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Planari ty in graphs implies relat ively smal l valencies 
and numbers of edges. In this note we find the maximum sum 
of valencies and the maximum number of incident edges for a 
set of n ve r t i ces in a planar graph with v v e r t i c e s . Graphs 
considered a r e without multiple edges or loops. 

THEOREM. Let G be a planar graph with ve r t i ces 
A , . . . , A , . . . , A where v > n > 3. Denote by G the gjraoh 

1 n v — 1 ° -
obtained from G by deleting A , . . . , A . Let the total 7 & n+1 v 
number of edges of G be e and of G, be e , e^ the number 

of edges of G joining ver t ices of the set { A , . . . , A } to those 
1 n 

of {A . . . . , A } , and s the sum of the valencies of 
n+1 v 

A , . . . , A in G. Then 
1 n 

(i) e _< 3n-6 and e = 3n-6 iff G t r iangula tes the 

plane. 

(ii) e < n < 2v-4 when v = n+ i , and e < 2v-4 when 

v :> n+2 (e =n can hold when v = n + l , e = 2v-4 can hold for 

each v > n+2). 

(iii) e + e < 3v-6, and when v < 3n-4, e J + e = 3v-6 
1 2 — — 1 2 

iff no two of A , . . . , A a r e joined by an edge in G and G 
n+1 v J 7 B 

t r iangula tes the plane. 

(iv) s < 3n+3v-12, and when v < 3n-4, s = 3n+3v-12 iff 
G t r iangulates the plane and v-n of the regions of G each 

contain exactly one ver tex from among A . . . . , A , this 
n+1 v 

ve r t ex being joined by an edge to al l three ve r t i ce s of G 

adjacent to the region. 
i l l 
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(v) When v > 3n-4, e + e_ < 3n+2v-10 and 
— 1 2 — 

e + e = 3n+2v-10 iff G t r iangula tes the plane, each of the 
1 2 1 6 

2n-4 regions of G contains one ve r t ex from among 

A , . . . , A joined by an edge to all three ve r t i ce s of GJ n+1 v 1 
adjacent to the region, and each of the remaining v-3n+4 
ve r t i ce s from among A , . . . , A is joined by an edge to two 

n+1 v J 7 5 

ver t i ces of G . 

(vi) When v > 3n-4, s < 6 n + 2 v - l 6 and s = 6 n + 2 v - l 6 iff 
G has the s t ruc ture descr ibed in (v). 

Proof. The proof of this theorem is based on the following 
well known r e s u l t s . 

(1) Any planar graph with w > 3 v e r t i c e s t r iangula tes the 
whole plane iff the total number of edges is 3w-6; in this case 
the number of regions into which the graph divides the plane is 
2w-4. Any planar graph with w > 3 ve r t i ce s e i ther t r iangula tes 
the plane or is obtained from a planar graph with w v e r t i c e s 
which t r iangulates the plane by deleting edges. 

(2) If a planar graph has w ve r t i ce s and e edges and 
divides the plane into r connected regions , then w-e+r > 2. 

Proof of (i). (i) follows direct ly from (1) with w =n . 

Proof of (ii). If v = n+l then obviously e < n and 

equality may hold; also n < 2v-4, since v > n > 3 by hypothesis . 
If e < 3 then e < n < 2v-4 since v > n > 3. It only r e m a i n s 

to assume that v :> n+2 and e > 4. Then let G* denote the 

graph obtained from G by deleting all edges except the e edges 
joining ve r t i ces of {A , . . . , A } to ve r t i ce s of {A , . . . , A } ; 

I n n+1 v 
GT = G possibly. JLet r denote the number of connected regions 
into which GT divides the plane. By (2) applied to GT we have 

v - e^ + r > 2 . 
2 -

Each of the connected regions into which GT divides the 
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plane is adjacent to at least four edges of Gr , because e >̂ 4 

and every circuit of GT (if any) contains an even number of 
edges and vertices since Gf is bipartite. Also each edge of 
G' is adjacent to at most two regions. Hence 

4r < 2e 

because on the left each edge of G is counted at most twice. 

Eliminating r from the two inequalities we have e < 2v-4. 

e^ = 2v-4 if, for example, two of A . . . . ,A are joined by 
2 n+1 v 

an edge to all of A , . . . , A and the rest of A . . . . , A to 
I n n+1 v 

two of A . . . . , A . 
1 n 

Proof of (iii). By (1) applied to G, e fe_ < e < 3v-6 , 
1 2 — — 

and e +e = 3v-6 iff G triangulates the plane and e +e =e , 
X Cm \ L» 

which is the case iff G triangulates the plane and no edge of G 
joins two of A , . . . , A . If G has such a structure, then 

n+1 v 
each of the connected regions into which G divides the plane 
contains at most one of A 

n-
2n-4 > v-n, i. e. v < 3n-4. 

contains at most one of A , . . . , A ; by (1) this implies 
n+1 v 

Proof of (iv). s = 2e +e^ =e +(e +e ). e < 3n-6 by (i) 
-—L. ! 2 1 K 1 2 1 - y 

and e +e jC e < 3v- 6 by (1); hence s j£ 3n+3v-12 with equality 

iff e = 3n-6 and e +e = 3v-6. By (i) and (iii) this is the case 
1 1 2 

iff G and G both triangulate the plane and no two of 
1 

A , . . . , A are joined by an edge; consequently s = 3n+3v- 12 

iff G is as described in (iv) and then v < 3n-4. 

Proof of (v). By (i) and (ii) e +e < 3n+2v-i0 with 

equality iff e =3n-6 and e_ = 2v-4. By (i) e =3n-6 iff G 
1 2 1 1 

triangulates the plane; e is clearly maximal, consistent with 

G triangulating the plane, iff G has the structure described 

in (v); e is then equal to 3(2n-4) + 2(v-3n+4) = 2v-4 provided 
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v > 3n-4. Hence when v > 3n-4, e +e = 3n+2v-10 iff G is 

as descr ibed in (v). 

Proof of (vi). s = e +(e +e ). Hence, by (i) and (v), 
1 1 Z 

s < 6n+2v-l6 and s =6n+2v-l6 iff G has the s t ruc tu re 
descr ibed in (v). This completes the proof of the t heo rem. 

The author is indebted to the re fe ree for many suggest ions. 
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