) is not divisible by 2 in J(Q), the average 2-rank
of the 2-Selmer group minus 1 is at most 3/2. This is because |Sel2(J)|/2 is at least 1 and its
average is at most 3. Therefore, we obtain the following immediate corollary to Theorem 2.

Corollary 3. When all hyperelliptic curves of fixed genus n > 2 over Q having a marked
rational non-Weierstrass point are ordered by height, the average rank of the 2-Selmer group
of their Jacobians is at most 5/2. Thus the average rank of the Mordell–Weil groups of their
Jacobians is at most 5/2.
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To prove Theorem 2, we follow the same strategy as [BS15] and [BG13]: obtain first a bijection
between Selmer elements and certain rational orbits of a representation V of a reductive group G;
and then count these orbits using geometry-of-numbers methods. Let (U,Q) denote the split
quadratic space of dimension 2n + 2 over Q and let V denote the space of operators T on U
self-adjoint with respect to Q. For any monic separable polynomial f(x) of degree 2n+ 2, let Jf
denote the Jacobian of the hyperelliptic curve defined by the affine equation y2 = f(x), and let Vf
denote the subscheme of V consisting of self-adjoint operators T with characteristic polynomial
f(x). In § 2, we obtain a bijection between Sel2(Jf ) and locally soluble orbits of the conjugation
action of PSO(U)(Q) on Vf (Q). This parameterization step can be viewed as an example of
arithmetic invariant theory. The various cohomological calculations are more complicated than
in [BG13]. Although not strictly needed, we give in § 3 a very nice geometric interpretation
of solubility using the arithmetic theory of pencils of quadrics as developed in [Wan13b]. More
precisely, a self-adjoint operator T ∈ Vf (Q) is soluble if and only if there exists a rational n-plane
X that is isotropic with respect to the following two quadrics:

Q(v) = 〈v, v〉Q,
QT (v) = 〈v, Tv〉Q,

where 〈 , 〉Q is the bilinear form associated to Q. A self-adjoint operator T ∈ Vf (Q) is locally

soluble if for every completion Qv of Q, there exists an n-plane X defined over Qv that is isotropic

with respect to the quadrics Q and QT .

In § 4, we count the number of locally soluble orbits using techniques of Bhargava developed

in [Bha05] and prove Theorem 2. We count first the number of integral orbits soluble at R by

counting the number of integral points inside a fundamental domain for the action of PSO(U)(Z)

on V (R). We break up this fundamental domain into a compact part and a cusp region where

separate estimations are required. The compact part of the fundamental domain will contribute

to, on average, four Selmer elements. The cusp region corresponds to the two ‘obvious’ classes: 0

and (∞′)− (∞). We then apply a sieve to the locally soluble orbits by imposing infinitely many

congruence conditions. This gives an upper bound for the average size of the 2-Selmer groups.

To show that the average size is in fact equal to 6, we would need a uniformity estimate on the

number of PSO(U)(Z)-orbits on V (Z) analogous to Proposition 25.

In § 5, we apply a refinement of Chabauty’s method to study rational points on monic even

hyperelliptic curves following the strategy of Poonen and Stoll [PS14]. The curve C embeds

into its Jacobian J via the map sending a point P to the divisor class of (P ) − (∞). The

image of C(Q2) is a one-dimensional 2-adic manifold in J(Q2). On the other hand, C(Q) also

maps to the 2-Selmer group of its Jacobian which admits a natural map to J(Q2)/2J(Q2). The

image of C(Q2) in J(Q2)/2J(Q2) is on average quite small compared to the size 2n#J(Q2)[2] of

J(Q2)/2J(Q2), once the genus n is large enough. Furthermore, the Selmer group has on average

very few elements which, with the exception of 0 and the class of (∞′) − (∞), equidistribute

onto J(Q2)/2J(Q2). However, these two sets, the image of C(Q2) and the image of the 2-Selmer

group in J(Q2)/2J(Q2), do always intersect at two points, namely the image of 0 and (∞′)−(∞).

We thus modify the n-dimensional F2-vector space J(Q2)/2J(Q2) as follows: we mod out by the

line spanned by the (primitive part of the) image of (∞′) − (∞) and replace the remaining

(n− 1)-dimensional F2-vector space by its projectivization. We then prove that for a proportion

at least 1 − O(n2−n) of curves C, these two sets do not intersect and that every rational point

P of C is bad, that is, (P )− (∞) is a rational multiple of (∞′)− (∞).

Finally, in § 6, we use the theory of p-adic subanalytic sets to prove that the p-adic closure

of the set of curves C over Qp such that C(Qp)\{∞,∞′} contains a bad point has measure 0 in
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the corresponding moduli space. Combining this result with results from previous sections, we
prove Theorem 1.

2. Orbit parameterization

Let k be a field of characteristic not equal to 2 and let (U,Q) be the (unique) split quadratic
space over k of dimension 2n+2 and discriminant 1. Recall that a (2n+2)-dimensional quadratic
space over k is split if and only if there exists an isotropic subspace of dimension n+ 1 defined
over k. Let f(x) be a monic polynomial of degree 2n + 2 with no repeated roots and splitting
completely over ks, the separable closure of k. In this section, we study the action of PSO(U) on
self-adjoint operators on U with characteristic polynomial f(x) via conjugation. More precisely,
let 〈v, w〉Q = Q(v + w)−Q(v)−Q(w) denote the bilinear form associated to Q. For any linear
operator T : U → U , its adjoint T ∗ is defined via the following equation:

〈Tv,w〉Q = 〈v, T ∗w〉Q, ∀v, w ∈ U.

Let V denote the k-scheme

V = {T : U → U | T = T ∗},

and Vf the k-scheme

Vf = {T : U → U | T = T ∗,det(xI − T ) = f(x)}.

The group scheme

SO(U) := {g ∈ GL(U) | g∗g = I, det(g) = 1}

acts on Vf via g · T = gTg−1. The center µ2 6 SO(U) acts trivially. Hence we obtain a faithful
action of

G = PSO2n+2 := PSO(U) = SO(U)/µ2.

To study the orbits of these actions, we first work over the separable closure ks of k in § 2.1
and show that G(ks) acts transitively on Vf (ks) for separable polynomials f . In § 2.2, we work
over k and classify the G(k)-orbits on Vf (k) using Galois cohomology. In § 2.3, we consider the
Jacobian J of the hyperelliptic curve given by the equation y2 = f(x) and obtain a bijection
between the set G(k)\Vf (k) of k-rational orbits with characteristic polynomial f(x) and a subset
of H1(k, J [2]). The most difficult part of this section will be to show that this subset contains
the image of J(k)/2J(k) in H1(k, J [2]). Finally, in § 2.4, we work over Zp and describe the set
G(Zp)\V (Zp) of integral orbits with characteristic polynomial f(x).

2.1 Geometric orbits
Proposition 4. Let f(x) ∈ k[x] be a monic separable polynomial of degree 2n + 2 splitting
completely over ks. Then the group G(ks) acts transitively on Vf (ks). For any T ∈ Vf (k), the
stabilizer subscheme StabG(T ) is isomorphic to (ResL/k µ2)N=1/µ2, where L = k[x]/f(x) is an
étale k-algebra of dimension 2n+ 2.

Proof. Fix any T in Vf (k). Since T has distinct eigenvalues, its stabilizer scheme in GL(U) is a
maximal torus. It contains and hence is equal to the maximal torus ResL/kGm. For any k-algebra
K, we have

StabO(U)(T )(K) = {g ∈ (K[T ]/f(T ))× | g∗g = 1}.
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Since T = T ∗ and g is a polynomial in T , we have g = g∗. Thus,

StabO(U)(T ) ' StabGL(U)(T )[2] ' ResL/k µ2,

StabSO(U)(T ) ' (ResL/k µ2)N=1,

StabPSO(U)(T ) ' (ResL/k µ2)N=1/µ2.

Since T is self-adjoint, there is an orthonormal basis {u1, . . . , u2n+2} for U consisting of
eigenvectors of T with eigenvalues λ1, . . . , λ2n+2. If T ′ is another element of Vf (ks), then there
is an orthonormal basis {u′1, . . . , u′2n+2} of U consisting of eigenvectors of T ′ with eigenvalues
λ1, . . . , λ2n+2. Let g ∈ GL(U)(ks) be an operator sending ui to ±u′i, where the signs are chosen
so that g ∈ SL(U)(ks). Then g ∈ SO(U)(ks) and the image of g in PSO(U)(ks) sends T to T ′. 2

2.2 Rational orbits via Galois cohomology
Our first aim is to show that Vf (k) is non-empty. Indeed, one can view L = k[x]/(f(x)) as a
(2n+ 2)-dimensional k-vector space with a power basis {1, β, . . . , β2n+1} where β ∈ k[x]/(f(x))
is the image of x. We define the bilinear form 〈 , 〉 on L as follows:

〈λ, µ〉 := coefficient of β2n+1 in λµ = TrL/k(λµ/f
′(β)).

This form is split since the (n+ 1)-plane Y = Span{1, β, . . . , βn} is isotropic. Its discriminant is
1, as one can readily compute using the above power basis. By the uniqueness of split quadratic
spaces of fixed dimension and discriminant 1, there exists an isometry between (L, 〈 , 〉) and
(U, 〈 , 〉Q), well defined up to post-composition by elements in O(U)(k). Let ·β : L → L denote
the linear map on L given by multiplication by β. Then ·β is self-adjoint with characteristic
polynomial f(x), and hence yields an element in Vf (k) well defined up to O(U)(k) conjugation.
In what follows, we fix an isometry ι : L → U , thus yielding a fixed element Tf ∈ Vf (k).

Given T ∈ Vf (k), there exists g ∈ G(ks) such that T = gTfg
−1, since there is a unique

geometric orbit by Proposition 4. For any σ ∈ Gal(ks/k), the element σg also conjugates Tf to
T and hence g−1 σg ∈ StabG(Tf )(ks). The 1-cochain cT given by (cT )σ = g−1 σg is a 1-cocycle
whose image in H1(k,G) is trivial. This defines a bijection

G(k)\Vf (k) ↔ ker(H1(k, StabG(Tf )) → H1(k,G)) (2)

T 7→ cT . (3)

See [BG14, Proposition 1] for more details.

2.2.1 Distinguished orbits. We call a self-adjoint operator T ∈ Vf (k) distinguished if it is
PO(U)(k)-equivalent to Tf . Since the PO(U)(k)-orbit of Tf might break up into two PSO(U)(k)-
orbits, there might exist two distinguished PSO(U)(k)-orbits in contrast to the odd hyperelliptic
case. As StabPO(U)(Tf ) ' ResL/k µ2/µ2, we have the following diagram of exact rows.

(
ResL/k µ2/µ2

)
(k)

N // µ2(k) //

∼
��

H1(k,StabPSO(U)(Tf )) //

��

H1(k, StabPO(U)(Tf ))

��

PO(U)(k) // // µ2(k) // H1(k,PSO(U)) // H1(k,PO(U))

Note that the second row consists of maps between pointed sets where the trivial classes in
H1(k,PSO(U)) and H1(k,PO(U)) correspond to the split quadratic form (U,Q); and where
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exactness means that the preimages of the trivial classes equal the images of the previous maps.
A self-adjoint operator T ∈ Vf (k) is distinguished if and only if

cT ∈ ker(H1(k, StabPSO(U)(Tf )) → H1(k,StabPO(U)(Tf ))).

Since H1(k,PSO(U)) → H1(k,PO(U)) is injective, every class in the above kernel corresponds
to a PSO(U)(k)-orbit.

Distinguished PSO(U)(k)-orbits in Vf (k) are unique if and only if the norm map
N : ResL/k µ2/µ2(k) → µ2(k) is surjective. Therefore, [PS97, Lemma 11.2] immediately implies
the following result.

Proposition 5. Let f(x) be as in Proposition 4. Then the set of distinguished elements in Vf (k)
consists of a single PSO(U)(k)-orbit if and only if one of the following conditions is satisfied:

(i) f(x) has a factor of odd degree in k[x];

(ii) n is even and f(x) factors over some quadratic extension K of k as h(x)h̄(x), where
h(x) ∈ K[x] and h̄(x) is the Gal(K/k)-conjugate of h(x).

Otherwise, the set of distinguished elements in Vf (k) consists of two PSO(U)(k)-orbits.
Condition (ii) is equivalent to saying that n is even, and L contains a quadratic extension
K of k.

To give a more explicit description of distinguished orbits, we have the following result, the
proof of which is deferred to § 3.

Proposition 6. Let f(x) be as in Proposition 4. Then a self-adjoint operator T ∈ Vf (k) is
distinguished if and only if there exists a k-rational n-plane X ⊂ U such that Span{X,TX} is
an isotropic (n+ 1)-plane.

After a change of basis, we may take the matrix A with 1s on the anti-diagonal and 0s
elsewhere as a Gram matrix for Q. We express this basis as

{e1, . . . , en+1, fn+1, . . . , f1}

where
〈ei, fj〉Q = δij , 〈ei, ej〉Q = 0 = 〈fi, fj〉Q. (4)

We call this the standard basis. Then the above proposition yields the following explicit
description of distinguished elements which will be useful in § 4.

Proposition 7. A self-adjoint operator in Vf (k) is distinguished if and only if its PSO(U)(k)-
orbit contains an element T whose matrix M , with respect to the standard basis, satisfies

AM =



0 0 · · · 0 0 ∗ ∗
0 0 · · · 0 ∗ ∗ ∗
...

...
...

...
...

...
...

0 0
... · · ·

...
...

...
0 ∗ · · · · · · ∗ ∗ ∗
∗ ∗ · · · · · · ∗ ∗ ∗
∗ ∗ · · · · · · ∗ ∗ ∗


. (5)
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Proof. The forward direction follows from an argument identical to the proof of [BG13,
Proposition 4.4]. For the backward direction, suppose AM has the form in (5). Then

Tei ∈ Span{e1, . . . , en+1}⊥ = Span{e1, . . . , en+1}, for i = 1, . . . , n. (6)

Let X be the n-plane Span{e1, . . . , en}. Since T is self-adjoint, its eigenspaces are pairwise
orthogonal. Since Q is non-degenerate, none of the eigenvectors of T is isotropic. As a result, no
isotropic linear space is T -stable. Hence by (6),

Span{X,TX} = Span{e1, . . . , en+1}.

By Proposition 6, T is distinguished. 2

2.2.2 Remaining orbits. We start by describing the set of O(U)(k)-orbits on Vf (k). Recall
that StabO(U)(Tf ) ' ResL/kµ2. The set

ker(H1(k, StabO(U)(Tf )) → H1(k,O(U)))

consists of elements α ∈ H1(k,ResL/kµ2) ' L×/L×2 whose image in H1(k,O(U)) is trivial. For
any α ∈ L×/L×2, lift it arbitrarily to L× and consider the following bilinear form on L:

〈λ, µ〉α = coefficient of β2n+1 in αλµ = TrL/k(αλµ/f
′(β)).

We claim that α maps to 0 in H1(k,O(U)) if and only if 〈 , 〉α is split with discriminant 1.
Indeed, let ι : (L, 〈 , 〉) → (U, 〈 , 〉Q) denote the isometry used to define Tf . Now 〈 , 〉α is split with
discriminant 1 if and only if there exists g ∈ O(U)(ks) such that the following composite map is
defined over k:

(L, 〈 , 〉α)
√
α
−−→ks(L, 〈 , 〉)

ι−→k(U, 〈 , 〉Q)
g−→ks(U, 〈 , 〉Q), (7)

where the subscripts below the arrows indicate the fields of definition and where the last map
is the standard action of g ∈ O(U)(ks). Unwinding the definitions [Wan13b, Proposition 2.13],
we see that this is equivalent to the image of α mapping to 0 in H1(k,O(U)). We have therefore
shown the following result.

Theorem 8. Let f(x) be as in Proposition 4. Then there is a bijection between O(U)(k)-orbits
on Vf (k) and classes α ∈ (L×/L×2)N=1 such that 〈 , 〉α is split.

To study SO(U)(k)- and PO(U)(k)-orbits, we note that all the maps in the following diagram
are injections.

H1(k, SO(U)) //

��

H1(k,O(U))

��

H1(k,PSO(U)) // H1(k,PO(U))

The horizontal maps are injective because the determinant map from O(U)(k) to µ2(k) is
surjective. The vertical maps are injective because the connecting homomorphism PSO(U)(k) →

k×/k×2 is surjective. Indeed, for any c ∈ k×, the element in PSO(U)(k) mapping to c is the
operator

ei 7→
√
c ei, fi 7→

√
c
−1
fi, ∀i = 1, . . . , n+ 1.
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Recall that StabSO(U)(Tf ) ' (ResL/kµ2)N=1. From the exact sequence

1 → (ResL/kµ2)N=1 → ResL/kµ2
N−→ µ2 → 1,

we obtain the isomorphism

ker
(
H1(k, (ResL/kµ2)N=1) → H1(k,ResL/kµ2)

)
' coker

(
µ2(L)

N−→ µ2(k)
)
.

We see that each O(U)(k)-orbit breaks up into one or two SO(U)(k)-orbits depending on whether
f(x) has an odd degree factor or not, respectively.

We next describe the set of PO(U)(k)-orbits on Vf (k). Each such orbit breaks up into either
one or two PSO(U)(k)-orbits depending on whether the norm map N : (ResL/k µ2/µ2)(k) →

µ2(k) is surjective or not, respectively (see Proposition 5 for a more descriptive criterion). As
the stabilizer subscheme of Tf in PO(U) is ResL/kµ2/µ2, we have the following diagram of exact
rows:

H1(k, µ2) //

=

��

H1(k,ResL/kµ2) //

��

H1(k,ResL/kµ2/µ2) //

��

H2(k, µ2)

=

��

H1(k, µ2) // H1(k,O(U)) �
�

// H1(k,PO(U)) // H2(k, µ2)

Suppose

c′T ∈ ker(H1(k,ResL/kµ2/µ2) → H1(k,PO(U))).

Since c′T maps to 0 in H2(k, µ2), it is the image of some α ∈ L×/L×2 well defined up to k×/k×2.
Since the map H1(k,O(U)) →H1(k,PO(U)) is injective, the image of α in H1(k,O(U)) is trivial.
By Theorem 8, this is equivalent to the form 〈 , 〉α being split with discriminant 1. Therefore, we
have the following characterization of PO(U)(k)-orbits.

Theorem 9. There is a bijection between PO(U)(k)-orbits and classes α ∈ (L×/(L×2k×))N=1

such that 〈 , 〉α is split. The distinguished orbit corresponds to α = 1. Two O(U)(k)-orbits
corresponding to α1, α2 ∈ (L×/L×2)N=1 are PO(U)(k)-equivalent if and only if α1 and α2 have
the same image in (L×/L×2k×)N=1.

2.3 Connection to hyperelliptic curves
Let C be the monic even hyperelliptic curve of genus n given by the affine equation y2 = f(x),
and let J denote its Jacobian. The curve C has two rational points above infinity, denoted
by ∞ and ∞′. Let P1, . . . , P2n+2 denote the Weierstrass points of C over ks. These form the
ramification locus of the map x : C → P1. Let D0 denote the hyperelliptic class obtained as the
pullback of OP1(1). Then the group J [2](ks) is generated by the divisor classes (Pi) + (Pj)−D0

for i 6= j subject only to the condition that

2n+2∑
i=1

(Pi)− (n+ 1)D0 ∼ 0.

We have the following isomorphisms of group schemes over k:

J [2] ' (ResL/k µ2)N=1/µ2 ' StabG(Tf ). (8)

An explicit formula for this identification is given in [Wan13a, Remark 2.6].
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In conjunction with (2), this identification yields a bijection

G(k)\Vf (k) −→ ker(H1(k, J [2]) → H1(k,G)).

Hence G(k)-orbits on Vf (k) can be identified with a subset of H1(k, J [2]). Recall that we have
the following descent exact sequence:

1 → J(k)/2J(k) → H1(k, J [2]) → H1(k, J)[2] → 1. (9)

A G(k)-orbit in Vf (k) is said to be soluble if it corresponds to a class in H1(k, J [2]) which is in
the image of the map from J(k)/2J(k). The following theorem states that there is a bijection
between soluble G(k)-orbits in Vf (k) and elements of J(k)/2J(k).

Theorem 10. The following composite map is trivial:

J(k)/2J(k) → H1(k, J [2]) → H1(k,G). (10)

Therefore, there is a bijection between soluble G(k)-orbits in Vf (k) and elements of J(k)/2J(k).

Proof. We prove Theorem 10 in the case when k is a local field. For a complete proof, see § 3.
Combining the descent sequence (9) and the long exact sequence obtained by taking Galois
cohomology of the short exact sequence

1 → J [2] → ResL/kµ2/µ2
N−→ µ2 → 1,

we get the following commutative diagram.

〈(∞′)− (∞)〉 //

∼
��

J(k)/2J(k)� _

δ

��

δ′ // L×/(L×2k×)� _

��

N // k×/k×2

∼
��

µ2(k)
N(ResL/kµ2/µ2(k))

// H1(k, J [2]) // H1(k,ResL/kµ2/µ2)
N // H1(k, µ2)

(11)

The map δ′ is defined in [PS97] by evaluating (x − β) on a given divisor class. As shown in
[PS97], the first row is not exact: the map δ′ lands inside, generally not onto, (L×/L×2k×)N=1

with kernel the subgroup generated by the class (∞′) − (∞). Note that (∞′) − (∞) ∈ 2J(k) if
and only if the norm map N : ResL/k µ2/µ2(k) → µ2(k) is surjective if and only if there is a
unique distinguished orbit.

To prove Theorem 10, it suffices to show that if α ∈ (L×/L×2k×)N=1 lies in the image of δ′,
then 〈 , 〉α is split. We will prove this by explicitly writing down a k-rational (n+ 1)-dimensional
isotropic subspace in the special case when k is a local field. For a complete and more conceptual
proof using pencils of quadrics, see § 3. Suppose α = δ′([D]) for some [D] ∈ J(k)/2J(k) of the
form

[D] = (Q1) + · · ·+ (Qm)−m(∞) mod 2J(k) · 〈(∞′)− (∞)〉,

where Q1, . . . , Qm ∈ C(ks) are non-Weierstrass non-infinity points and m 6 n+ 1. When k is a
local field, every [D] ∈ J(k)/2J(k) can be written in this form [Wan13b, Lemma 3.8]. If we write
Qi = (xi, yi), then α = (x1 − β) · · · (xm − β) and

〈λ, µ〉α = TrL/k((x1 − β) · · · (xm − β)λµ/f ′(β)).
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We may also assume that the xi are all distinct since the sum of all the Qi whose x-coordinates

appear more than once lies in 2J(k) · 〈(∞′)− (∞)〉. Write

Ṽ =
∏

16i<j6m

(xi − xj)

for the Vandermonde polynomial, and, for each i = 1, . . . ,m, define

qi :=
∏

16j6m,j 6=i
(xj − xi), ai := Ṽ /qi, hi(t) :=

f(t)− f(xi)

t− xi
.

For any j > 0, we define

gj(t) =
m∑
i=1

xjiai
hi(t)

yi
.

Then the (n+ 1)-plane Y defined below is k-rational and isotropic [Wan13b, Lemma 2.44]:

Y := Span{1, β, . . . , βn−m′
, g0(β), . . . , gm′−1(β)} if m = 2m′ or m = 2m′ + 1.

This completes the proof of Theorem 10 when k is a local field. 2

Suppose that k is a number field. Then the 2-Selmer group Sel2(k, J) is the subgroup of

H1(k, J [2]) consisting of elements whose images in H1(kν , J [2]) lie in the images of J(kν)/2J(kν)

for all the local completions kν of k. Since the group G = PSO2n+2 is an adjoint group, it satisfies

the Hasse principle (see [PR94, Theorem 6.22]), that is, the map

H1(k,G) →

∏
v

H1(kv, G)

is injective, where the product is over all places v of k. Hence, Theorem 10 implies that the

following composite is also trivial:

Sel2(k, J) → H1(k, J [2]) → H1(k,G).

A self-adjoint operator T ∈ Vf (k) is said to be locally soluble if T is soluble in Vf (kν) for all the

local completions kν of k. Equivalently, T is locally soluble if and only if cT lies in Sel2(k, J). We

have thus proven the following theorem.

Theorem 11. Let k be a number field. Let f(x) be a monic separable polynomial of degree 2n+2

over k. Then there is a bijection between locally soluble G(k)-orbits on Vf (k) and elements in

Sel2(k, J), where J is the Jacobian of the hyperelliptic curve given by the equation y2 = f(x).

2.4 Integral orbits

Let f(x) ∈ Q[x] be a monic separable polynomial of degree 2n + 2. Let C be the hyperelliptic

curve defined by y2 = f(x), and let J be its Jacobian. We have seen that elements in the 2-Selmer

group of J are in bijection with locally soluble G(Q)-orbits in Vf (Q). In this section, our aim is

to show that when f has integral coefficients, every locally soluble G(Q)-orbit in Vf (Q) contains

an integral representative.
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We do this by working over the field Qp and the ring Zp. Specifically, we prove the following
result.

Proposition 12. Let p be a prime and let f(x) = x2n+2 + c1x
2n+1 + · · · + c2n+2 be a monic

separable polynomial in Zp[x] such that 24i|ci in Zp for i = 1, . . . , 2n + 2. Then every soluble
G(Qp)-orbit in Vf (Qp) contains an integral representative.

Recall that the class number of G over Q is the number of double cosets G(A(∞))xG(Q) of
the group G(A), where A is the ring of adeles of Q and A(∞) denotes the ring of integral adeles,
that is, the product of R and Zp over all primes p. For a quadratic space U , it is known (see
[PR94, Proposition 8.4]) that the class number of O(U) over Q is the same as the number of
classes in the genus of U . The number of classes in the genus of any space having determinant
±1 is 1 [Ser73, ch. V, Theorem 6]. It then easily follows that the class number of G over Q is 1.
We therefore immediately obtain the following corollary.

Corollary 13. Let f(x) = x2n+2 + c1x
2n+1 + · · · + c2n+2 be a monic separable polynomial in

Z[x] such that 24i|ci for i = 1, . . . , 2n+2. Then every locally soluble G(Q)-orbit in Vf (Q) contains
an integral representative.

We will also prove the following result.

Proposition 14. Let p be any odd prime, and let f(x) ∈ Zp[x] be a monic separable polynomial
of degree 2n+2 such that p2 - ∆(f). Then the G(Zp)-orbits in Vf (Zp) are in bijection with soluble
G(Qp)-orbits in Vf (Qp). Furthermore, if T ∈ Vf (Zp), then StabG(Zp)(T ) = StabG(Qp)(T ).

Let p be a fixed prime. We start by considering the O(U)(Zp)-orbits. A self-adjoint operator
T ∈ Vf (Qp) is integral if it stabilizes the self-dual lattice

M0 = SpanZp
{e1, . . . , en+1, fn+1, . . . , f1}.

In other words, T is integral if and only if, when expressed in the standard basis (4), its entries
are in Zp. In general, a lattice M is self-dual if the bilinear form restricts to a non-degenerate
bilinear form: M × M → Zp. Since genus theory implies that any two self-dual lattices are
O(U)(Qp)-conjugate, the rational orbit of T contains an integral representative if and only if T
stabilizes a self-dual lattice.

The action of T on U gives U the structure of a Qp[x]-module, where x acts via T . Since T is
regular, we have an isomorphism of Qp[x]-modules: U ' Qp[x]/(f(x)) = L. Suppose T is integral,
stabilizing the self-dual lattice M0. The action of T on M0 realizes M0 as a Zp[x]/(f(x))-module.
Write R for Zp[x]/f(x). Since M0 is a lattice, we see that after the identification U ' L, M0

becomes a fractional ideal I for the order R. The split form Q on U gives a split form of
discriminant 1 on L for which multiplication by β is self-adjoint. Any such form on L is of the
form 〈 , 〉α for some α ∈ L× with NL/k(α) ∈ k×2. The condition that M0 is self-dual translates
to saying α · I2 ⊂ R and N(I)2 = N(α−1).

The identification U ' L is unique up to multiplication by some element c ∈ L×, which
transforms the data (I, α) to (c · I, c−2α). We call two pairs (I, α), (I ′, α′) equivalent if there
exists c ∈ L× such that I ′ = c · I and α′ = c−2α. Choosing a different integral representative T
in an integral orbit amounts to pre-composing the map U ' L by an element of O(U)(Zp) which
does not change the equivalence class of the pair (I, α). Hence we have a well-defined map

O(U)(Zp)\Vf (Zp) → equivalence classes of pairs (I, α). (12)
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Theorem 15. There is a bijection between O(U)(Zp)-orbits and equivalence classes of pairs
(I, α) such that 〈 , 〉α is split, α · I2 ⊂ R, and N(I)2 = N(α−1). The image of α in (L×/L×2)N=1

determines the rational orbit.

Proof. Given a pair (I, α) such that 〈 , 〉α is split, αI2 ⊂ R and N(I)2 = N(α−1), there exists an
isometry over Qp from (L, 〈 , 〉α) to (U, 〈 , 〉Q) that sends I to the self-dual lattice M0. The image
of the multiplication by β operator lies in Vf (Zp). Any two such isometries differ by an element
in O(U)(Zp). Hence we get a well-defined O(U)(Zp)-orbit in Vf (Zp). Along with (12), we have
proved the first statement.

For the second statement, from the sequence of isometries (7), we see that since 〈 , 〉α is split,
there exists g ∈ O(U)(Qs

p) such that

σ√α/
√
α = g−1 σg ∀σ ∈ Gal(ks/k).

Here, the left-hand side is viewed as an element of StabO(U)(Tf )(ks). The rational orbit
corresponding the pair (I, α) is the rational orbit of T = gTfg

−1. The rest follows formally
from unwinding definitions. 2

Suppose the O(U)(Zp)-orbit of some T ∈ Vf (Zp) corresponds to the equivalence class of
the pair (I, α). Upon identifying R with Zp[T ], the stabilizer of T in GL(U)(Zp) is EndR(I)×.
Moreover, as in the proof of Proposition 4, we have

StabO(U)(T )(Zp) = EndR(I)×[2],

StabSO(U)(T )(Zp) = (EndR(I)×[2])N=1.

The stabilizer of T in the group PO(U)(Zp) (and PSO(U)(Zp)) is slightly complicated because
PO(U)(Zp) contains O(U)(Zp)/µ2 as a subgroup with quotient Z×p /Z×2

p . We have the following
exact sequences:

1 → EndR(I)×[2]/µ2 → StabPO(U)(T )(Zp) → (R×2 ∩ Z×p )/Z×2
p → 1,

1 → (EndR(I)×[2])N=1/µ2 → StabPSO(U)(T )(Zp) → (R×2 ∩ Z×p )/Z×2
p → 1. (13)

Proof of Proposition 12. First note that it suffices to show that the PO(U)(Qp)-orbit of T
contains an integral representative. Since T is soluble, there exists some [D] ∈ J(Qp)/2J(Qp)
such that α̃ = δ′([D]) ∈ (L×/L×2Q×p )N=1 corresponds to the PO(U)(Qp)-orbit of T . By [Wan13b,
Lemma 3.8], there exist non-Weierstrass non-infinity points Q1, . . . , Qm ∈ C(Qs

p), with m 6 n+1,
such that

[D] = (Q1) + · · ·+ (Qm)−m(∞) mod 2J(Qp) · 〈(∞′)− (∞)〉. (14)

Write each Qi = (xi, yi) ∈ C(OQs
p
). Then α = (x1− β) · · · (xm− β) is a lift of α̃ to L×. We claim

that either the O(U)(Qp)-orbit of T corresponding to the image of α in L×/L×2 has an integral
representative, or [D] can be expressed in the form (14) with m replaced by m − 2. Applying
induction on m completes the proof.

The claim follows verbatim from the proof of [BG13, Proposition 8.5]. We give a quick sketch
here. Let r(x) ∈ Qp[x] be a polynomial of degree at most m − 1 such that, for all i, r(xi) = yi,
and let

p(x) = (x− x1) · · · (x− xm) ∈ Zp[x].

Now p(x) divides r(x)2 − f(x) in Qp[x] and we denote the quotient by q(x). By definition,
α = (−1)mP (β). If the polynomial r(x) ∈ Zp[x], then the ideal I = (1, r(β)/α) does the job.
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Note that αI2 = (α, r(β), q(β)). The integrality assumption of r(x) is used to show that
r(β), q(β) ∈ R. A computation of ideal norms shows that N(I)2 = N(α)−1.

When r(x) is not integral, a Newton polygon analysis on f(x) − r(x)2 shows that
div(y − r(x)) − [D] has the form D∗ + E with D∗, E ∈ J(Qp), where D∗ can be expressed
in (14) with m replaced by m − 2 and the x-coordinates of the non-infinity points in E
have negative valuation. The condition of divisibility on the coefficients of f(x) ensures that
E ∈ 2J(Qp) · ((∞′)− (∞)), or equivalently (x− β)(E) ∈ L×2Q×p . 2

Proof of Proposition 14. Once again, it suffices to work with PO(U)-orbits instead of PSO(U)-
orbits directly. The assumption on ∆(f) implies that R is the maximal order. Hence there is
a bijection between O(U)(Zp)-orbits and (R×/R×2)N=1. Note that over non-archimedean local
fields, the splitness of the quadratic form is automatic from the existence of a self-dual lattice.
Taking flat cohomology over Spec(Zp) of the sequence

1 → µ2 → O(U) → PO(U) → 1

gives:
1 → O(U)(Zp)/±1 → PO(U)(Zp) → Z×p /Z×2

p → 1.

Hence PO(U)(Zp)-orbits correspond bijectively to (R×/R×2Z×p )N=1.
On the other hand, the assumption on ∆(f) implies that the projective closure C (in weighted

projective space) of the hyperelliptic curve C defined by affine equation y2 = f(x) over Spec(Zp)
is regular. Since the special fiber of C is geometrically reduced and irreducible, the Neron model
J of its Jacobian JQp is fiberwise connected [BLR90, § 9.5, Theorem 1] and its 2-torsion J [2]
is isomorphic to (ResR/Zp

µ2)N=1/µ2. Using diagram (11) after replacing L, k, J by R,Zp,J ,
we see that the vertical maps are all isomorphisms and δ′ maps J (Zp)/2J (Zp) surjectively to
(R×/R×2Z×p )N=1. The Neron mapping property implies that J (Zp)/2J (Zp) = J(Qp)/2J(Qp).

Suppose the O(U)(Zp)-orbit of some T ∈ Vf (Zp) corresponds to an equivalence class of
pair (I, α). Since R is maximal, we have EndR(I) = R. Since R×[2] = L×[2], we see from (13)
that it remains to compare (R×2 ∩ Z×p )/Z×2

p with (L×2 ∩ Q×p )/Q×2
p . These two groups are only

non-trivial when L contains a quadratic extension K ′ of Qp. The condition p2 - ∆(f) implies
that K ′ = Qp(

√
u) can only be the unramified quadratic extension of Qp. In other words, u can

be chosen to be a unit in Z×p . Hence in this case (L×2 ∩Q×p )/Q×2
p and (R×2 ∩Z×p )/Z×2

p are both
equal to the group of order 2 generated by the class of u. 2

3. Interpretation using pencils of quadrics

In this section, we give geometric meanings to the notions of distinguished and soluble. For the
proof of all the statements below, see [Wan13a, § 2.2]. These geometric interpretations are not
necessary if one wants only the average size of the 2-Selmer groups.

Let k be a field of characteristic not equal to 2 and let f(x) be a monic separable polynomial
of degree 2n+ 2. Let C denote the monic even hyperelliptic curve defined by y2 = f(x) and let
∞ and ∞′ denote the two points above infinity. Let T be a self-adjoint operator in Vf (k). One
has a pencil of quadrics in U spanned by the following two quadrics:

Q(v) = 〈v, v〉Q,
QT (v) = 〈v, Tv〉Q.

This pencil is generic in the sense that there are precisely 2n + 2 singular quadrics among
x1Q − x2QT for [x1, x2] ∈ P1, and that they are all simple cones. Its associated hyperelliptic
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curve C ′ is the curve parameterizing the rulings of the quadrics in the pencil. A ruling of a
quadric Q0 is a connected component of the Lagrangian variety of maximal isotropic subspaces.
When Q0 is a simple cone, there is only one ruling. When Q0 is non-degenerate, there are two
rulings defined over k(

√
disc(Q0)). To give a point on C ′ is the same as giving a quadric in

the pencil along with a choice of ruling. Therefore, the curve C ′ is isomorphic over k to the
hyperelliptic curve

y2 = disc(xQ−QT ) = disc(Q) det(xI − T ) = f(x),

canonical up to the hyperelliptic involution.
We fix an isomorphism between C ′ and C as follows. Recall the model space (L, 〈 , 〉) defined

in § 2.2 where L = k[x]/(f(x)) = k[β] and 〈 , 〉 is the bilinear form on L defined by

〈λ, µ〉 := coefficient of β2n+1 in λµ = TrL/k(λµ/f
′(β)).

This form is split since the (n+ 1)-plane Y = Span{1, β, . . . , βn} is isotropic. We fix an isometry
ι : (L, 〈 , 〉) → (U, 〈 , 〉Q). Let Y0 denote ruling on Q containing the isotropic (n+ 1)-plane ι(Y ).
We fix an isomorphism C ′ ' C so that the ruling Y0 corresponds to ∞ ∈ C(k).

Since C has a rational point, the Fano variety FT of n-planes isotropic with respect to both
quadrics is a torsor of J of order dividing 2. In fact, it fits inside a disconnected algebraic group

J ∪̇FT ∪̇Pic1(C) ∪̇F ′T

where F ′T ' FT as varieties. Using the point ∞, one obtains a lift of FT to a torsor of J [2] by
taking

FT [2]∞ = {X ∈ FT | X +X = (∞)}
= {X n-plane | Span{X,TX} is an isotropic (n+ 1)-plane in the ruling Y0}.

The second equality is [Wan13a, Proposition 2.32].
The group scheme G = PSO(U) acts on the k-scheme

Wf = {(T,X) | T ∈ Vf , X ∈ FT [2]∞}

via g · (T,X) = (gTg−1, gX). Let WT denote the fiber above any fixed T ∈ Vf (k). This action
is simply transitive on k-points [Wan13a, Corollary 2.36]. Hence for any T ∈ Vf (k), the above
action induces a simply transitive action of J [2] ' StabG(T ) on the fiber WT = FT [2]∞.

Theorem 16 ([Wan13a, Proposition 2.38], [Wan13b, Lemma 2.19]). These two actions of J [2]
coincide, and as elements of H1(k, J [2]),

[FT [2]∞] = [WT ] = cT , (15)

where cT ∈ H1(k, J [2]) is defined in (2).

Theorem 16 gives a geometric realization of torsors of J [2] using pencils of quadrics.
For hyperelliptic curves with a rational Weierstrass point, one can obtain all torsors of J [2]
using pencils of quadrics [Wan13b, Proposition 2.11]. For hyperelliptic curves with no rational
Weierstrass point but with a rational non-Weierstrass point, not all torsors of J [2] arise as some
FT [2]∞ coming from a pencil of quadrics, but all of them that correspond to PSO(U)(k)-orbits
do.
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Suppose T ∈ Vf (k). From (15), we see that there exists a k-rational n-plane X such that
Span{X,TX} is an isotropic (n+ 1)-plane if and only if at least one of [FT [2]∞] and [FT [2]∞′ ] is
trivial. Again by (15), this is equivalent to cT being in the image of the subgroup generated by
(∞′) − (∞) ∈ J(k)/2J(k) under the Kummer map J(k)/2J(k) ↪→ H1(k, J [2]). Commutativity
of the top left square in (11) implies that this is in turn equivalent to cT mapping to 0 in
H1(k,StabPO(U)(T )). Finally, this is equivalent to T being distinguished. We have therefore
proved Proposition 6.

Since [FT [2]∞] maps to [FT ] under the canonical map H1(k, J [2]) → H1(k, J)[2], we see that
T is soluble if and only if FT (k) 6= ∅. This equivalence of solubility and the existence of rational
points is the main reason why the name ‘soluble’ is used. Likewise, T is locally soluble if and
only if FT (kν) 6= ∅ at all places ν.

We now give a complete proof for the claim that if α ∈ (L×/L×2k×)N=1 lies in the image of
δ′, then 〈 , 〉α is split. Consider the pencil of quadrics in L spanned by the following two quadrics:

Qα(λ) = 〈λ, λ〉α,
Q′α(λ) = 〈λ, βλ〉α.

This pencil is once again generic, its associated hyperelliptic curve Cα is smooth of genus n
isomorphic non-canonically to the hyperelliptic curve defined by affine equation

y2 = disc(xQα −Q′α) = NL/k(α)f(x).

Since NL/k(α) ∈ k×2, the curve Cα is isomorphic to C over k. Fix any isomorphism C ′α ' C.
The Fano variety Fα of n-planes isotropic with respect to both quadrics is a torsor of J of order
dividing 2. There are two natural lifts of Fα to torsors of J [2] by taking

Fα[2]∞ = {X ∈ F | X +X = (∞)} or Fα[2]∞′ = {X ∈ F | X +X = (∞′)}.

As elements of H1(k, J [2]), these two lifts map to the same class in H1(k,ResL/kµ2/µ2). The
class α also maps to a class in H1(k,ResL/kµ2/µ2) as in (11). By [Wan13b, Proposition 2.27],
these two classes coincide. Suppose α = δ′([D]) comes from J(k)/2J(k). Then one of these two
lifts recovers [D] and hence Fα(k) 6= ∅. Pick any X ∈ Fα(k). If X + X = (∞), then [D] = 0,
α = 1 and 〈 , 〉 is split. Otherwise, Span{X, (∞)−X} is a k-rational (n+ 1)-plane isotropic with
respect to 〈 , 〉α implying again that 〈 , 〉α is split.

4. Orbit counting

In this section, we let the polynomial f(x) vary in the family of monic polynomials of degree
2n+ 2 over Z whose x2n+1-coefficient is 0 and count the average number of locally soluble orbits
of the action of G(Q) on Vf (Q). We redefine V to be the following scheme over Z:

V = {B ∈M(2n+2)×(2n+2) | B = Bt, B has anti-trace 0} ' A2n2+5n+2
Z ,

consisting of symmetric (2n+2)×(2n+2) matrices with anti-trace 0. Recall that the anti-trace is
the sum of the entries on the anti-diagonal. We impose the extra condition on the anti-trace since
the x2n+1-coefficients of our polynomials are 0. One passes between self-adjoint operators T and
symmetric matrices B via the relation B = AT . This change of perspective is only to simplify
notation in what follows. We view elements of the group SO2n+2 also as (2n+2)×(2n+2) matrices
using the standard basis defined in (4). The group G = PSO2n+2 acts on V by g ·B := gBgt. The
ring of polynomial invariants for this action is freely generated by the coefficients c2, . . . , c2n+2
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of the invariant polynomial det(Ax−By). Indeed, Proposition 4 implies that there are no other
independent polynomial invariants, and the existence of a self-adjoint operator Tf with any given
characteristic polynomial f(x) obtained in § 2.2 shows that there are no relations among these
invariants. We define the scheme S to be

S = SpecZ[c2, . . . , c2n+2].

The map π : V → S is given by the coefficients of the invariant polynomial; we call π(B) the
invariant of B.

A point c = (c2, . . . , c2n+2) ∈ S(R) corresponds to a monic polynomial

fc(x) := x2n+2 + c2x
2n + · · ·+ c2n+2.

We define its height H(fc) by

H(fc) := H(c) := max{|ck|1/k}2n+2
k=2 .

The height of B ∈ V (R) is defined to be the height of π(B), and the height of the hyperelliptic
curve C(c) given by y2 = fc(x) is defined to be H(c).

For each prime p, let Σp be a closed subset of S(Zp)\{∆ = 0} whose boundary has measure 0.
Let Σ∞ be the set of all c ∈ S(R)\{∆ = 0} such that the corresponding polynomial fc has m
distinct pairs of complex conjugate roots, where m belongs to a fixed subset of {0, . . . , n+1}. To
such a collection (Σν)ν we associate the family F = FΣ of monic even hyperelliptic curves, where
C(c) ∈ F if and only if c ∈ Σν for all places ν. Such a family is said to be defined by congruence
conditions.

Given a family F of monic even hyperelliptic curves defined by congruence conditions, let
Inv(F ) ⊂ S(Z) denote the set of coefficients of the defining affine equations. We denote the p-adic
closure of Inv(F ) in S(Zp)\{∆ = 0} by Invp(F ). We say that a family F defined by congruence
conditions is large at p if Invp(F ) contains every element c ∈ S(Zp) such that p2 - ∆(c). Finally,
we say that F and Inv(F ) are large if F is large at all but finitely many primes. An example of
a large subset of S(Z) is the set

F0 = {(c2, . . . , c2n+2) ∈ S(Z) | p2k - ck, ∀k = 2, . . . , 2n+ 2,∀p,prime}.

Another example is the set of elements in S(Z) having squarefree discriminant.
In this section, our goal is to prove the following strengthening of Theorem 2.

Theorem 17. When all hyperelliptic curves over Q of genus n with a marked rational non-
Weierstrass point in any large family are ordered by height, the average size of the 2-Selmer
groups of their Jacobians is at most 6.

In view of the correspondence (Theorem 11) between locally soluble orbits and 2-Selmer
elements, the above result is an immediate consequence of the following theorem.

Theorem 18. The average number of locally soluble orbits for the action of G(Q) on Vf (Q) as
f runs through any large subset of S(Z), when ordered by height, is at most 6.

This section is organized as follows. First, in § 4.1, we construct fundamental domains for
the action of G(Z) on the set of R-soluble elements in V (R). In § 4.2, we then use geometry-
of-numbers techniques developed by Bhargava to determine the asymptotics for the number of
R-soluble G(Z)-orbits on non-distinguished elements in V (Z) having non-zero discriminant and
bounded height. In § 4.3, we bound the number of weighted G(Z)-orbits, where the weights are
products of p-adic weights over all p. We also determine the number of monic even hyperelliptic
curves having bounded height in any large family. Finally, in § 4.4, we deduce Theorem 18.
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4.1 Construction of fundamental domains
Let V (R)sol denote the set of R-soluble elements in V (R) having non-zero discriminant. We
partition V (R)sol into n+ 2 sets,

V (R)sol =
n+1⋃
m=0

V (R)(m),

where V (R)(m) consists of elements B ∈ V (R)sol such that the polynomial corresponding to
π(B) has m pairs of complex conjugate roots (and 2n + 2 − 2m real roots). In this subsection,
our goal is to describe convenient fundamental domains for the action of G(Z) on V (R)(m) for
m ∈ {0, . . . , n+ 1}.

4.1.1 Fundamental sets for the action of G(R) on V (R)sol. First, we construct convenient

fundamental sets for the action of G(R) on V (R)(m). Let S(R)(m) denote the set of elements
c ∈ S(R)\{∆ = 0} such that the corresponding polynomial has m pairs of complex conjugate
roots. There exists an algebraic section κ : S → V defined over Z[1/2] such that every element in
the image of S(R)\{∆ = 0} under κ is distinguished [Wan13b, § 3.1]. The number of R-soluble
G(R)-orbits in Vfc(R), for c ∈ S(R)(m), depends only on m. We denote it by τm. There exist
elements g1, . . . , gτm ∈ GL(U)(R) such that the set

R′(m) :=
⋃
i

giκ(S(R)(m))g−1
i (16)

is a fundamental set for G(R)\V (R)(m). Indeed, since L := R[x]/(fc(x)) is independent of
c ∈ S(R)(m), an element g ∈ GL(U)(R) that conjugates κ(c0), for any fixed c0 ∈ S(Q)(m), to
a G(R)-orbit corresponding to a class α ∈ (L×/L×2R×)N=1 does so for every c ∈ S(R)(m).

We now construct our fundamental set R(m) for G(R)\V (R)(m) to be

R(m) := R>0 · {B ∈ R′(m) : H(B) = 1}. (17)

The reason why we use the set R(m) instead of R′(m) is that the sizes of the coefficients of
elements in R(m) having height X are bounded by O(X1/d), where d = (2n + 2)(2n + 1) is the
degree of the height function. This follows because the elements in R′(m) having height 1 lie in
a bounded subset of V (R).

4.1.2 Fundamental domains for the action of G(Z) on G(R). We now describe Borel’s
construction [Bor62] of a fundamental domain F for the left action of G(Z) on G(R). Since
G(R) = SO(U)(R)/{±1}, and {±1} ⊂ SO(U)(Z), the image in G(R) of a fundamental domain
for SO(U)(Z)\SO(U)(R) will map bijectively onto a fundamental domain for G(Z)\G(R).
We will abuse notation and refer to both fundamental domains by F . Let SO(U)(R) = NTK be
the Iwasawa decomposition of SO(U)(R). Here, N denotes the set of unipotent lower triangular
matrices, T denotes the set of diagonal matrices, and K is a maximal compact subgroup. Then
the fundamental domain F may be expressed in the form

F := {utk | u ∈ N ′(t), t ∈ T ′, k ∈ K} ⊂ N ′T ′K,

where N ′ ⊂ N is a bounded set, N ′(t) ⊂ N ′ is a measurable set depending on t ∈ T ′, and T ′ ⊂ T
is given by

T ′ := {diag(t−1
1 , t−1

2 , . . . , t−1
n+1, tn+1, . . . , t1) | t1/t2 > c, . . . , tn/tn+1 > c, tntn+1 > c},

for some constant c > 0.
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4.1.3 Fundamental domains for the action of G(Z) on V (R)sol. For h ∈ G(R), we regard

Fh · R(m) as a multiset, where the multiplicity of B in Fh · R(m) is given by #{g ∈ F | B ∈
gh ·R(m)}. The G(Z)-orbit of any B ∈ V (R) is represented #StabG(R)(B)/#StabG(Z)(B) times

in this multiset Fh ·R(m).

The group StabG(Z)(B) is non-trivial only for a set of measure 0 in V (R)(m). Indeed, G(Z) is

countable and every non-trivial element g ∈ G(Z) only fixes a set of measure 0 in V (R). (Later

on, in Proposition 23, we will show that the number of G(Z)-orbits on V (Z) having a non-trivial

stabilizer in G(Z) is negligible.) The size #StabG(R)(B) is constant over B ∈ V (R)(m). We denote

it by #J (m)[2](R). Therefore, the multiset Fh ·R(m) is a cover of a fundamental domain for G(Z)

on V (R)(m) (aside from a set of measure 0) of degree #J (m)[2](R).

4.2 Averaging, cutting off the cusp, and estimation in the main body

An element B ∈ V (Q) is said to be irreducible if it has non-zero discriminant and it is not

distinguished. For any G(Z)-invariant set L ⊂ V (Z)(m) := V (R)(m) ∩ V (Z), let N(L;X) denote

the number of irreducible G(Z)-orbits of L that have height bounded by X, where each orbit

G(Z) ·B is weighted by 1/#StabG(Z)(B). The result of the previous section shows that we have

N(L;X) =
1

#J (m)[2](R)
#{FhR(m)(X) ∩ Lirr}

for any h in G(R), where R(m)(X) denotes the elements in R(m) having height bounded by X

and Lirr denotes the set of irreducible elements in L. Let G0 be a bounded open K-invariant

non-empty semialgebraic set in G(R). Averaging the above equation over h ∈ G0, we obtain

N(L;X) =
1

#J (m)[2](R) Vol(G0)

∫
h∈G0

#{FhR(m)(X) ∩ Lirr} dh, (18)

for any Haar measure dh on G(R), and where the volume of G0 is computed with respect to dh.

Note that since G is reductive, every Haar measure is both left- and right-invariant. We may

use (18) to define N(L;X) when L is not G(Z)-invariant. This could be useful to estimate the

number of G(Z)-orbits having bounded height on a G(Z)-invariant set which is not a lattice, but

which can be partitioned into a union of lattices each of which is not necessarily G(Z)-invariant.

Note that if L is not G(Z)-invariant, then our definition of N(L;X) depends on G0 and on the

choice of the fundamental domain F .

By an argument identical to the proof of [BS15, Theorem 2.5], we obtain

N(L;X) =
1

#J (m)[2](R) Vol(G0)

∫
h∈F

#{hG0R
(m)(X) ∩ Lirr} dh. (19)

To estimate the number of integral points in the bounded region hG0R
(m)(X), we use the

following result of Davenport [Dav51].

Proposition 19. Let R be a bounded, semi-algebraic multiset in Rn having maximum

multiplicity m and defined by at most k polynomial inequalities each having degree at most `.

Then the number of integral lattice points (counted with multiplicity) contained in the region

R is

Vol(R) +O(max{Vol(R̄), 1}),
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where Vol(R̄) denotes the greatest d-dimensional volume of any projection ofR onto a coordinate
subspace obtained by equating n−d coordinates to zero, where d takes all values from 1 to n−1.
The implied constant in the second summand depends only on n, m, k, and `.

The set hG0R
(m)(X) is a bounded region on which Proposition 19 may be applied. We can

express any h ∈ F as h = utk, where u ∈N ′, t ∈ T ′, and k ∈K. As t grows in T ′, the estimates on
the number of integral points in hG0R

(m)(X) obtained from Proposition 19 get worse and worse.
Indeed, when t gets high enough (in the cusp of T ′), the top left entry b11 of every element in
hG0R

(m)(X) will be less than 1 in absolute value, at which point the error term in Proposition 19
dominates the main term. As t gets bigger, other entries start becoming less than 1 in absolute
value and we get even worse estimates. To deal with this problem, we break V (R) up into two
pieces: the main body, which contains all elements B ∈ V (R) with |b11| > 1; and the cusp region,
which contains all elements B ∈ V (R) with |b11| < 1. As t gets bigger, more and more coefficients
of the integral elements of hG0R

(m)(X) will become 0. Using Proposition 7, we know that once
enough entries of B are 0, it will become distinguished and thus reducible. In Proposition 21
we compute the number of irreducible integral points in the cusp region, and in Proposition 23
we compute the number of reducible integral points in the main body. They are both negligible
when compared to the number of integral points in the main region, and as a result we will prove
the following theorem.

Theorem 20. We have for any m = 0, . . . , n+ 1,

N(V (Z)(m);X) =
1

#J (m)[2](R)
Vol(F ·R(m)(X)) + o(X(dimV )/d).

In § 4.4, we show that Vol(F · R(m)(X)) grows on the order of X(dimV )/d so the error term is
indeed smaller than the main term.

Let V (Z)(b11 = 0) denote the set of points B ∈ V (Z) such that b11 = 0. Then we have the
following proposition.

Proposition 21. With notation as above, we have N(V (Z)(b11 = 0);X) = Oε(X
(dimV−1)/d+ε).

Proof. It will be convenient to use the following parameters for T :

si = ti/ti+1 for i = 1, . . . , n;

sn+1 = tntn+1.

The condition for t ∈ T ′ translates to si > c for all i. We pick the following Haar measure dh on
G(R) = NTK:

dh = du

n−1∏
j=1

s
j(j−2n−1)
j · (snsn+1)−n(n+1)/2d×sj dk

= duδ(s)d×s dk, (20)

where du is a Haar measure on the unipotent group N , dk is the Haar measure on K normalized

so that K has volume 1, δ(s) denotes
∏n−1
j=1 s

j(j−2n−1)
j · (snsn+1)−n(n+1)/2, and d×s denotes∏n+1

j=1 d
×sj in which each d×sj = dsj/sj is the standard Haar measure on R×. The conjugation

action of T on N breaks up into a direct sum of characters of T . The Haar measure character
δ(s) is the product of the inverses of all the characters of T arising in this decomposition, in
order for the measure dh above to be left-invariant.
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Then, since G0 is K-invariant, (19) implies that

N(V (Z)(b11 = 0);X) = O

(∫
h∈F

#{hG0R
(m)(X) ∩ V (Z)(b11 = 0)} dh

)
= O

(∫
u∈N ′

∫
t∈T ′

#{utG0R
(m)(X) ∩ V (Z)(b11 = 0)} δ(s) d×s du

)
= O

(∫
t∈T ′

#{tG0R
(m)(X) ∩ V (Z)(b11 = 0)} δ(s) d×s

)
, (21)

where the final equality follows because N ′ has finite measure,

utG0R
(m)(X) = t(t−1ut)G0R

(m)(X),

and the coefficients of t−1ut are bounded independent of t ∈ T ′ and u ∈ N ′.
Let bij , with i 6 j and (i, j) 6= (n+1, n+2), be the system of coordinates on V (R), where bij

is the (i, j)th entry of the symmetric matrix B. To each coordinate bij we associate the weight
w(i, j), which records how an element s ∈ T scales bij . For example,

w(1, 1) = s−2
1 · · · s

−2
n−1s

−1
n s−1

n+1

w(i, 2n+ 3− i) = 1, i = 1, . . . , 2n+ 2, coordinates on the anti-diagonal

w(i, 2n+ 2− i) = s−1
i , i = 1, . . . , 2n+ 1, coordinates above the anti-diagonal

w(n+ 1, n+ 1) = sns
−1
n+1.

Let C be an absolute constant such that CX1/d bounds the absolute value of all the coordinates
of elements B ∈ G0R

(m)(X). If, for (s1, . . . , sn+1) ∈ T ′, we have CX1/dw(i0, 2n+ 2− i0) < 1 for
some i0 ∈ {1, . . . , n + 1}, then CX1/dw(i, j) < 1 for all i 6 i0, j 6 2n + 2 − i0. Hence the top
left i0 × (2n + 2 − i0) block of any integral B ∈ tG0R

(m)(X) is 0. Just as [BG13, Lemma 10.3]
shows, any such B has zero discriminant. Hence, to prove Proposition 21, we may assume

si 6 CX1/d, i = 1, . . . , n; sn+1 6 C2X2/d. (22)

We use TX to denote the set of t = (s1, . . . , sn+1) ∈ T ′ satisfying these bounds.
Let U denote the set of pairs of integers (i, j) with 1 6 i, j,6 2n+2 and i 6 j. For any subset

U1 of U , let V (R)(U1) denote the subset of V (R) consisting of elements B whose (i, j)th entry
is less than 1 in absolute value when (i, j) ∈ U1 and at least 1 in absolute value when (i, j) /∈ U1.
Let V (Z)(U1) denote the set of integral points in V (R)(U1). Then to prove Proposition 21, it
suffices to show that

N(V (Z)(U1);X) = Oε(X
(dimV−1)/d+ε), (23)

for every set U1 containing (1, 1).
Proposition 19, in conjunction with the argument used to justify (21), implies

N(V (Z)(U1);X) = O

(∫
t∈TX

Vol(tG0R
(m)(X) ∩ V (R)(U1)) δ(s) d×s

)
= O

(
X(dimV−#U1)/d

∫
t∈TX

∏
(i,j)6∈U1

w(i, j) δ(s) d×s

)
.

Hence, to prove (23), we need to bound

Ĩ(U1, X) := X(dimV−#U1)/d

∫
t∈TX

∏
(i,j)6∈U1

w(i, j) δ(s) d×s, (24)

for every set U1 containing (1, 1).
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Note that if i′ 6 i and j′ 6 j, then w(i′, j′) has smaller exponents in all the sk than w(i, j).
Thus, if a set U1 contains (i, j) but not (i′, j′), then

Ĩ(U1\{(i, j)} ∪ {(i′, j′)}, X) > Ĩ(U1, X).

Hence, for the purpose of obtaining an upper bound for Ĩ(U1, X), we may assume that if
(i, j) ∈ U1, then (i′, j′) ∈ U1 for all i′ 6 i and j′ 6 j. We say that such a set U1 is closed.
If a closed set U1 contains any element on, or to the right of, the off-anti-diagonal, then every
element in V (Z)(U1) has discriminant 0 and, by definition, N(V (Z)(U1);X) = 0. Let U0 denote
the set of coordinates (i, j) such that i 6 j and i+ j 6 2n+ 1. In other words, U0 contains every
coordinate to the left of the off-anti-diagonal. Since every element in V (Z)(U0) is distinguished
(by Proposition 7), hence reducible, it suffices to consider Ĩ(U1, X) for all U1 ( U0.

To this end, as the product of the weights over all coordinates is 1, we define

I(U1, X) = X−#U1/d

∫ CX1/d

s1,...,sn=c

∫ C2X2/d

sn+1=c

∏
(i,j)∈U1

w(i, j)−1
n−1∏
k=1

s
k(k−2n−1)
k · (snsn+1)−n(n+1)/2 d×s.

(25)
To complete the proof of Proposition 21, it suffices to prove the following lemma.

Lemma 22. Let U1 be non-empty proper closed subset of U0. Then

I(U1, X) = Oε(X
−1/d+ε).

If U1 = U0 or U1 = ∅, then I(U1, X) = O(1).

Proof. The proof of this lemma is a combinatorial argument using induction on n > 2. We first
compute

I(U0, X) = X−n(n+1)/d

∫ CX1/d

s1,...,sn=c

∫ C2X2/d

sn+1=c
s1s

3
2 · · · s2n−3

n−1 s
n−1
n snn+1 d

×s = O(1). (26)

This is expected since V (Z)(U0) contains all but negligibly few distinguished orbits (see
Proposition 23). It is also easy to see that I(∅, X) = O(1). Let U ′1 denote U0\U1, and define
I ′n(U ′1, X) to equal I(U1, X). Combining (25) with (26), we obtain

I ′n(U ′1, X) = I(U1, X)

= X(#U ′
1−n(n+1))/d

∫ CX1/d

s1,...,sn=c

∫ C2X2/d

sn+1=c

∏
(i,j)∈U ′

1

w(i, j) · s1s
3
2 · · · s2n−3

n−1 s
n−1
n snn+1 d

×s.

Even though we only need the result when n > 2, for the purpose of the induction it is also
necessary to work out the case n = 1. When n = 1, we have U0 = {(1, 1), (1, 2)} and

I1(∅, X) = O(1),

I1({(1, 1)}, X) = Oε(X
−1/d+ε),

I1(U0, X) = Oε(X
ε).

To establish the inductive step, we write U ′1 = U ′2 ∪ U ′3 where U ′2 is the set of coordinates
(1, j) in U ′1 and U ′3 = U ′1\U ′2. Since we have∫ CX1/d

c
sk d×s�c,C

∫ CX1/d

c
sk1 d×s

∫ CX1/d

c
sk2 d×s
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for every k1 + k2 = k, it follows that we may bound I ′n(U ′1, X) by the product

I ′n(U ′1, X)�c,C Jn(U ′2, X)Kn(U ′3, X),

where

Jn(U ′2, X) := X(#U ′
2−2n)/d

∫ CX1/d

s1=c

∫ CX1/d

s2,...,sn=c

∫ C2X2/d

sn+1=c

∏
(1,j)∈U ′

2

w(1, j) s1s
2
2 · · · s2

n−1snsn+1 d
×s,

Kn(U ′3, X) := X(#U ′
3−(n−1)n)/d

∫ CX1/d

s2,...,sn=c

∫ C2X2/d

sn+1=c

∏
(i,j)∈U ′

3

w(i, j) s2s
3
3 · · · s2n−5

n−1 s
n−2
n sn−1

n+1 d
×s.

Note that Kn(U ′3, X) = I ′n−1({(i, j) : (i+ 1, j + 1) ∈ U ′3}, X) (which we denote by I ′n−1(U ′3, X))
and we may estimate it using induction. Since U1 is closed and non-empty, the subset U ′2 is either
empty or of the form {(1, k), (1, k + 1), . . . , (1, 2n)} with k > 2. A direct calculation gives

Jn(U ′2, X) =


O(1) if U ′2 = ∅,

Oε(X
(−k+1)/d+ε) if 2 6 k 6 n+ 1,

Oε(X
(k−2n−1)/d+ε) if n+ 2 6 k 6 2n.

Hence we have
Jn(U ′2, X) = Oε(X

−1/d+ε), (27)

unless U ′2 = ∅, in which case it is O(1).
Hence, if U ′2 is not empty, then the lemma follows by induction on n (used to bound

I ′n−1(U ′3, X) by Oε(X
ε)). If U ′2 is empty, then U ′3 must be non-empty since U ′1 is non-empty.

If, further, U ′3 6= U0\{(1, 1), . . . , (1, 2n)}, then by induction we have I ′n−1(U ′3, X) = Oε(X
−1/d+ε).

The only remaining case is when U1 = {(1, 1), . . . , (1, 2n)}, for which a direct computation yields
the result. 2

This concludes the proof of Proposition 21. 2

We now have the following proposition, whose proof follows that of [Bha10, Lemma 14].

Proposition 23. Let V (Z)(∅)red denote the set of elements in V (Z) with b11 6= 0 that are not
irreducible, and let V (Z)bigstab denote the set of elements in V (Z) which have a non-trivial
stabilizer in G(Z). Then∫

G0

#{V (Z)(∅)red ∩ Fg ·R(m)(X)} dg = o(X(dimV )/d),

N(V (Z)bigstab;X) = o(X(dimV )/d).

Proof. Observe that if B ∈ V (Z) is reducible over Z, then the image of B in V (Fp) is reducible
for all p. For any prime p, let φp denote the p-adic density of the set of elements of V (Zp) that
are reducible mod p. Then, to prove Proposition 23, it suffices to show∏

p

φp = 0.

We show this by proving that φp is bounded above by some constant less than 1 when p is
large enough. For large enough p, there is a positive proportion rn (depending only on n)
of polynomials of degree 2n + 2 over Fp that factor into two linear terms and an irreducible
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polynomial of degree 2n. Suppose f(x) ∈ Zp[x] with this reduction type over Fp. Since it has a
linear factor, Proposition 5 implies that there is one distinguished orbit. Since H1(Fp, J) = 0 by
Lang’s theorem, every orbit is soluble. The number of orbits #J(Fp)/2J(Fp) is equal to the size
of the stabilizer #J [2](Fp). Since f(x) has a factor of degree 2, #J [2](Fp) > 2. Therefore at least
half of the elements in Vf (Fp) are not distinguished. Hence, for p large enough, φp 6 1− 1

2rn < 1.
We use the same technique to prove the second claim in Proposition 23. For p large enough,

there is a positive proportion r′n (depending only on n) of polynomials of degree 2n+ 2 over Fp
that factors into a linear term and an irreducible polynomial of degree 2n + 1. If B ∈ Vf (Zp)
where f(x) has this reduction type mod p, then p does not divide the discriminant of f(x). As
a consequence, the hyperelliptic curve y2 = f(x) is smooth over Spec(Zp) and the 2-torsion of
its Jacobian J [2] is a finite étale group scheme over Spec(Zp). From the reduction type of f(x)
over p, we see that #J [2](Qp) = #J [2](Fp) = 1. Denote by φp the p-adic density of the set of
elements of V (Zp) with non-trivial stabilizer in G(Qp). Then we have shown that φp 6 1−r′n < 1
for p sufficiently large. This completes the proof. 2

We may now prove the main result of this section, which we state again for the convenience
of the reader.

Theorem 24. We have, for any m = 0, . . . , n+ 1,

N(V (Z)(m);X) =
1

#J (m)[2](R)
Vol(F ·R(m)(X)) + o(X(dimV )/d).

Proof. Let F ′ ⊂ F be the set consisting of h ∈ F such that the b11-coefficient of any
B ∈ hG0R

(m)(X) is less than 1 in absolute value. From (19), we see that N(V (Z)(m);X) is
equal to

1

#J (m)[2](R) Vol(G0)

∫
h∈F

#{hG0R
(m)(X) ∩ V (Z)irr} dh

=
1

#J (m)[2](R) Vol(G0)

(∫
h∈F\F ′

#{hG0R
(m)(X) ∩ V (Z)irr} dh

+

∫
h∈F ′

#{hG0R
(m)(X) ∩ V (Z)irr} dh

)
.

From Propositions 21 and 23, we obtain

N(V (Z)(m);X) =
1

#J (m)[2](R) Vol(G0)

∫
h∈F\F ′

#{hG0R
(m)(X) ∩ V (Z)} dh+ o(X(dimV )/d).

(28)

Note that b11 has minimal weight among all the bij , that is, the powers of the sk in
w(1, 1)/w(i, j) are non-negative for each i, j, k. Furthermore, the length of the projection of
hG0R

(m)(X) onto the b11-line is greater than 1 for any h ∈ F\F ′ (by the definition of F ′). Hence,
for h ∈ F\F ′, the volumes of all smaller-dimensional projections of hG0R

(m)(X) are bounded by
a constant times the volume of its projection onto the b11 = 0 hyperplane. Proposition 19 then
implies that

N(V (Z)(m);X) =
1

#J (m)[2](R) Vol(G0)

∫
h∈F\F ′

Vol(hG0R
(m)(X))

+O

(
Vol(hG0R

(m)(X))

X1/dw(1, 1)

)
dh+ o(X(dimV )/d).
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Recall that F ′ is defined by the condition CX1/dw(1, 1) < 1. Hence, to be in F ′, one of the si
must be at least C1/2nX1/2nd, which implies that the volume of F ′ is bounded by o(1). Moreover,
since

∫
h∈F\F ′ 1/w(1, 1) dh = O(1), we obtain

N(V (Z)(m);X) =
1

#J (m)[2](R) Vol(G0)

∫
h∈F

Vol(hG0R
(m)(X)) dh+ o(X(dimV )/d)

=
1

#J (m)[2](R) Vol(G0)

∫
h∈G0

Vol(Fh ·R(m)(X)) dh+ o(X(dimV )/d)

=
Vol(F ·R(m)(X))

#J (m)[2](R) Vol(G0)

∫
h∈G0

dh+ o(X(dimV )/d)

=
Vol(F ·R(m)(X))

#J (m)[2](R)
+ o(X(dimV )/d), (29)

where the third equality follows because the volume of Fh · R(m)(X) is independent of h.
This concludes the proof of Theorem 24. 2

4.3 A squarefree sieve
For any subset U of S(Z), let N(U ;X) denote the number of elements in U having height
bounded by X. Let F = FΣ be a large family of monic even hyperelliptic curves defined by
congruence conditions. We assume without loss of generality that Σ∞ = S(R)(m) for some fixed
integer m ∈ {0, . . . , n+1}. We first determine asymptotics for N(Inv(F );X) as X goes to infinity.
To this end, we have the following uniformity estimate, proved in [BSW16].

Proposition 25. For each prime p, let Up denote the set of elements c ∈ S(Z) such that p2 |∆(c).
Then for any M > 0, we have∑

p>M

N(Up;X) = Oε(X
(dimV )/d/M1−ε) + o(X(dimV )/d),

where the implied constant is independent of X and M .

Then we have the following theorem which follows from Propositions 19 and 25 just as [BS15,
Theorem 2.21] followed from [BS15, Theorems 2.12 and 2.13].

Theorem 26. Let F = FΣ be a large family of monic even hyperelliptic curves defined by
congruence conditions such that Σ∞ = S(R)(m) for some m = 0, . . . , n+ 1. Then the number of
hyperelliptic curves in F having height bounded by X is

Vol(S(R)
(m)
H<X)

∏
p

Vol(Invp(F )) + o(X(dimV )/d).

The following weighted version of Theorem 20 follows immediately from the proof of
Theorem 20.

Theorem 27. Fix some m = 0, . . . , n + 1. Let p1, . . . , pk be distinct prime numbers. For
j = 1, . . . , k, let φpj : V (Z) → R be G(Z)-invariant functions on V (Z) such that φpj (B) depends

only on the congruence class of B modulo some power p
aj
j of pj . Let Nφ(V (m)(Z);X) denote the

number of irreducible G(Z)-orbits of V (m)(Z) having height bounded by X, where each orbit
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G(Z) ·B is counted with weight φ(B)/#StabG(Z)(B); here φ is defined by φ(B) :=
∏k
j=1 φpj (B).

Then we have

Nφ(V (m)(Z);X) = N(V (m)(Z);X)
k∏
j=1

∫
B∈V (Zpj )

φ̃pj (B) dB + o(X(dimV )/d), (30)

where φ̃pj is the natural extension of φpj to V (Zpj ) and dB denotes the additive measure on
V (Zpj ) normalized so that

∫
B∈V (Zpj ) dB = 1.

However, in order to prove Theorem 18, we shall need weights that are defined by certain
infinite sets of congruence conditions. To describe which weight functions on V (Z) are allowed,
we need the following definition.

Definition 28. A function φ : V (Z) → [0, 1] is said to be defined by congruence conditions if
there exist local functions φp : V (Zp) → [0, 1] satisfying the following conditions:

(i) for all B ∈ V (Z), the product
∏
p φp(B) converges to φ(B);

(ii) for each prime p, the function φp is locally constant outside some closed set Sp of measure 0.

Then we have the following theorem.

Theorem 29. Let φ : V (Z) → [0, 1] be a function defined by congruence conditions via local
functions φp : V (Zp) → [0, 1]. Then, with notation as in Theorem 27, we have

Nφ(V (m)(Z);X) 6 N(V (m);X)
∏
p

∫
B∈V (Zp)

φp(B) dB + o(X(dimV )/d).

Theorem 29 follows from Theorem 27. The proof is identical to the first half of the proof of
[BS15, Theorem 2.21].

4.4 Compatibility of measures and local computations
Let F = FΣ be a large family of monic even hyperelliptic curves defined by congruence conditions.
We assume without loss of generality that Σ∞ = S(R)(m) for some fixed integerm ∈ {0, . . . , n+1}.
To prove Theorem 18 we need to weight each locally soluble element B ∈ V (Z) (having invariant
π(B) in Inv(F )) by the reciprocal of the number of G(Z)-orbits in G(Q) ·B ∩V (Z). However, in
order for our weight function to be defined by congruence conditions, we use instead the following
weight function w : V (Z) → [0, 1]:

w(B) :=


(∑

B′

#StabG(Q)(B
′)

#StabG(Z)(B′)

)−1

if B is locally soluble and π(B) ∈ Inv(F ),

0 otherwise,

(31)

where the sum is over a complete set of representatives for the action of G(Z) on G(Q) ·B∩V (Z).
We start with the following proposition proving that the class (∞′) − (∞) is not divisible

by 2 in the Jacobians of most hyperelliptic curves in our family.

Proposition 30. Let F be a large family of hyperelliptic curves. Then for 100% of elements
C ∈ F , the class (∞′)− (∞) is not divisible by 2 in J(Q).
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Proof. By the proof of Theorem 10 and Proposition 5, for a monic even hyperelliptic curve C
over Q defined by y2 = f(x), the element (∞′)− (∞) is divisible by 2 in J(Q) if and only if the
étale algebra L = Q[x]/(f(x)) contains a quadratic extension of Q. Proposition 30 then follows
since for 100% of monic integral polynomials of degree 2n+2, when ordered by height, the Galois
group of the normal closure of Q[x]/(f(x)) is Sn. 2

We now have the following theorem.

Theorem 31. Let F = FΣ be a large family of monic even hyperelliptic curves defined by
congruence conditions with Σ∞ = S(R)(m) for some fixed integer m ∈ {0, . . . , n+ 1}. L Then∑

C∈F
H(C)6X

(#Sel2(J(C))− 2) = Nw(V (Z)(m);X) + o(X(dimV )/d), (32)

where V (Z)(m) is the set of all elements in V (Z) whose invariants belong to Σ∞ = S(R)(m).

Proof. It follows from Proposition 30 that for 100% of hyperelliptic curves C(c) ∈ F , the set
Vfc(Q) has two distinguished orbits. Hence, Theorem 11 and Corollary 13 show that, up to an
error of o(X(dimV )/d), the left-hand side of (32) is equal to the number of G(Q)-equivalence
classes of elements in V (Z) that are locally soluble, have invariants in Inv(F ), and have height
bounded by X.

Given a locally soluble element B ∈ V (Z) such that π(B) ∈ F , let B1 . . . Bk denote a complete
set of representatives for the action of G(Z) on the G(Q)-equivalence class of B in V (Z). Then

k∑
i=1

w(Bi)

#StabG(Z)(Bi)
=

1

#StabG(Q)(B)

( k∑
i=1

1

#StabG(Z)(Bi)

)−1 k∑
i=1

1

#StabG(Z)(Bi)

=
1

#StabG(Q)(B)
. (33)

Hence the right-hand side of (32) counts the number of G(Q)-equivalence classes of elements in
V (Z) that are locally soluble, have invariants in F , and have height bounded by X, such that
the G(Q)-orbit of B is weighted with 1/#StabG(Q)(B) for all orbits. The theorem now follows
since StabG(Q)(B) = 1 for all but negligibly fewB ∈ V (Z) by Proposition 23. 2

In order to demonstrate that w is defined by congruence conditions, we need to express it as
a local product of weight functions on V (Zp). To this end, we define wp : V (Zp) → [0, 1]:

wp(B) :=


(∑

B′

#StabG(Qp)(B
′)

#StabG(Zp)(B′)

)−1

if B is Qp-soluble and π(B) ∈ Invp(F ),

0 otherwise,

(34)

where the sum is over a set of representatives for the action of G(Zp) on the G(Qp)-equivalence
class of B in V (Z). We have the following result whose proof is identical to that of [BS15,
Proposition 3.6], using the fact that G has class number 1 over Q.

Proposition 32. If B ∈ V (Z) has non-zero discriminant, then w(B) =
∏
pwp(B).
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From Theorems 20 and 29, we have the equality

Nw(V (Z)(m);X) =
1

#J (m)[2](R)
Vol(F ·R(m)(X))

∏
p

∫
V (Zp)

wp(B) dB + o(X(dimV )/d). (35)

For the rest of the section, our aim is to express Vol(F ·R(m)(X)) and
∫
V (Zp)wp(B) dB in more

convenient forms. To this end, we introduce the following notation. Recall that dB is Haar
measure on V normalized so that V (Zp) has volume 1 for each prime p, and such that V (Z) has
covolume 1 in V (R). Let dµ(c) denote similarly normalized Euclidean measure on S. Finally, let
ω be a differential which generates the rank-1 module of top-degree differentials of G over Z. We
denote the measure associated with ω by dτ(g). We now have the following result that allows us
to compute volumes of multisets in V (K), for K = R and Zp. This result follows from [BS15,
Propositions 3.11 and 3.12].

Proposition 33. Let K be R or Zp for some prime p, let |·| denote the usual valuation on K, and
let s : S(K) → V (K) be a continuous section. Then there exists a rational non-zero constant J ,
independent of K and s, such that for any measurable function φ on V (K), we have∫

G(K)·s(S(K))
φ(B) dB = |J |

∫
c∈S(K)

∫
g∈G(K)

φ(g · s(c)) dτ(g) dµ(c), (36)

∫
V (K)

φ(B) dB

= |J |
∫
c∈S(K)
∆(c)6=0

( ∑
B∈(Vfc (K)/G(K))

1

#StabG(K)(B)

∫
g∈G(K)

φ(g ·B) dτ(g)

)
dµ(c), (37)

where we regard G(K) · s(R) as a multiset, and Vfc(K)/G(K) denotes a set of representatives
for the action of G(K) on Vfc(K).

We use Proposition 33 to compute Vol(F · R(m)(X)). If c ∈ R(m) and J denotes the
Jacobian of the corresponding hyperelliptic curve, then the number of R-soluble G(R)-orbits
of Vfc(R) is #(J(R)/2J(R)). This number is independent of c ∈ V (R)(m), and we denote it by
#(J (m)(R)/2J (m)(R)). Hence, by (36), we have

1

#J (m)[2](R)
Vol(F ·R(m)(X)) = |J |#(J (m)(R)/2J (m)(R))

#J (m)[2](R)
Vol(F) Vol(S(R)(m))

= |J |a∞Vol(F) Vol(S(R)(m)), (38)

where

a∞ =
#(J (m)(R)/2J (m)(R))

#J (m)[2](R)
= 2−n,

by [Sto01, Lemma 5.14].
Next we compute

∫
V (Zp)wp(B) dB. Note that since wp is G(Zp)-invariant, we have∫

V (Zp)
wp(B) dB = |J |p Vol(G(Zp))

∫
c∈Invp(F )

( ∑
B∈(Vc(Zp)/G(Zp))

wp(B)

#StabG(Zp)(B)

)
dµ(c)

= |J |p ap Vol(G(Zp)) Vol(Invp(F )). (39)
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The final equality follows from a computation similar to (33); namely, if J is the Jacobian of the

monic even hyperelliptic curve c and Bc is any element in Vfc(Qp), we have by Proposition 12,

∑
B∈(Vfc (Zp)/G(Zp))

wp(B)

#StabG(Zp)(B)
=

#(G(Qp)\V sol
fc

(Qp))

#StabG(Qp)(Bc)
=

#(J(Qp)/2J(Qp))

#J [2](Qp)
=: ap.

Note that ap = 1 if p 6= 2 and a2 = 2n, by [Sto01, Lemma 5.7].
Combining Theorem 31 with (35), (38), and (39), we obtain∑
C∈F

H(C)6X

(#Sel2(J(C))− 2)

= |J | a∞Vol(F) Vol(S(R)(m))
∏
p

|J |p ap Vol(G(Zp)) Vol(Invp(F )) + o(X(dimV )/(degH))

= Vol(F) Vol(S(R)(m))
∏
p

Vol(G(Zp)) Vol(Invp(F )) + o(X(dimV )/(degH)), (40)

since a∞
∏
p ap = 1 and |J |

∏
p |J |p = 1.

Theorem 26, Proposition 30 and (40) imply that

lim
X→∞

∑
C∈F

H(C)<X
(#Sel2(J(C))− 2)∑

C∈F
H(C)<X

1
=

Vol(F) Vol(S(R)(m))
∏
p(Vol(G(Zp)) Vol(Invp(F )))

Vol(S(R)(m))
∏
p Vol(Invp(F ))

= τG, (41)

the Tamagawa number of G. Since the Tamagawa number of PSO is 4 [Lan66], Theorem 18

follows.

Finally, as a by-product of our proof of Theorem 18, we have the following analogue of [BG13,

Theorem 12.4]; the proof is identical.

Theorem 34. Fix a place ν of Q. Let F be a large family of hyperelliptic curves C over Q with

a marked non-Weierstrass point such that:

(a) the cardinality of J(C)(Qν)/2J(C)(Qν) is a constant k for all C ∈ F ; and

(b) the set Uν(F ) ⊂ V (Zν), defined to be the set of soluble elements in V (Zν) having invariants

in Invν(F ), can be partitioned into k open sets Ωi such that:

(i) for all i, if two elements in Ωi have the same invariants, then they are G(Qν)-equivalent;

and

(ii) for all i 6= j, we have G(Qν)Ωi ∩G(Qν)Ωj = ∅.

(In particular, the groups J(C)(Qν)/2J(C)(Qν) are naturally identified for all C ∈ F .) Then

when elements C ∈ F are ordered by height, the images of the non-distinguished elements

(i.e., elements that do not correspond to either the identity or the class of (∞′)−(∞) in J(C)(Q))

under the map

Sel2(J(C)) → J(C)(Qν)/2J(C)(Qν)

are equidistributed.
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5. An application of Chabauty’s method

In this section, we apply Chabauty’s method as refined by Poonen and Stoll [PS14]. Let C be a
monic even hyperelliptic curve over Q with Jacobian J and two rational points, denoted by ∞
and∞′, at infinity. We embed C(Q) and C(Q2) into J(Q) and J(Q2) via the map P 7→ (P )−(∞).
Normalize the log map from J(Q2) to Zn2 to be surjective as in [PS14]. Let v0 ∈ Zn2 denote the
primitive part of log((∞)− (∞′)) and let v0 denote the reduction modulo 2 of v0 in Fn2 . For any
v ∈ Zn2/(Z2 · v0) ' Zn−1

2 , ρ(v) is defined by taking the reduction modulo 2 of the primitive part
of v and then taking its image under P, which takes a non-zero element in Fn−1

2 and sends it to
its projectivization in Pn−2(F2). Note that the maps ρ and P are only partially defined, since P
is undefined on 0. Consider now the following diagram, which is commutative on elements where
all the maps are defined:

C(Q) �
�

//
� _

��

C(Q2)� _

��

J(Q) �
�

//

����

J(Q) �
�

//

����

J(Q2)
log

// //

����

ρ log

��

Zg2 // //

����

Zn2/(Z2 ·v0)

����

ρ

$$J(Q)

2J(Q)
// //

� p

  

J(Q)

2J(Q)
//
J(Q2)

2J(Q2)

log⊗F2
// // Fn2 // // Fn2/(F2.v0)

P // Pn−2(F2)

Sel2(J) //

;;

σ

88

Sel2(J)

〈(∞′)− (∞)〉

σ′

99

Pσ′

CC

A similar diagram is used in [PS14] to study rational points on hyperelliptic curves with a rational
Weierstrass point. One major difference in our case is the extra generator (∞)′ − (∞) of J(Q).
Its class in Sel2(J) does not equidistribute in J(Q2)/2J(Q2).

As in [PS14, Proposition 8.4], 100% of monic even hyperelliptic curves over Q have trivial
torsion in their Jacobians. Hence in what follows, we consider only monic even hyperelliptic
curves C such that J(Q)tors = {0}.

5.1 The image of C(Q2) in Pn−2(F2) is locally constant and small on average
Break up the set of monic even hyperelliptic curves over Q of genus n with trivial torsion in their
Jacobians into large families such that over each such large family F , the log map is normalized
so that the image of (∞′) − (∞) in Zn2 is locally constant and, as C varies in F , the image of
C(Q2) in Pn−2(F2) is constant. The analogous statement for odd hyperelliptic curves is proved
in [PS14, §§ 8.1 and 8.2]. The same proofs carry through verbatim for monic even hyperelliptic
curves.

Write ρ log(C(Q2)) for the image of C(Q2) in Pn−2(F2) (ignoring the points where ρ is
not defined). For any prime p, associated to any (2n + 1)-tuple (c2, . . . , c2n+2) ∈ Z2n+1

p with
∆(x2n+2 + c2x

2n + · · · + c2n+2) 6= 0 is a monic even hyperelliptic curve over Qp defined by
y2 = x2n+2 +c2x

2n+ · · ·+c2n+2. We write Z2n+1
p \{∆ = 0} for this set of monic even hyperelliptic

curves over Qp of genus n. Then we have the following proposition.

Proposition 35. Let C range over monic even hyperelliptic curves corresponding to elements
in Z2n+1

2 \{∆ = 0} such that (∞)− (∞′) /∈ J(Q2)tors. Then the average size of ρ log(C(Q2)) is at
most 6n+ 9.

216

https://doi.org/10.1112/S0010437X17007515 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007515


Rational points on hyperelliptic curves

Proof. This result follows immediately from the proofs of [PS14, Proposition 5.4, Theorem 9.1]
by breaking up C(Q2) into residue disks in accordance with Csmooth(F2) where C denotes the
minimal proper regular model of C and then counting the number of images coming from each
residue disk. Denote by ρ′ the scale and reduce map from Zn2 to Pn−1(F2). Then we see that the
average size of ρ′ log(C(Q2)) is at most 6n+ 14 using the upper bound of 4 for the average size
of Csmooth(F2). Note that the definition of ρ log involves quotienting out by the Z2-line spanned
by v0. Hence the residue disk at ∞ and the residue disk at ∞′ give the same image under ρ log.
Thus, following the proof of [PS14, Proposition 5.4], we obtain a bound of 6n+ 9 for the average
size of ρ log(C(Q2)). 2

5.2 The image of J(Q) in Pn−2(F2) is contained in the image of Sel2(J)/〈(∞′)−(∞)〉
Lemma 36. Suppose C is a monic even-degree hyperelliptic curve over Q with J(Q)tors = {0}.
Write d0 = (∞′)− (∞). Suppose the map σ′ is injective. Then ρ log(J(Q)) ⊂ Pσ′(Sel2(J)/〈d0〉)
where J(Q) denotes the p-adic closure of J(Q) in J(Qp). Furthermore, if g ∈ J(Q) has no image
under ρ log, then there exist integers m and k such that mg = kd0.

Proof. Since ρ log is continuous and Pn−2(F2) is discrete, ρ log(J(Q)) = ρ log(J(Q)). Since
J(Q)tors = 0, we have J(Q)/Zd0 ' F ⊕ Zr′ , where r′ is the rank of J(Q)/Zd0 and F is a
finite abelian group such that any lift g to J(Q) of an element in F satisfies mg = kd0 for some
integers m and k. This implies that such a g has no image under the partially defined map ρ′ log.

Let h ∈ J(Q) be an element that does have an image under ρ log. Write the image of h in
F ⊕ Zr′ as (t, h′) with t ∈ F and h′ ∈ Zr′ . Let h0 denote the primitive part of h′. Then, viewing
h0 as an element of J(Q), we have ρ log(h) = ρ log(h0). Since σ′ is injective, the element h0 has
non-zero image under σ′. Therefore, we obtain ρ log(h) = Pσ′(h0 + 〈d0〉), which proves the first
assertion of the lemma.

For the second statement, let h ∈ J(Q) be an element that does not have an image under
ρ log. Let the image of h in F ⊕ Zr′ be (t, h′), where t ∈ F and h′ ∈ Zr′ . If h′ = 0, then we are
done. Suppose for a contradiction that h′ is non-zero. Let h0 denote the primitive part of h′.
Since h has no image under ρ log, neither does h0, and we have log(h0) ∈ Z2 · v0. This implies
that the class of h0 in Sel2(J)/〈d0〉 maps to 0 under σ′, contradicting the injectivity of σ′. 2

5.3 The equidistributed sets Pσ′(Sel2(J)/〈(∞′)− (∞)〉) rarely intersect the small
sets ρ log(C(Q2))

Let F be a large family of monic even hyperelliptic curves over Q satisfying the hypothesis of
Theorem 34 such that the image of ρ log(C(Q2)) in Pn−2(F2) is constant for C ∈ F . (We assume
also that the log maps are normalized such that the image of d0 = (∞′) − (∞) is constant
throughout this family.) Denote this image by I.

On average over the curves in F , there are at most four non-distinguished elements in Sel2(J)
by Theorem 18, and the images of these elements under σ equidistribute in Fn2 by Theorem 34.
By Proposition 30, the class d0 is not a multiple of 2 in the Jacobian for 100% of the curves
in F . Hence, on average over F , there are at most two non-identity elements in Sel2(J)/〈d0〉 and
their images under σ′ equidistribute in Fn2/(F2 · v0). Hence a proportion of at least 1− (#I)22−n

curves C in F satisfy

ρ log(C(Q2)) ∩ Pσ′(Sel2(J)/〈d0〉) = ∅.

Furthermore, a proportion of at most 22−n curves in F fail to satisfy the conditions of Lemma 36
(corresponding to those curves C such that a non-identity element of Sel2(J)/〈d0〉 maps to 0
under σ′). A point P ∈ C(Q)\{∞,∞′} is said to be bad if there exist integers m and k, not
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both zero, such that

m((P )− (∞)) = k((∞′)− (∞)). (42)

Hence aside from a set of density at most (1 + #I)22−n, all curves C ∈ F are such that every

point P ∈ C(Q)\{∞,∞′} is bad.

We summarize the above discussion in the following theorem.

Theorem 37. Suppose C is a monic even hyperelliptic curve of genus n over Q satisfying the

following three conditions:

(i) J(Q)tors = {0};
(ii) kerσ′ = {0};
(iii) ρ log(C(Q2)) ∩ Pσ′(Sel2(J)/〈d0〉) = ∅.

Then every point P ∈ C(Q)\{∞,∞′} is bad, that is, there exist integers m and k, not both 0,

such that

m((P )− (∞)) = k((∞′)− (∞)).

Moreover, the proportion of monic even hyperelliptic curves of genus n over Q satisfying the

above three conditions is at least 1− (24n+ 40)2−n.

6. Most monic even hyperelliptic curves have only two rational points

We say that a monic even hyperelliptic curve C over Q is good if C(Q) has no bad points.

Then, to prove Theorem 1, it remains to prove the following result.

Theorem 38. All but 0% of monic even hyperelliptic curves over Q having fixed genus n > 4

are good.

We work p-adically for some fixed prime p not dividing 2n + 2. Suppose C is a monic

even-degree hyperelliptic curve with coefficients in Zp. Let ` : C(Qp) → Znp denote the map

sending P ∈ C(Qp) to log((P ) − (P τ )) where τ denotes the hyperelliptic involution and log is

computed with respect to the differentials

{dx/y, x dx/y, . . . , xn−1 dx/y}.

We say that a point P ∈ C(Qp)\{∞,∞′} is bad if the Zp-lines spanned by `(P ) and `(∞) have

non-zero intersections. Note that if P ∈ C(Q) is bad, that is, satisfies (42), then P considered as

a point in C(Qp) is bad since we have

m((P )− (P τ )) = (m− 2k)((∞)− (∞′)).

We thank Jacob Tsimerman for several conversations which led to the proof of the following

theorem, from which Theorem 38 will be shown to follow.

Theorem 39. Suppose n > 4. The set U of elements in Z2n+1
p \{∆ = 0} corresponding to monic

even hyperelliptic curves C of genus n such that C(Qp)\{∞,∞′} contains no bad points is dense.

Furthermore, the p-adic closure of its complement has measure 0.
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Proof. Let C be a monic even hyperelliptic curve over Qp corresponding to an element
v ∈ Z2n+1

p \{∆ = 0}. Let P ∈ C(Qp) be a non-Weierstrass point such that P /∈ {∞,∞′}. Given
such a point, we obtain elements v′ ∈ Z2n+1

p such that the curves C ′ corresponding to v′ are
isomorphic to C but the point ∞ ∈ C ′(Qp) is P . Clearly it is possible to construct a sequence
of points Pi tending to ∞ ∈ C(Qp) along with a corresponding sequence vi ∈ Z2n+1

p such that vi
tends to v. We say that a pair of points (P,Q) ∈ C(Qp) × C(Qp) is a bad pair if P /∈ {Q,Qτ},
and the Zp-lines spanned by `(P ) and `(Q) have a non-zero intersection. Note that even though
the definition of ` depends on a choice of the marked point ∞ through the chosen basis of the
differentials, the property of being a bad pair is independent of the choice of∞. We will show in
Lemma 40 below that the number of bad pairs (P,Q) ∈ C(Qp) × C(Qp) is finite for any monic
even-degree hyperelliptic curve over Qp. From this it follows that, given (C,∞) corresponding
to v ∈ Z2n+1

p \{∆ = 0}, there exist points P arbitrarily close to ∞ such that P is not part of any
bad pair. It then follows that there exist points v′ ∈ Z2n+1

p \{∆ = 0} (corresponding to (C,P )),
arbitrarily close to v, that correspond to hyperelliptic curves containing no bad points. Hence U
is dense.

Let V denote the complement of U in M = Z2n+1
p \{∆ = 0}. We claim that V is a p-adic

subanalytic subset of M . The theory of subanalytic sets is studied in great detail in [DD88].
We do not repeat the definition of subanalytic sets and instead remark that subanalytic sets are
stable under projections onto coordinate hyperplanes and that sets defined by the vanishing and
non-vanishing of analytic functions are subanalytic. Moreover, being subanalytic is a (p-adic)
local property. The dimension of a subanalytic set is defined to be the maximal dimension of a
p-adic manifold contained in it [DD88, 3.15]. This notion of dimension behaves as expected: a
zero-dimensional subanalytic set is finite; the dimension of the boundary Ā\A of a subanalytic
set A is less than the dimension of A [DD88, 3.26].

We now show that V is a p-adic subanalytic subset of M . It suffices to check this locally.
Restrict to an open subset W of Z2n+1

p \{∆ = 0} such that Csmooth(Fp) is constant for curves C
corresponding to elements in W where C denotes the minimal proper regular model of C. Then
the moduli space of pairs (C,P ), where C is a curve corresponding to an element in W and P is
a point in C(Qp), is isomorphic to W × Csmooth(Fp)× Zp. The set of pairs (C,P ) corresponding
to elements in this moduli space such that P is a bad point of C(Qp) is a subanalytic set
of W × Csmooth(Fp) × Zp defined by `(P ) 6= 0, `(∞) 6= 0, and λ1`(P ) = λ2`(∞) for some λ1,
λ2 ∈ Zp − {0} (a condition easily handled by projections). Since subanalytic sets are preserved
by projections, this implies that V ∩W is subanalytic in W , as desired. We have already proven
that V does not contain any p-adic open ball of dimension 2n+ 1 since its complement is dense.
Hence its dimension as a subanalytic set [DD88, 3.15] is less than dim(Z2n+1

p \{∆ = 0}) = 2n+1.
Moreover, the dimension of V̄ \V is less than the dimension of V [DD88, 3.26], where V̄ denotes
the p-adic closure of V . Therefore, the p-adic closure of V has measure 0 as desired. 2

We now prove the following result which was assumed in the proof of Theorem 39.

Lemma 40. Let C be a monic even-degree hyperelliptic curve with coefficients in Zp, having
genus n > 4. Then the set of bad pairs (P,Q) ∈ C(Qp)× C(Qp) is finite.

Proof. Let Σ denote the subset of C(Qp) × C(Qp) consisting of bad pairs (P,Q). Then Σ is
subanalytic as it is defined by x(P ) 6= x(Q), `(P ) 6= 0, `(Q) 6= 0, and λ1`(P ) = λ2`(Q) for some
λ1, λ2 ∈ Zp − {0}. We will show that the dimension of Σ as a subanalytic set is zero, which
implies that Σ is finite by [DD88, 3.26].
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Let P ∈ C(Qp) be any point. The main difficulty in proving Lemma 40 is that it is difficult to
explicitly compute the function `. However, for any P ′ in a small enough residue disk around P ,
`(P ′) is the sum of `(P ) and a p-adic integral (multiplied by 2). Hence we can compute the
derivative of ` with respect to x and obtain

`′(P ′) =

(
2

y(P ′)
,
2x(P ′)

y(P ′)
, . . . ,

2x(P ′)n−1

y(P ′)

)
if P ′ 6∈ {∞,∞′}. (43)

One key fact to note is that two vectors `′(P ′) and `′(Q′) are Qp-parallel if and only if
x(P ′) = x(Q′). This observation is crucial in what follows.

Lemma 41. For a fixed point P ∈ C(Qp), the set of points Q ∈ C(Qp) such that (P,Q) is a bad
pair is finite.

Proof. Indeed, the intersection of Qp · `(P ) and `(C(Zp)) is a subanalytic set of dimension
at most 1. Hence it either is finite or contains an open ball B. If it is finite, then we are
done. Otherwise, the derivatives `′(Q) are all parallel (to `(P )) for every Q ∈ B, which is a
contradiction. 2

We return to the proof of Lemma 40. Suppose for a contradiction that dim(Σ) > 1. Then it
contains a subset Σ1 diffeomorphic to Zp. By shrinking Σ1 if necessary, we may assume that Σ1

is diffeomorphic to its images under the two coordinate projections by Lemma 41. That is, there
exist an open subset W of C(Qp) and an analytic map s : W → C(Qp) such that (R, s(R)) ∈ Σ
for any R ∈W . Let α : W → Q×p denote the analytic function such that

`(s(R)) = α(R)`(R), (44)

for any R ∈ W . The vanishing set of the derivative s′ of s is analytic and hence either is finite
or contains an open ball. In the latter case, s is constant on this open ball, which contradicts
Lemma 41. By replacing W by an open ball inside it, we may assume that s′(R) 6= 0 for any
R ∈W . Differentiating (44) gives

`′(s(R)) = α1(R)`(R) + α2(R)`′(R), (45)

with α1 = α′/s′ and α2 = α/s′. Differentiating (45) again shows that the vectors `′′(s(R)), `′′(R),
`′(R), `(R) are linearly dependent over Qp for any R ∈ W . By the definition of bad pairs, we
see that x(R) 6= x(s(R)) for any R ∈W . Hence, for such R, the lines `′(s(R)) and `′(R) are not
parallel, which implies that `(R) can be written as a linear combination of `′(s(R)) and `′(R) by
(45). It follows that the vectors `′′(s(R)), `′(s(R)), `′′(R), `′(R) are linearly dependent over Qp for
every R ∈ W . An elementary determinant computation (using the first four coordinates, which
requires n > 4) shows that if R, T ∈ C(Qp)\{∞,∞′}, then the vectors `′′(T ), `′(T ), `′′(R), `′(R)
are linearly dependent if and only if x(R) = x(T ). This never happens if R ∈W and T = s(R).
We have obtained the desired contradiction, thus completing the proof of Lemma 40. 2

Proof of Theorem 38. Let Ω denote the set of elements in Z2n+1
p \{∆ = 0} corresponding to

monic even hyperelliptic curves C such that C(Qp)\{∞,∞′} contains bad points. Let Ω denote
the closure of Ω, which by Theorem 39 has measure 0 in Z2n+1

p . Therefore, for every ε > 0 there
exists a subset U(ε) of Z2n+1

p \{∆ = 0} such that U(ε) is defined by congruence conditions modulo
some fixed power of p, the measure of U(ε) is at least 1 − ε, and every curve corresponding to
a point in U(ε) has no bad points over Qp apart from ∞ and ∞′. Therefore the proportion of
hyperelliptic curves C over Q that are good is at least 1 − ε. Letting ε tend to 0, we obtain
Theorem 38. 2

Theorem 1 follows from Theorems 37 and 38.
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