Conventions and Notations

Categories

We follow the von Neumann–Bernays–Gödel set theory and distinguish between *sets* and *classes*. All categories are assumed to be *locally small* in the sense that the objects form a class and for each pair of objects the morphisms between them form a set. When a category is abelian or exact, we assume in addition that for each pair of objects the extensions (in the sense of Yoneda) form a set.

We denote by Set the category of *sets* and by Ab the category of *abelian groups*. The *cardinality* of a set *X* is denoted by card *X*.

Morphisms are composed from right to left. For the composite $X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z$ we write $\beta\alpha$.

Functors $\mathcal{C} \to \mathcal{D}$ are by convention covariant. Replacing one of the categories by its opposite category identifies contravariant functors $\mathcal{C} \to \mathcal{D}$ with covariant functors $\mathcal{C}^{op} \to \mathcal{D}$ or $\mathcal{C} \to \mathcal{D}^{op}$.

Rings and Modules

All rings are associative and have a unit.

For a ring Λ we consider the category Mod Λ of *right* Λ -modules but drop the adjective 'right'. Left Λ -modules are identified with modules over the *opposite* ring Λ^{op} . The full subcategory of finitely presented Λ -modules is denoted by mod Λ , and proj Λ denotes the full subcategory of finitely generated projective Λ -modules.

When Λ and Γ are k-algebras over a commutative ring k, then Γ - Λ -bimodules ΓM_{Λ} are identified with modules over the algebra $\Gamma^{\mathrm{op}} \otimes_k \Lambda$.

Numbers

We denote by $\ensuremath{\mathbb{Z}}$ the set of integers and write

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

for the set of non-negative integers.