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PERFECT CODES ON THE TOWERS OF HANOI GRAPH

CHI-KWONG LI AND INGRID NELSON

We characterise all the perfect k-error correcting codes that can be defined on the
graph associated with the Towers of Hanoi puzzle. In particular, a short proof for the
existence of 1-error correcting code on such a graph is given.

1. INTRODUCTION

In the study of recurrence relations, one common example is the following combina-
torial game known as the Towers of Hanoi puzzle.

Initially, there are 3 pegs and n circular disks of increasing size on one peg with the
largest disk on the bottom. These disks are to be transferred one at a time onto another
of the pegs with the provision that one is never allowed to place a larger disk on top of a
smaller one. The problem is to determine the number of moves necessary for the transfer.

For convenience, we call the three pegs Py, P;, and P, and label the disk as
Dy, ..., D,, where D; has the smallest radius. Define a legal configuration of the disks on
the three pegs to be an arrangement of the disks on the pegs so that no larger disk is on
the top of a smaller one. Then one easily checks that there is a one-one correspondence
between all legal configurations with the space Z3 of ternary sequences of length n, such
that a given x = z, -+ -z, € Z} corresponds to the configuration with D; lying on P; if
z; = j. For example, 101 corresponds to the configuration that D, and Dj lie on P, and
D, lies on Py (see Figure 1).

Figure 1
We shall call the legal configuration corresponding to x € Z3 the x-configuration.
The sequences with all entries equal to the same 7 € {0, 1,2} are called the perfect states
corresponding to the configurations with all disks lying on the same peg.
One can construct a graph with all Z} as the vertex set, where two vertices x and
y are connected by an edge if there is a legal move in the Towers of Hanoi puzzle that
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transforms the x-configuration to the y-configuration. This graph is called the Towers of
Hanoi graph, denoted by H,, and first appeared in [6]. We depict H; and H, in Figure 2.
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Figure 2

The Towers of Hanoi puzzle, its graph, and their generalisations have generated much
interesting research (for example, see [5]). In fact, the graph H,, can be constructed from
H, t;y the following algorithm:

Step 1. Let H,_; be the mirror image of H,_, about a vertical line passing through

the top perfect state.

Step 2. Construct H,(fll by appending i to the end of each vertex of H,_; to form
a sequence of length n for i = 0,1, 2.

Step 3. Put H,(:)_)l in the top, rotate H,sl_)l by 120 degrees clockwise and put it in
the left bottom corner, rotate H,(;"_)l by 120 degrees counterclockwise and
put it in the right bottom corner. '

Step 4. Connect the vertex 0---01 in H,(,l_)l with the vertex 0---02in H,(,Z_)l, connect
the vertex 1---10 in H,(f’_)1 with the vertex 1---12 in H,(,l)_)l, connect the
vertex 2---20 in H'®, with the vertex 2---21 in HY,.

One easily sees that this algorithm will generate all x € Z} as vertices, and all the legal
moves in the Towers of Hanoi puzzle as edges. We give the graphical representation of
the situation in Figure 3.

HO

/

Figure 3

Define the distance d(x, y) between two vertices x and y to be the length of the short-
est path joining the two vertices. Clearly, d(x,y) corresponds to the minimum number
of legal moves needed in the Towers of Hanoi puzzle to transform the x-configuration to
the y-configuration. For example (for example, see [2]), the distance between 2 perfect
states in H, equals 2" — 1, which is the maximum distance between any two vertices in
H,. The distance function d defines a metric on Z3, and for any nonnegative integer k,
one may define the radius-k ball centred at x € Z} to be the set

B(x,k) = {y € Z3 : d(x,y) < k}.

In the study of coding theory (see [4] for general background), one would like to
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partition Z3 as a disjoint union of B(xy, k), ..., B(xum, k) for a suitable choice of C,, (k) =
{x1,...,xp} C Z}. If such a partition exists, the set C, (k) will be called a perfect k-error
correcting ternary code on H,,.

The purpose of this note is to determine those (2, k) pairs for which a perfect k-error
correcting code exists on Hy, and characterise C, (k) if it exists. In particular, we shall
give a short proof for the existence of a perfect 1-error correcting code on H,, (see [2] for
the original proof).

It is worthwhile to point out that the existence of the k-error correcting codes on
Z} depends heavily on the structure of the radius k-balls. If a different metric is used,
then the structure of the radius k-balls will be completely changed, and hence the corre-
sponding coding theory problem will change accordingly. For instance, if the widely used
Hamming metric d(x,y) = the number of no zero entries in the vector (x —y), then a
perfect 1-error ternary correcting code rarely exists (see [4]).

Note also that other coding theory problems have been studied using the Towers of
Hanoi graph [3].

2. RESULTS AND PROOFS

We begin with a short proof of the fact that perfect 1-error correcting codes always
exists on H,. See [2] for the original proof.

THEOREM 2.1. Letn be a positive integer. Then the collection C,(1) of ternary
sequences of length n with an even number of terms equal to 1 and an even number of
terms equal to 2 is a perfect 1-error correcting code on H,. Moreover, we have

_ [ (8" +3)/4 ifn is even,
|Cn(1)| = { (3*+1)/4 ifn is odd.

PROOF: We need to show that every y € Z} lies in one and only one B(x,1) with
x € C,(1). Denote by n; the number of terms in y that equal i for i = 0,1, 2.

First, suppose y € C,(1), that is, n; and n, are even. Then y € B(y,1), and it is
clear that y cannot be transformed to another x € C,(1) by just one legal move. Hence,
y lies in B(y, 1) but not in B(x, 1) for any other x € C,(1). Next, suppose y ¢ Cp(1).
Then either

(i) both n; and n, are odd, or

(ii) exactly one of n; or n, is odd.
If (i) holds, then one can consider the y-configuration and transfer the smallest disk on
P, and P, from one peg to the other peg. Clearly, the resulting configuration corresponds
to a ternary sequence x € C,(1), and the proposed move is the only single legal move
on the y-configuration that will lead to a configuration corresponding to a sequence in
Ca.(1). Thus y € B(x,1), but is not in any other unit ball B(z,1) with z € C,(1).
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Suppose (ii) holds, and suppose n; is odd with ¢ € {1,2}. Then one can consider the
y-configuration and transfer the smallest disk on Py and P; from one peg to the other
peg. Clearly, the resulting configuration corresponds to a ternary sequence x € C,(1),
and the proposed move is the only single legal move on the y-configuration that will lead
to a configuration corresponding to a ternary sequence in C,(1). Thus y € B(x, 1), but
is not in any other unit ball B(z,1) withz € C,(1).

Note that if x € Z} is a perfect state, then applying one legal move to the x-
configuration may lead to two possible outcomes depending on where the smallest disk
is transferred. Thus B(x,1) has three elements. If x € Z} is not a perfect state, then
there are 3 possible outcomes with a legal move, namely, one may transfer the smallest
disk to one of the two other pegs, or one may transfer a disk between the two pegs not
containing the smallest disk. In such case, B(x, 1) has four elements. Now, the collection
of B(x,1) with x € C,(1) form a partition of Z}. If n is even, then all 3 perfect states
belong to C,(1). Hence 3 of the B(x,1) will have 3 elements, and the rest will have 4
elements. Thus

=23 = Y. |B(x,1)|=3x3+4x(ICa(1)] -3),
x€Cn(1)
and thus |Cn(l)| = (3" + 3)/4. If n is odd, there is only one perfect state in C,(1). By
a similar argument, one sees that ICn(l)‘ = (3" +1)/4. 0
We have several remarks in connection with the above theorem. Details and proofs
can be found in [2].
1. The above proof actually suggests an easy decoding algorithm for C,(1).
2. It is not difficult to show that one of the perfect states must be a codeword
for any l-error correcting code on H,. If one assumes that the top corner
vertex 0---0 is a codeword, then the code must be C,(1).
3. By the general theory of coding theorem (for example, [4, Theorem 1.9}),
we see that d(x,y) = 3 for any x,y € C,(1). This fact can also be proved
independently using arguments similar to those in our proof of the theorem.

Next, we turn to the case when £ > 1. We have the following result.
THEOREM 2.2. Suppose n,k > 1 are integers. There exists a perfect k-error
correcting code C,(k) on H, if and only if
(a) k=>2"?2.3,0r
(b) k=2""1-1.
Furthermore, if (a) holds, then a perfect k-error correcting code must consist of a single

vertex ¢ of H, such that B(c, k) contains all perfect states; if (b) holds, the only perfect
k-error correcting code is the set of the three perfect states.
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As we shall see in the following proofs, it is .rather easy to check that if n and &
satisfy the condition (a) or (b), then there are perfect k-error-correcting codes C,(k) as
described in the theorem. The non-trivial part is the necessity part of the theorem, that
is, the non-existence of any other perfect codes for & > 1.

If n > 1, we always assume that H,, can be decomposed into H,(,'zl fori=0,1,2, as
described in the introduction.

We first establish several lemmas concerning the vertices of H,,.

LEMMA 2.3. Letw bea vertex in H,, and let dy, d;, d, be the distance between
w and the top, left bottom, and right bottom perfect states of H,,, respectively. Then

(a) do,dy,d> cannot have the same (even or odd) parity.
(b) . di = d; for somei # j if and only if d3_;_; = 0, that is, w is a perfect state.

PROOF: The proof can be done by induction. If n = 1, the conclusions (a) and (b)
clearly hold. Suppose n > 2, and the conclusions hold for H,_;. Let w be a vertex of
H,. We may assume that w lies in the subgraph H,(,O_)l of H, by a suitable 120 degrees
rotation of H,. Suppose X,y, z are the top, left bottom, and right bottom perfect states

of H,, and let ¥,Z be the left and right bottom perfect states of H,(,Ql (see Figure 4).
Then dy = d(w,x),

di = dw,y) =dw,§) +dFy) = dw,§)+ 2",
dy = d(w,z)=d(w,z)+d(Z,z) =d(w,z) + 2"
pe

A Hﬁ%l
y

Figure 4

N

One can then apply the induction assumption on d(w,x), d(w,¥) and d(w, Z) to get the
conclusions on dy, d; and ds. ]

LEMMA 2.4. Letn,k be positive integers. Suppose w is a vertex in Hy,, such that
B(w, k) does not contain any of the three perfect states. Then there is a subgraph R of
H,, which is isomorphic to H, such that B(w, k) contains exactly one vertex of R.

ProoF: Consider subgraphs in H,, of the form H,, so that the vertex set V of the
subgraph satisfies w € V C B(w,k). Let S be such a subgraph with the maximum
number of vertices, that is, largest possible m, and let x,y, z be the perfect states of S.
Since B(w, k) does not contain any perfect state of H,, we see that each of x,y and z
is connected to some vertices that are not in S (see Figure 5). By Lemma 2.3 (a), we

https://doi.org/10.1017/50004972700031774 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700031774

372 C.-K. Li and I. Nelson (6]

see that ng = k — d(w,x), n; = k — d(w,y) and ny = k — d(w, z) cannot all have the
same parity. In particular, we may assume that ng is odd. (Otherwise, apply 120 degrees
rotations to H, to make ng odd.) Let v be a vertex in H, satisfying d(w,v) = k and
d(x,v) = ng, and let R be the subgraph of H,, which is isomorphic to H; and has v as
a vertex. If one follows a path in H, from w to v, one sees that the two other vertices
of the subgraph R will have a distance k + 1 from w. Hence B{w, k) contains only the
vertex v of R. 1]

A X

Figure 5
We are now ready to prove our theorem. While the theorem is stated in terms of
the conditions on n and k, we divide the proof into different cases according to the size
of C,(k). In particular, we shall show that |C,,(k)| can only be 1 or 3. We begin with

the case when |C,,(k)| =1.

LEMMA 2.5. Supposen,k > 1 are positive integers. Then there exists a perfect
k-error correcting code on H,, consisting of one codeword if and only if k > 22 . 3.

PROOF: Let x,y,z be the top, left and right bottom perfect states of H,, and let
¥,Z be the left and right bottom perfect states of H, (0_)1 (see Figure 4).

If k£ > 2772 3, then one can choose ¢ so that d(c,y) = 2"~2? and d(c,Z) = 2" 2 - 1.
One easily checks that all vertices of H, lie in B(c, k).

Conversely, suppose there is a perfect k-error correcting code consisting of the single
codeword c. Then all perfect states belong to B(c, k). To show that k > 2"~2.3, suppose
c lies in H,(,o_)l, otherwise apply a suitable 120 degrees rotation to H,. Then

2" — 1 =d(%,7) < d(Z,c)+d(c,¥).
It follows that
k = max{d(c, z),d(c, y)}
max{d(c, 2) + d(z, %), d(c, §) + d(y, )}

ma.x{d(c, Z),d(c, 37)} +2n!
[2"71-3 - 1])/2.

WVl
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Since k is an integer, we have k > 272 . 3. 0
Next, we consider the case when 1 < |C,,(k)| <3

LEMMA 2.6. Suppose n,k > 1 are positive integers. The following conditions
are equivalent.

(a) There exists a perfect k-error correcting code C,(k) on H, with 1 <
|Cak)| < 3.

(b) There is a unique perfect k-error correcting code on H, consisting of the 3
perfect states.

() k=2"1-1.

PRrROOF: It is clear that (b) implies (a). If (c) holds, then the perfect states will form
a perfect k-error correcting code, and thus (a) is true. It remains to prove that both (b)
and (c) follow from (a).

Now, suppose (a) holds. Let x,¥,Z be the top, left and right bottom perfect states
of HY, (see Figure 4).

We first show that it is impossible to have |C,,(k)| = 2. Suppose there is such a
perfect code, and C,,(k) consists of ¢; and c,. We may assume that they are not vertices
of H,(lo_)1 by a suitable 120 degrees rotation of H,. Then x lies in one of two radius-k
balls centred at the codewords. Without loss of generality, we may assume that x lies
in B(cy, k) and c; is a vertex of H,(,l_)l. Then k > d(cy,x) > d(¥,x), or in other words,
k > 21 Clearly, ¢, cannot lie in H,(ll_)l; otherwise, ¥ € B(cy, k) N B(cy, k) by the above
condition on k. Also, ¢, cannot lie in H,(,z_)l, otherwise, Z € B(cy, k) N B(cy, k). Thus
C.(k) cannot have exactly 2 elements.

Next, suppose C,(k) consists of 3 elements: cg,c;,c2. Notice that each of H,(fll
for 1 = 0,1,2, has a codeword; that is, c; is a vertex of H,(,'zl. If this is not the case,
one can use the arguments in the preceding paragraph to show that two of the B(c;, k)
will have non-empty intersection. If B(c;, k) only contains those vertices in H,(,ill for
i=0,1,2, then we have d(cy,y) = d(co,Z). By Lemma 2.3 (b), we see that ¢y = x and
k =271 — 1. Similarly, one can show that ¢c; = y and ¢; = z. Hence condition (b) and
(c) of the lemma hold.

In the following, we show that any other construction of C,(k) is impossible. Suppose
it is not the case, and suppose one of the B(c;, k) contains some vertices in H,(lj_)1 for
some i # j. We may assume that (i, j) = (0,2) by applying some suitable rotation and
reflection about the vertical line passing through x. Furthermore, decompose H,(,z_)l into
H,(,O_)Q, H,(ll_)2, and H,(,"Qz as shown in Figure 6.
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X

Figure 6
Suppose u, v and w are the top, left and right bottom perfect states of H,(,O_)z. Then
u € B(cy, k) by our assumption. Note that

d(co, v) = d(Co,Z) + d(Z,v) = d(co, Z) + d(Z, w) = d(co, W).

Thus either

(i) v,w € B(cp, k), or

(ii) {v,w}N B(cy, k) = 0.
We first show that (i) cannot happen. If v,w € B(cy,k), then k > d(co, w)
> d(Z,w) = 272, and we must have ¢, lying in H,(,l_)g or H,(i)z. If cp is a vertex of
H,(,l_)z, then v € B(cy, k) as k = 2" 2. If c, is a vertex of H,(,z_)z, then w € B(cy, k) as
k = 2772 In both cases, we have B(co, k) N B(cy, k) # 0, which is a contradiction.

Next, we show that (ii) is also impossible. Note that by an argument similar to that

in the preceding paragraph, one can show that even if B{c,, k) contains some vertices
in H,(f_)l, it cannot include all the vertices in H,(,l_)z. Thus B(e;, k) cannot contain v or
w, and so we must have v,w € B(es,k). If ¢, is a vertex in H,(,O_)z, then k < 2772,
Otherwise, we have d(cz,u) < 2”72 < k and thus u € B(cy, k) N B(cy, k). But then

2
k < 272 < d(c;, 2) for any i, contradicting the fact that Z} = U B(c;, k). Thus, ¢, must
=0
be in either H,(ll_)2 or H,(,"’_)Z. Now consider the vertex W on the shortest path from u to w
such that d{cy, W) = k + 1. Clearly, we have

k = d(cz, W) = d(ca, W) + d(w, W).

Similarly, if ¥ is the vertex on the shortest path from u to v such that d(cy,¥) =k + 1,
then

k =d(c2, V) = d(ca, v) + d(v,¥).
Evidently, d(u,w) = d(u,v) = (k + 1) — d(co, u). It follows that d(w, W) = d(v, V) and
d(ca,v) = d(cy, w). However, this is impossible because d(cy,v) < 272 < d(c,, w) if
s € HY,, and d(cy, w) < 272 < d(cp, v) if ¢, € HP,. 0
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Finally, we consider the case when 3 < lC,,(k)l.

LEMMA 2.7. Suppose n,k > 1 are positive integers. Then there is no perfect
k-error correcting code C,(k) on H, with 3 < |Cn(k)|.

PRrOOF: Suppose there is a perfect k-error correcting code C, (k) on H, with 3 <
|C,,(k)|. Then there is a codeword c such that B(c, k) does not contain any of the three
perfect states of H,. By Lemma 2.4, there exists a subgraph U of H, with vertices
up, u; and up isomorphic to H; such that B(c,k) N U = u,. Furthermore, we assume
that u; is connected to a subgraph V with vertices vy, vy, v, which is also isomorphic to
H,. Similarly, uy is connected to a subgraph W with vertices wg, w1, wo, which is also
isomorphic to H;. We depict the situation in Figure 7.

B(c, k)

Uy
u u2
v \,
A
1 W,

1 V, W

Figure 7

Let d be a codeword such that u; € B(d, k). Since k > 2, we can move at least 2
steps from u, along the shortest path from u, to d in H,. Clearly, d(d,u;) = & and
hence d(d,vo) = k — 1 so that B(c,k) N B(d,k) = 0. As a result, d(d,v;) = k — 2 for
i = 1 or 2. Similarly, let e be a codeword such that u, € B(e, k). One then sees that
d(e,wp) =k —1, and d(e,w;) =k —2fori=1or 2.

We consider 2 cases. First, suppose vy and w; are adjacent. Since d(vi,w;) = 2
and d(vq,w;) = 1, we see that

d(wy,d) < min{d(w, vi) +d(v;,d) : s = 1,2} < k.

Thus w, € B(d, k) N B(e, k), which is a contradiction unless d = e. However, this is im-
possible as shown in the following. If £ = 2, then d must be chosen from {vy, vo, Wy, wa}.
But none of the choices will lead to d(d,vy) = k — 1 = d(d, wp). Thus we may assume
that k > 2, and d(d,v,) = k£ — 2 = d(d, w;). But then d must lie in some subgraph R
isomorphic to H, so that the vertex set of R is contained in B(d, k — 3). If one moves &
steps along a path from d to the subgraph U, either one can reach exactly one vertex of
U or all the three vertices of U (see Proof of Lemma 2.4). Thus, it is impossible to have
u;, u; € B(d, k).

Next, suppose v, and w; are not adjacent. Then U must be lying at the bottom of
a certain subgraph S of H,, which is isomorphic to some H,, with m > 1, and either

(i) both V and W are in the same H,p,, or
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(ii) only one of V or W is also in H,,.

In both cases, there will be a subgraph Sof S isomorphic to H, containing U and one
of V or W, say W (see Figure 8). Since both uy and ws have a distance 2 from the top
perfect state of S, which has a distance k— 2 from c, we see that w, € B(c, k). However,
d(e,wq) = k — 1 implies that w, also belongs to B(e, k), which is a contradiction. 0

One can easily combine Lemmas 2.5 — 2.7 to get the conclusion of Theorem 2.2.

Figure 8
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