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PERFECT CODES ON THE TOWERS OF HANOI GRAPH

CHI-KWONG LI AND INGRID NELSON

We characterise all the perfect fc-error correcting codes that can be defined on the
graph associated with the Towers of Hanoi puzzle. In particular, a short proof for the
existence of 1-error correcting code on such a graph is given.

1. INTRODUCTION

In the study of recurrence relations, one common example is the following combina-
torial game known as the Towers of Hanoi puzzle.

Initially, there are 3 pegs and n circular disks of increasing size on one peg with the
largest disk on the bottom. These disks are to be transferred one at a time onto another
of the pegs with the provision that one is never allowed to place a larger disk on top of a
smaller one. The problem is to determine the number of moves necessary for the transfer.

For convenience, we call the three pegs Po,Pi, and P2, and label the disk as
£>i,..., Dn, where Di has the smallest radius. Define a legal configuration of the disks on
the three pegs to be an arrangement of the disks on the pegs so that no larger disk is on
the top of a smaller one. Then one easily checks that there is a one-one correspondence
between all legal configurations with the space ZJ of ternary sequences of length n, such
that a given x = x\ • • • xn S ZJ corresponds to the configuration with Di lying on Pj if
Xi = j . For example, 101 corresponds to the configuration that Dx and D3 lie on Pi, and
D2 lies on Po (see Figure 1).

3 D 3

% Pl P2

Figure 1

We shall call the legal configuration corresponding to x € Z" the x-configuration.
The sequences with all entries equal to the same i € {0,1,2} are called the perfect states

corresponding to the configurations with all disks lying on the same peg.

One can construct a graph with all Z£ as the vertex set, where two vertices x and
y are connected by an edge if there is a legal move in the Towers of Hanoi puzzle that
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transforms the x-configuration to the y-configuration. This graph is called the Towers of
Hanoi graph, denoted by Hn, and first appeared in [6]. We depict Hi and H2 in Figure 2.

The Towers of Hanoi puzzle, its graph, and their generalisations have generated much
interesting research (for example, see [5]). In fact, the graph Hn can be constructed from
Hn_i by the following algorithm:

Step 1. Let Hn-i be the mirror image of /Jn_i about a vertical line passing through

the top perfect state.

Step 2. Construct H^Li by appending i to the end of each vertex of Hn-i to form
a sequence of length n for i — 0,1,2.

Step 3. Put #„_! in the top, rotate #„_! by 120 degrees clockwise and put it in
the left bottom corner, rotate #„_! by 120 degrees counterclockwise and
put it in the right bottom corner.

Step 4. Connect the vertex 0 • • • 01 in H^li with the vertex 0 • • • 02 in H^}u connect
the vertex 1 • • • 10 in H^2X with the vertex 1 • • • 12 in H^ly, connect the
vertex 2 • • • 20 in H^\ with the vertex 2 • • • 21 in H£}V

One easily sees that this algorithm will generate all x £ ZJ as vertices, and all the legal
moves in the Towers of Hanoi puzzle as edges. We give the graphical representation of
the situation in Figure 3.

H(0)

A
H ( l ) TT(2)
"n-1 n n - l

Figure 3

Define the distance d(x, y) between two vertices x and y to be the length of the short-
est path joining the two vertices. Clearly, d(x, y) corresponds to the minimum number
of legal moves needed in the Towers of Hanoi puzzle to transform the x-configuration to
the y-configuration. For example (for example, see [2]), the distance between 2 perfect
states in Hn equals 2n — 1, which is the maximum distance between any two vertices in
Hn. The distance function d defines a metric on ZjJ, and for any nonnegative integer k,
one may define the radius-k ball centred at x € ZJ to be the set

In the study of coding theory (see [4] for general background), one would like to
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partition Z" as a disjoint union of 5 ( x x , k),..., B(XM, k) for a suitable choice of Cn(k) -
{ x i , . . . , x M } C Z". If such a partition exists, the set Cn(A;) will be called a perfect k-error
correcting ternary code on Hn.

The purpose of this note is to determine those (n, k) pairs for which a perfect fc-error
correcting code exists on Hn, and characterise Cn(k) if it exists. In particular, we shall
give a short proof for the existence of a perfect 1-error correcting code on Hn (see [2] for
the original proof).

It is worthwhile to point out that the existence of the A;-error correcting codes on
ZJ depends heavily on the structure of the radius fc-balls. If a different metric is used,
then the structure of the radius /c-balls will be completely changed, and hence the corre-
sponding coding theory problem will change accordingly. For instance, if the widely used
Hamming metric d(x, y) = the number of no zero entries in the vector (x - y) , then a
perfect 1-error ternary correcting code rarely exists (see [4]).

Note also that other coding theory problems have been studied using the Towers of
Hanoi graph [3].

2. RESULTS AND P R O O F S

We begin with a short proof of the fact that perfect 1-error correcting codes always
exists on Hn. See [2] for the original proof.

THEOREM 2 . 1 . Let n be a positive integer. Then the collection C n ( l ) of ternary
sequences of length n with an even number of terms equal to 1 and an even number of
terms equal to 2 is a perfect 1-error correcting code on Hn. Moreover, we have

( 3 n + 3 ) / 4 if n is even,

(3n + l ) / 4 if n is odd.

P R O O F : We need to show that every y € Z£ lies in one and only one S (x , 1) with
x € C n ( l ) . Denote by n* the number of terms in y that equal i for i = 0,1,2.

First, suppose y e C n ( l ) , that is, ni and n2 are even. Then y € B(y, 1), and it is
clear that y cannot be transformed to another x € C n ( l ) by just one legal move. Hence,
y lies in B(y, 1) but not in B(x, 1) for any other x e C n ( l ) . Next, suppose y ^ C n ( l ) .
Then either

(i) both ni and ri2 are odd, or

(ii) exactly one of n\ or n^ is odd.

If (i) holds, then one can consider the y-configuration and transfer the smallest disk on
Pi and P2 from one peg to the other peg. Clearly, the resulting configuration corresponds
to a ternary sequence x € C n ( l ) , and the proposed move is the only single legal move
on the y-configuration that will lead to a configuration corresponding to a sequence in
C n ( l ) . Thus y € B(x, 1), but is not in any other unit ball B(z, 1) with z € C n ( l ) .
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Suppose (ii) holds, and suppose n̂  is odd with i € {1,2}. Then one can consider the
y-configuration and transfer the smallest disk on Po and Pt from one peg to the other
peg. Clearly, the resulting configuration corresponds to a ternary sequence x € Cn( l ) ,
and the proposed move is the only single legal move on the y-configuration that will lead
to a configuration corresponding to a ternary sequence in Cn( l ) . Thus y € B(x, 1), but
is not in any other unit ball B(z, 1) with z € C n ( l ) .

Note that if x G Z£ is a perfect state, then applying one legal move to the x-
configuration may lead to two possible outcomes depending on where the smallest disk
is transferred. Thus B(x, 1) has three elements. If x e Z£ is not a perfect state, then
there are 3 possible outcomes with a legal move, namely, one may transfer the smallest
disk to one of the two other pegs, or one may transfer a disk between the two pegs not
containing the smallest disk. In such case, B(x, 1) has four elements. Now, the collection
of B(x, 1) with x e C n ( l ) form a partition of Z3. If n is even, then all 3 perfect states
belong to Cn( l ) . Hence 3 of the £?(x, 1) will have 3 elements, and the rest will have 4
elements. Thus

3 n = |ZS |= £ | £ (x , l ) | = 3 x 3 + 4 x ( | C n ( l ) | - 3 ) ,
xeCn(i)

and thus Cn(l) = (3" + 3)/4. If n is odd, there is only one perfect state in Cn( l ) . By

a similar argument, one sees that C n ( l ) = (3n + l) /4. D

We have several remarks in connection with the above theorem. Details and proofs
can be found in [2].

1. The above proof actually suggests an easy decoding algorithm for Cn( l ) .

2. It is not difficult to show that one of the perfect states must be a codeword
for any 1-error correcting code on Hn. If one assumes that the top corner
vertex 0 • • • 0 is a codeword, then the code must be C n ( l ) .

3. By the general theory of coding theorem (for example, [4, Theorem 1.9]),
we see that d(x, y) ^ 3 for any x, y € Cn( l) . This fact can also be proved
independently using arguments similar to those in our proof of the theorem.

Next, we turn to the case when k > 1. We have the following result.

THEOREM 2 . 2 . Suppose n, k > 1 are integers. There exists a perfect k-error

correcting code Cn(k) on Hn if and only if

(a) k > 2n~2 • 3, or

(b) k = 2"-1 - 1.

Furthermore, if (a) holds, then a perfect k-error correcting code must consist of a single

vertex c of Hn such that B(c,k) contains all perfect states; if(b) holds, the only perfect

k-error correcting code is the set of the three perfect states.
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As we shall see in the following proofs, it is rather easy to check that if n and k
satisfy the condition (a) or (b), then there are perfect fc-error-correcting codes Cn(k) as
described in the theorem. The non-trivial part is the necessity part of the theorem, that
is, the non-existence of any other perfect codes for k > 1.

If n > 1, we always assume that Hn can be decomposed into H^ for i = 0,1,2, as

described in the introduction.

We first establish several lemmas concerning the vertices of Hn.

LEMMA 2 . 3 . Let w be a vertex in Hn, and let do, d\,di be the distance between

w and t i e top, left bottom, and right bottom perfect states ofHn, respectively. Then

(a) do, di, c?2 cannot have the same (even or odd) parity.

(b) di = dj for some i ^ j if and only if d3_j_j = 0, that is, w is a perfect state.

PROOF: The proof can be done by induction. If n = 1, the conclusions (a) and (b)
clearly hold. Suppose n ^ 2, and the conclusions hold for Hn-\. Let w be a vertex of
Hn. We may assume that w lies in the subgraph H^li of Hn by a suitable 120 degrees
rotation of Hn. Suppose x, y, z are the top, left bottom, and right bottom perfect states
of Hn, and let y, z be the left and right bottom perfect states of H^\ (see Figure 4).
Then d0 = d(w,x),

di = d (w,y)=d(w,y)+d(y ,y) = d(w,y) + 2"-1,

d2 = d(w,z) =d(w,z)+d(z,z) =d(w,z) + 2"-1.

y

Figure 4

One can then apply the induction assumption on d(w,x), d(w,y) and d(w, z) to get the

conclusions on do,di and d2. D

LEMMA 2 . 4 . Let n, k be positive integers. Suppose w is a vertex in Hn such that
B(w, k) does not contain any of the three perfect states. Then there is a subgraph R of
Hn which is isomorphic to Hi such that B(w,k) contains exactly one vertex of R.

PROOF: Consider subgraphs in Hn of the form Hm so that the vertex set V of the
subgraph satisfies w € V C B(w,k). Let S be such a subgraph with the maximum
number of vertices, that is, largest possible m, and let x, y, z be the perfect states of S.
Since B(w,k) does not contain any perfect state of Hn, we see that each of x, y and z
is connected to some vertices that are not in S (see Figure 5). By Lemma 2.3 (a), we

https://doi.org/10.1017/S0004972700031774 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031774


372 C.-K. Li and I. Nelson [6]

see that no = k — d(w,x), n\ = k — d(w,y) and n2 = k — d(w,z) cannot all have the
same parity. In particular, we may assume that n0 is odd. (Otherwise, apply 120 degrees
rotations to Hn to make no odd.) Let v be a vertex in Hn satisfying d(w, v) = k and
d(x, v) = no, and let R be the subgraph of Hn, which is isomorphic to H\ and has v as
a vertex. If one follows a path in Hn from w to v, one sees that the two other vertices
of the subgraph R will have a distance k + 1 from w. Hence B(w, k) contains only the
vertex v of R. 0

Figure 5

We are now ready to prove our theorem. While the theorem is stated in terms of

the conditions on n and k, we divide the proof into different cases according to the size

of Cn(fc). In particular, we shall show that Cn(A;) can only be 1 or 3. We begin with

the case when Cn(A;) = 1.

LEMMA 2 . 5 . Suppose n, k > 1 are positive integers. Then there exists a perfect

k-error correcting code on Hn consisting of one codeword if and only ifk ^ 2n~2 • 3.

PROOF: Let x, y, z be the top, left and right bottom perfect states of Hn, and let
y , z be the left and right bottom perfect states of H^\ (see Figure 4).

If k ^ 2n~2 • 3, then one can choose c so that rf(c, y) = 2n~2 and d(c, z) = 2"~2 - 1.
One easily checks that all vertices of Hn lie in B(c, k).

Conversely, suppose there is a perfect fc-error correcting code consisting of the single
codeword c. Then all perfect states belong to B(c, k). To show that k ^ 2"~2 • 3, suppose
c lies in HJ°}1, otherwise apply a suitable 120 degrees rotation to Hn. Then

2""1 - 1 = d(z,y) < d(z,c) + d(c, y).

It follows that

k = max{d(c,z),d(c,y)}

= max{d(c, z) + d(z, z), d(c, y) + d(y, y)}
= max{d(c,z),d(c,y)} + 2n-1

> [2"-1 • 3 -
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Since k is an integer, we have k ^ 2n~2 • 3. D

Next, we consider the case when 1 < Cn(fc) ^ 3.

LEMMA 2 . 6 . Suppose n,k>l are positive integers. The following conditions

are equivalent.

(a) There exists a perfect k-error correcting code Cn(k) on Hn with 1 <

|cn(fc)| < 3.
(b) There is a unique perfect k-error correcting code on Hn consisting of the 3

perfect states.

(c) k = 2"-1 - 1.

PROOF: It is clear that (b) implies (a). If (c) holds, then the perfect states will form
a perfect fc-error correcting code, and thus (a) is true. It remains to prove that both (b)
and (c) follow from (a).

Now, suppose (a) holds. Let x, y, z be the top, left and right bottom perfect states
o f i / ^ ! (see Figure 4).

We first show that it is impossible to have Cn(A;) — 2. Suppose there is such a
perfect code, and Cn(fc) consists of cx and c2. We may assume that they are not vertices
of i/£_i by a suitable 120 degrees rotation of Hn. Then x lies in one of two radius-fc
balls centred at the codewords. Without loss of generality, we may assume that x lies
in B(ci,k) and cx is a vertex of H^. Then k ^ d(ci,x) > d(y,x), or in other words,
k ^ 2n~1 Clearly, c2 cannot lie in H^lu otherwise, y € B(ci, k) n B(c2, k) by the above
condition on k. Also, c2 cannot lie in #„_!, otherwise, z e B{ci,k) n B(c2,k). Thus
Cn(k) cannot have exactly 2 elements.

Next, suppose Cn(fc) consists of 3 elements: co,c1,c2. Notice that each of H^

for i = 0,1,2, has a codeword; that is, ct is a vertex of H^Li- If this is not the case,
one can use the arguments in the preceding paragraph to show that two of the B(ci, k)

will have non-empty intersection. If B(C{, k) only contains those vertices in H^_\ for
i — 0,1,2, then we have d(co,y) = rf(co,z). By Lemma 2.3 (b), we see that c0 = x and
k = 2""1 - 1. Similarly, one can show that Ci = y and c2 = z. Hence condition (b) and
(c) of the lemma hold.

In the following, we show that any other construction of Cn(A;) is impossible. Suppose
it is not the case, and suppose one of the 2?(c,-, k) contains some vertices in H^-i for
some i ^ j . We may assume that (i, j) — (0,2) by applying some suitable rotation and
reflection about the vertical line passing through x. Furthermore, decompose #„_! into
Hn-2, #n-2, and H{*12 as shown in Figure 6.

https://doi.org/10.1017/S0004972700031774 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031774


374 C.-K. Li and I. Nelson [8]

Figure 6
Suppose u, v and w are the top, left and right bottom perfect states of HJ°}2- Then

u G B(c0, k) by our assumption. Note that

d(c0, v) = d(c0, z) + d{z, v) = d(c0, z) + d(z, w) = d(c0, w).

Thus either

(i) v, w € B(c0, k), or
(ii) {v,w}nB(co,k) = $.

We first show that (i) cannot happen. If v,w G B(co,k), then k ^ d(co,w)
^ d(z, w) = 2n~2, and we must have c2 lying in i/,l_2 or H^l2- If C2 is a vertex of
#1-2, then v G B(c2, k) as k > 2n~2. If c2 is a vertex of H^}2, then w € B(c2, A;) as
A; ^ 2"~2. In both cases, we have B(c0, fc) D B(c2, k) ^ 0, which is a contradiction.

Next, we show that (ii) is also impossible. Note that by an argument similar to that
in the preceding paragraph, one can show that even if S(cj, k) contains some vertices
in H^lx, it cannot include all the vertices in H^}2. Thus B(ci,k) cannot contain v or
w, and so we must have v,w G B(c2,k). If c2 is a vertex in HJ?}2, then A; < 2"~2.
Otherwise, we have d(c2,u) ^ 2"~2 ^ k and thus u G B(c2,k) n B(co,k). But then

2
k < 2n~2 ^ d(ct, z) for any i, contradicting the fact that Z£ = U B(ci, k). Thus, c2 must

i=0

be in either H^}2 or H^l2- Now consider the vertex w on the shortest path from u to w
such that d(co,w) = k + 1. Clearly, we have

k = d(c2, w) = d(c2, w) + d(w, w).

Similarly, if v is the vertex on the shortest path from u to v such that d(co, v) = k + 1,
then

Evidently, d(u, w) = d(u, v) = (k + 1) - r f (c o ,u ) . It follows that d(w, w) = d(v, v) and
d(c2,v) — d(c2 ,w). However, this is impossible because d(c2,v) < 2n~2 < d(c2,w) if
c2 G ̂ 2 , and d(c2, w) < 2"- 2 < d(c2, v) if c2 G H?l7. D
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Finally, we consider the case when 3 < Cn(k)\.

LEMMA 2 . 7 . Suppose n, k > 1 are positive integers. Then there is no perfect
k-error correcting code Cn(k) on Hn with 3 < Cn(A;) .

PROOF: Suppose there is a perfect fc-error correcting code Cn(k) on Hn with 3 <
Cn(fc) . Then there is a codeword c such that B(c, k) does not contain any of the three

perfect states of Hn. By Lemma 2.4, there exists a subgraph U of Hn with vertices
Uo,ui and 112 isomorphic to H\ such that B(c, k) fl U = uo. Furthermore, we assume
that Ui is connected to a subgraph V with vertices v0, v1; v2, which is also isomorphic to
Hi. Similarly, u2 is connected to a subgraph W with vertices wo,wi, W2, which is also
isomorphic to Hi. We depict the situation in Figure 7.

B(c, k)

Figure 7

Let d be a codeword such that Ui € B(d, k). Since k ^ 2, we can move at least 2
steps from ui along the shortest path from ui to d in Hn. Clearly, d(d, ux) = k and
hence d(d, v0) = k - 1 so that B(c, k) n B(d, k) = 0. As a result, d(d, v4) = k ~ 2 for
i = 1 or 2. Similarly, let e be a codeword such that u2 € B(e,k). One then sees that
d(e, w0) = k — 1, and d(e, Wj) = k - 2 for i = 1 or 2.

We consider 2 cases. First, suppose v2 and wx are adjacent. Since c^v^wj) = 2
and d(v2,Wi) = 1, we see that

d(wi, d) ^ min{d(w1, v^ + d(vj, d) : i = 1,2) < k.

Thus wx 6 B(d, A;) n B(e, k), which is a contradiction unless d — e. However, this is im-
possible as shown in the following. If k = 2, then d must be chosen from {vx, v2, w b w 2 } .
But none of the choices will lead to d(d, VQ) = k — 1 = d(d, wo). Thus we may assume
that k > 2, and d(d, vx) = A; — 2 = d(d, w2). But then d must lie in some subgraph R
isomorphic to Hr so that the vertex set of R is contained in B(d, k — 3). If one moves k
steps along a path from d to the subgraph U, either one can reach exactly one vertex of
U or all the three vertices of U (see Proof of Lemma 2.4). Thus, it is impossible to have
uuu2eB(d,k).

Next, suppose v2 and wi are not adjacent. Then U must be lying at the bottom of

a certain subgraph 5 of Hn which is isomorphic to some Hm with m > 1, and either

(i) both V and W are in the same Hm, or
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(ii) only one of V or W is also in Hm.

In both cases, there will be a subgraph S of S isomorphic to H2 containing U and one
of V or W, say W (see Figure 8). Since both uo and W2 have a distance 2 from the top
perfect state of S, which has a distance k — 2 from c, we see that w2 € B(c, k). However,
d(e, w0) = k - 1 implies that w2 also belongs to B(e, k), which is a contradiction. D

One can easily combine Lemmas 2.5 - 2.7 to get the conclusion of Theorem 2.2.

Figure 8
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