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Abstract It was pointed out by Crisan and Ghazali that the error estimate for the cubature on Wiener
space algorithm developed by Lyons and Victoir requires an additional assumption on the drift. In this
paper we demonstrate that it is straightforward to adopt the analysis of Kusuoka to obtain a general
estimate without an additional assumptions on the drift. In the process we slightly sharpen the bounds
derived by Kusuoka.
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1. Introduction

In pricing and hedging financial derivatives as well as in assessing the risk inherent in
complex systems we often have to find approximations to expectations of functionals of
solutions to stochastic differential equations (SDEs). We consider a Stratonovich stochas-
tic differential equation

dξt,x = V0(ξt,x) dt +
d∑

i=1

Vi(ξt,x) ◦ dBi
t, ξ0,x = x, (1.1)

defined by a family of smooth vector fields Vi and driven by Brownian motion. It is
well known that computing PT−tf := E(f(ξT−t,x)) corresponds to solving a parabolic
partial differential equation (PDE). The cubature on Wiener space method developed by
Lyons and Victoir in [13], following Kusuoka [5] (in the following also referred to as the
KLV method), is a high-order particle method for approximating the weak solution of
stochastic differential equations in Stratonovich form. To obtain high-order error bounds,
the test functions are assumed to be Lipschitz, and the vector fields defining the SDE
satisfy Kusuoka’s UFG condition (see [6]), which is a weaker assumption than the usual
uniform Hörmander condition.

High-order particle methods have since been shown to be highly effective in practice
(see, for example, [14,15]) and further extensions and applications of cubature on Wiener
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space have been developed by various authors. Applications include the nonlinear filter-
ing problem [2], stochastic backward differential equations [3,4], calculating Greeks by
cubature methods [17] and extending the KLV method by adding recombination [10].
It was pointed out in [2] that the analysis of the error bounds in [13] requires an addi-
tional assumption on the drift (see Definition 2.5) and thus the question of whether this
additional assumption is necessary to derive high-order error bounds was raised.

We first give a brief introduction to cubature on Wiener space and outline how the
need for an additional assumption on the drift arises in [13]. Then, based on [9], we
demonstrate carefully how the analysis in [7] can be adopted to derive similar bounds for
cubature on Wiener space. We show, for the KLV method based on a cubature measure
of degree m over a k step partition D, that the error ED can be bounded by

ED := sup
x∈RN

|EP f(ξx,s) − EQf(ξx,s)| � C

( 2m∑
j=m+1

sj/2‖f‖V,j + s(m+1)/2‖∇f‖∞

)

for any s ∈ (0, 1]. Note that these bounds do not contain any higher-order derivatives in
the direction of the drift V0 and, although our proof contains many elements of the analy-
sis of a version of Kusuoka’s algorithm carried out in [7], we obtain slightly sharper error
bounds in the process involving 2m instead of mm+1 derivatives. For suitable families
of partitions (first considered in [5]) the error bounds immediately lead to convergence
of order (m − 1)/2 in the number of time steps in the partition. Finally, we clarify the
relation of the KLV method to the version of Kusuoka’s algorithm analysed in [7].

2. Cubature measures

Let C∞
b (RN , RN ) denote the smooth bounded R

N -valued functions whose derivatives of
all orders are bounded. Then Vi = (V 1

i , . . . , V N
i ) ∈ C∞

b (RN , RN ), 0 � i � d, may be
identified with smooth vector fields on R

N . We denote by C0
0 ([0, T ], Rd) the continuous

R
d-valued paths starting at the origin and by C0

0,bv([0, T ], Rd) the set of those paths that
have in addition bounded variation. Let B = (B1

t , . . . , Bd
t ) be a Brownian motion and let

B0
t (t) = t. Let ξt,x, t ∈ [0, T ], x ∈ R

N , be a version of the solution of the Stratonovich
SDE (1.1) that coincides with the pathwise solution on continuous paths of bounded
variation (recall that the set of bounded variation paths have zero Wiener measure). We
define the Itô functional ΦT,x : C0

0 ([0, T ], Rd) → R
N by

ΦT,x(ω) = ξT,x(ω).

The particular choice for the version of the SDE solution when defining ξt,x implies that
the Itô functional for a bounded variation path ω coincides with the usual ODE solution
of (1.1) along the path ω.

Define the set of all multi-indices A by A =
⋃∞

k=0{0, . . . , d}k and let α = (α1, . . . , αk) ∈
A be a multi-index. Furthermore, we define a degree on a multi-index α by ‖α‖ =
k + card{j : αj = 0} and

A(j) = {α ∈ A : ‖α‖ � j}.
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Let A1 = A \ {∅, (0)} and A1(j) = {α ∈ A1 : ‖α‖ � j}. Following [7], we inductively
define a family of vector fields indexed by A by taking

V[∅] = 0, V[i] = Vi, 0 � i � d,

V[(α1,...,αk,i)] = [V[α], Vi], 0 � i � d, α ∈ A.

Moreover, let Vα = Vα1 · · ·Vαk
, where the composition is taken in the sense of differential

operators. Finally, we define a family of semi-norms on the space of functions C∞
b (RN ):

‖f‖V,k =
k∑

j=1

∑
α1,...,αj∈A1,

‖α1‖+···+‖αj‖=k

‖V[α1] · · ·V[αj ]f‖∞.

It is important to note that these semi-norms contain no derivatives in the direction
of V0. For V ∈ C∞

b (RN ; RN ) we define the flow Exp(tV )(x) to be the solution of the
autonomous ODE

Ẋ(t, x) = V (X(t, x)), t > 0, X(0, x) = x ∈ R
N .

A cubature measure on a finite-dimensional measure space is a discrete positive mea-
sure that integrates polynomials up to a certain (finite) degree correctly (i.e. as under
Wiener measure). Together with the Taylor approximation for error estimation, cubature
is a classical and efficient approach to the numerical integration of sufficiently smooth
functions. For the Wiener space setting [13], a cubature measure is a discrete measure
supported on paths of bounded variation and the role of polynomials is taken by the
analogous Wiener functionals (iterated Stratonovich integrals).

Definition 2.1. For fixed T > 0 we say that a discrete measure QT assigning positive
weights λ1, . . . , λn to paths

ωj ∈ C0
0,bv([0, T ], Rd), with ω0

j = t, j = 1, . . . , n,

is a cubature measure of degree m if, for all (i1, . . . , ik) ∈ A(m),

E

( ∫
0<t1<···<tk<T

◦ dBi1
t1 · · · ◦ dBik

tk

)
=

n∑
j=1

λj

∫
0<t1<···<tk<T

dωi1
j (t1) · · ·dωik

j (tk), (2.1)

where the expectation is taken under Wiener measure.

By the scaling property of Brownian motion any cubature measure QT may be obtained
from Q1 by letting ωj

T,i(t) =
√

Tωj
i (t/T ), j = 1, . . . , d, and keeping the weights of Q1.

Taylor expansions play a crucial role in the estimation of the error when we replace
the original (Wiener) measure by a cubature measure. On Wiener space the bounds for
sufficiently smooth functions are obtained by considering stochastic Taylor expansion.
The following proposition is a sharpened version of Proposition 2.1 in [13].
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Lemma 2.2. Let f ∈ C∞
b (RN ), m ∈ N. Then, for every t > 0,

f(ξt,x) =
∑

(α1,...,αk)∈A(m)

Vα1 · · ·Vαk
f(x)

∫
0<t1<···<tk<t

◦ dBα1
t1 · · · ◦ dBαk

tk
+ Rm(t, x, f).

(2.2)
And the remainder process Rm(t, x, f) satisfies

sup
x∈RN

√
E(Rm(t, x, f)2) � C

m+2∑
j=m+1

tj/2 sup
(α1,...,αi)∈A(j)\A(j−1)

‖Vα1 · · ·Vαif‖∞,

where C is a constant depending only on d and m.

Proof. By induction one can prove that the remainder Rm(t, x, f) of the Stratonovich
stochastic Taylor expansion is given by

Rm(t, x, f) =
∑

(α2,...,αk)∈A(m)
(α1,...,αk)/∈A(m)

∫
0<t1<···<tk<t

Vα1 · · ·Vαk
f(ξt1,x) ◦ dBα1

t1 · · · ◦ dBαk
tk

.

The proposition follows from an elementary calculation using the Itô formula (see [9] for
details). �

The following lemma is the analogue of Proposition 2.2 for the cubature measures QT ,
and its proof may be found in [13].

Lemma 2.3. Let Rm(T, x, f) be the process defined in (2.2). Then we have

sup
x∈RN

EQT
|Rm(T, x, f)| � C(d, m, Q1)

m+2∑
j=m+1

T j/2 sup
(α1,...,αi)∈A(j)\A(j−1)

‖Vα1 · · ·Vαif‖∞,

where C is a constant depending only on d, m and the length of the bounded variation
paths in the support of the cubature measure Q1.

The constant in Lemma 2.3 can in fact be made explicit (see [2, Example 4]). The
expectations of the Taylor approximation f(ξt,x) − Rm(s, x, f) defined in (2.2) under
Wiener and cubature measures coincide by definition of the cubature measure. Hence,
one may apply the triangle inequality to Lemmas 2.2 and 2.3 and deduce that

sup
x∈RN

|E(f(ξt,x)) − EQT
(f(ξt,x))| � C

m+2∑
j=m+1

sj/2 sup
(α1,...,αi)∈A(j)\A(j−1)

‖Vα1 · · ·Vαif‖∞.

(2.3)
In general, the right-hand side of the inequality in (2.3) is not sufficient to directly

obtain a good error bound for the approximation of the expectation; in particular, if
f is only assumed to be Lipschitz, the estimate appears useless. Therefore, instead of
approximating

PT f(x) := E(f(ξT,x))
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in one step, we consider a partition D of the interval [0, T ],

t0 = 0 < t1 < · · · < tk = T

with sj = tj − tj−1, and solve the problem over each of the smaller subintervals by apply-
ing the cubature method recursively. If τ and τ ′ are two path segments, we denote their
concatenation by τ ⊗ τ ′. For the approximation we consider all possible concatenations
of cubature paths over the subintervals, i.e. all paths of the form ωs1,i1 ⊗ · · ·⊗ωsk,ik

. We
define a corresponding probability measure ν as

ν =
n∑

i1,...,ik=1

λi1 · · ·λik
δωs1,i1⊗···⊗ωsk,ik

.

The iterated cubature method may be interpreted as a Markov operator and, hence the
error of the approximation of PT f by Eν(f(ξT,x)) is bounded above by the sum of the
errors of the approximations over the subintervals. The error over each subinterval can in
turn be bounded by applying (2.3) to PT−ti

f instead of f and exploiting the regularity
of PT−ti

f . The following result is a corollary to [6,8]; for a detailed proof see [2].

Corollary 2.4. Suppose the family of vector fields Vi, 0 � i � d, satisfy the UFG
condition. If f ∈ C∞

b (RN ) and α1, . . . , αj ∈ A1, then

‖V[α1] · · ·V[αj ]Psf‖∞ � Cs1/2

s(‖α1‖+···+‖αj‖)/2 ‖∇f‖∞ (2.4)

for all s ∈ (0, 1], where C is a constant independent of s and f .

As the regularity estimates in the previous corollary do not hold in the V0 direction
but the Taylor-based estimates used to obtain (2.3) require a higher derivative in the
V0 direction, it was pointed out in [2] that the analysis in [13] requires an additional
assumption on the drift. We state this as follows.

Definition 2.5 (V0 condition). A family of vector fields Vi, 0 � i � d, satisfies the
V0 condition if

V0 =
∑

β∈A1(2)

uβV[β]

for some uβ ∈ C∞
b (RN ).

The following theorem, from [13], is the main error estimate for the iterated cubature
method.

Theorem 2.6. Suppose that the vector fields satisfy the UFG and V0 conditions.
Then

sup
x∈RN

|PT f(x) − Eν(f(ξT,x))| � C(T )‖∇f‖∞

(
s
1/2
k +

m+1∑
j=m

k−1∑
i=1

s
(j+1)/2
i

(T − ti)j/2

)
.
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As an immediate corollary one obtains (see [13, Example 14]) high-order convergence
of the KLV method for suitable partitions of [0, T ].

Corollary 2.7. Consider the family of partitions given by

tj = T

(
1 −

(
1 − j

k

)γ )
,

and let vk denote the corresponding iterated cubature measures. Suppose the vector fields
satisfy the UFG and V0 conditions. Then

sup
x∈RN

|PT f(x) − Eνk
(f(ξT,x))| � Ck−(m−1)/2‖∇f‖∞,

where C is a constant independent of k and f .

In the rest of the paper we will derive similar bounds for the KLV method that do not
require the additional V0 assumption on the drift.

3. Algebraic preliminaries: the free Lie algebra and the signature

In the following we adopt the notation of Lyons and Victoir [13]. Given a Banach space
W , we define the tensor algebra of non-commutative polynomials over W by

T (W ) :=
∞⊕

i=0

W⊗i.

Define T (j)(W ) to be the quotient of T (W ) by the ideal
⊕∞

i=j+1 W⊗i. We identify
T (j)(W ) with the subspace

T (j)(W ) =
j⊕

i=0

W⊗i.

In the following we will not distinguish between the algebras of non-commutative poly-
nomials and series, as we always work with their truncations. Let ε0, . . . , εd be a fixed
orthonormal basis for R⊕R

d. Let T (R, Rd) denote the tensor algebra of polynomials over
R⊕R

d endowed with a grading that assigns degree 2 to ε0 and degree 1 to the remaining
generators (see [13] for the details of the definition).

Let λ ∈ R, a = (a0, a1, . . . ), b = (b0, b1, . . . ) ∈ T (R, Rd). Define a homogeneous scaling
operation by

〈λ, a〉 := (a0, λa1, . . . , λ
iai, . . . ),

and the exponential and logarithm on T (R, Rd) using the usual power series. Let πj

denote the natural projection of T (R, Rd) onto the subspace T (j)(R, Rd).
We define a Lie bracket on T (R, Rd) by [a, b] = a ⊗ b − b ⊗ a. Let L denote the free

Lie algebra generated by R ⊕ R
d (see [16]). Then L is the space of linear combinations

of finite sequences of Lie brackets of elements in W = R ⊕ R
d, i.e.

W ⊕ [W, W ] ⊕ [W, [W, W ]] ⊕ · · · .
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We call an element u of πj(L) a Lie polynomial of degree j and an infinite sequence of
Lie brackets a Lie series. Note that πj(L) ⊆ T (j)(R, Rd).

Words of the form εα := εα1 ⊗ · · · ⊗ εαk
, α ∈ A ∪ {∅}, form a basis for T (R, Rd) (note

that ε∅ := 1). Following Kusuoka [7], for

wi =
∑
α∈A

wiαεα ∈ T (R, Rd), i = 1, 2,

we define an inner product and a norm ‖ · ‖2 on T (R, Rd) by

(w1, w2) =
∑

α∈A∪{∅}
w1αw2α, ‖w1‖2 = (w1, w1)1/2. (3.1)

Note that, restricted to T (j)(R, Rd), all norms are equivalent, as T (j)(R, Rd) is finite
dimensional when regarded as a vector space.

The map sending εi to Vi, i = 0, . . . , d, extends to a unique linear map on W and by
the universality property of the tensor algebra extends to a unique homomorphism Γ

from T (R, Rd) into the differential operators on R
N . The restriction of Γ to L is a Lie

map from L into the smooth vector fields on R
N .

Finally, we collect a number of simple algebraic facts.

Lemma 3.1. Let w ∈ L. Then

(i) the homogeneous scaling 〈t, ·〉 commutes with exp and log,

(ii) πm log(πmw) = πm log(w) and πm exp(πmw) = πm exp(w),

(iii) Γ restricted to πmL is a linear map of finite-dimensional vector spaces and hence
commutes with expectations on πmL.

Proof. Part (i) is obvious from the definition of log and exp as power series. Part (ii)
follows from the fact that, for a, b ∈ T (R, Rd), πm(πm(a)πm(b)) = πm(ab). �

For a path φ ∈ C0
0,bv([0, T ], Rd) with φ0(t) = t, s, t ∈ [0, T ], we define its signature

(also known as the Chen series) Ss,t : C0
0,bv([0, T ], Rd) → T (R, Rd) by

Ss,t(φ) =
∞∑

k=0

∫
s<t1<···<tk<t

dφ(t1) ⊗ · · · ⊗ dφ(tk), (3.2)

where the summation is to be interpreted as a direct sum. Using Stratonovich iterated
integrals, we may define Ss,t(◦B), the random Stratonovich signature of a Brownian
motion (under Wiener measure).

With these definitions in mind, we can restate condition (2.1) in the definition of a
cubature measure as

E(πm(S0,1(◦B))) =
n∑

j=1

λjπm(S0,1(ωj)). (3.3)
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Chen’s theorem (see, for example, [13]) tells us that Li := πm(log(S0,1(ωi))) is a Lie
polynomial. The measure QL =

∑n
j=1 λjδLj

satisfies

E(πm(S0,1(◦B))) = EQL(dL)(πm exp(L)). (3.4)

Conversely, for any Lie polynomials Li there exist continuous bounded variation paths ωi

with log-signature Li. Moreover, if QL satisfies (3.4), Q will satisfy (3.3), so the identities
(3.3) and (3.4) are equivalent. The proof of Chen’s theorem can be extended to show that
log(Ss,t(◦B)) is a (random) Lie series (see, for example, [11]). Such arguments can be
used to obtain small-time asymptotics of the solution of Stratonovich SDEs (see, for
example, [1]).

Motivated by this discussion, and following [13], we make the following equivalent
definition for a cubature measure on Wiener space.

Definition 3.2. Let m ∈ N and QL =
∑n

j=1 λjδLj
with λi > 0 and Li ∈ πm(L) for

i = 1, . . . , n. We say QL is a cubature measure on Wiener space if and only if

E(S(m)
0,1 (◦B)) = EQL(dL)πm exp(L).

In the following we will sometimes, where no confusion arises, drop the reference to
the integration variable L and write EQL in place of EQL(dL). A cubature measure over
a general time interval [0, T ] may be obtained from QL by homogeneously rescaling the
Lie polynomial in its support and leaving the weights unchanged. We have

E(S(m)
0,T (◦B)) = EQL(dL)πm exp(〈

√
T , L〉).

4. Error estimate for the cubature approximation

In this section we derive our main error estimate and demonstrate that PT f can be
approximated to high order by a cubature measure, and the bounds on the error do not
involve any derivative in the V0 direction (just its Lie brackets).

Theorem 4.1. Let P denote the Wiener measure, and let Q denote a degree-m cuba-
ture measure supported on paths of bounded variation. Then

sup
x∈RN

|EP f(ξx,s) − EQf(ξx,s)| � C

( 2m∑
j=m+1

sj/2‖f‖V,j + s(m+1)/2‖∇f‖∞

)

for any s ∈ (0, 1], f ∈ C∞
b (RN ). The constant C depends on d, m, Q1,

sup
α∈A(m+2)\A(m)

‖Vα Id(·)‖∞

and
EP ‖πk(log S(◦B))‖k

2 , EQ1‖πk(log S(◦B))‖k
2 , 1 � k � 2m.

As an immediate consequence, by substituting [13, Proposition 3.2] by Theorem 4.1,
we obtain the following error estimate for the KLV method that preserves its higher-order
convergence.
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E( f (  1,x))ξ SDE

E(   (  mS0,1(  B)) f (x))πΓ

E f (Exp[     m log S0,1(  B)](x))Γπ

tensor level

flow level

E( f [Exp[   (   m log(exp(−  0)    S0,1(  B)))](Exp(V0)(x))])π ε

E([     m(exp(−  0)   S0,1(  B))] f (Exp(V0)(x)))Γπ ε
Lemma 4.3

Lemma 4.5

Γ

Figure 1. Structure of the approximations.

Corollary 4.2. With the notation of Corollary 2.7, suppose the vector fields satisfy
the UFG condition. Then

sup
x∈RN

|PT f(x) − Eν(f(ξT,x))|

� C(T )‖∇f‖∞

(
s
1/2
k +

k−1∑
i=1

( 2m∑
j=m+1

s
j/2
i

(T − ti)(j−1)/2 + s
(m+1)/2
i

))

and
sup

x∈RN

|PT f(x) − Eνk
(f(ξT,x))| � Ck−(m−1)/2‖∇f‖∞.

To prove the theorem we will adopt the analysis of Kusuoka [7] to the cubature in the
Wiener space setting. In the process we sharpen the estimates slightly, allowing us to
obtain a bound with at most 2m derivatives instead of mm+1 (cf. [7, Lemma 18]). Recall
that Id is the identity function on R

N defined by Id(x) = x.
Before going into technical details we give an interpretation of the ideas developed

in [7], summarized in Figure 1. A stochastic Taylor expansion of f(ξx,s) can be written
as Γ (πm(S0,1(◦B)))f(x), i.e. the differential operator obtained from the truncated sig-
nature under the map Γ acting on f at x. As the signature takes values in the tensor
algebra, we may call the Taylor approximation the tensor level (approximation). It fol-
lows immediately from the definition of a degree-m cubature measure on Wiener space
that the expectations of the degree-m Taylor approximation under P and Q are identical.
Although the actual cubature step (exchanging the measures P and Q) has to take place
at the tensor level, we cannot do it directly, as the error bounds would involve higher
derivatives in the direction of V0, which we have set out to avoid. Instead, we follow [7]
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and observe that the signature may be written as the exponential of the log signature,
and by interchanging exp and Γ we obtain a new approximation at the level of the flow
by f(Exp[Γ (πm log S0,1(◦B))](x)). Lemma 4.5 formalizes this statement and allows us
to move between the tensor algebra and the flow level. Crucially, at the level of flows, it
suffices to approximate ξt,x by ξ̂t,x in the L1 norm, as the bound for the approximation
of f(ξ̂t,x) is only increased by a factor of ‖∇f‖∞.

A key observation Kusuoka exploits is that if the Lie polynomial defining the flow does
not involve an ε0 component, the error bound for moving between flow and tensor level
does not involve higher V0 derivatives. By using a splitting argument at the level of flows
(Lemma 4.4), Kusuoka can replace the log-signature by a Baker–Campbell–Hausdorff-
style term that does not involve ε0. This allows him to move to the tensor level and
complete the approximation without using higher V0 derivatives.

To apply Kusuoka’s argument to cubature on Wiener space we will go through this
approximation process (the solid lines in Figure 1) for both the Wiener measure and the
cubature measure. By using the defining cubature identity (3.3), we will then be able to
see that the approximations at the end of each chain agree and obtain the desired bound.

The following two lemmas may be found in [7, Corollaries 15 and 17] and we will state
them without proof.

Lemma 4.3. Let m � 1, then there exists C > 0 such that

|EP (f(ξs,x)) − EP {f(Exp[Γπm〈
√

s, log S0,1(◦B)〉](x))}| � Cs(m+1)/2‖∇f‖∞

for any x ∈ R
N , s ∈ (0, 1] and f ∈ C∞

b (RN ).

The second lemma is the splitting argument at the level of flows mentioned in the
previous discussion.

Lemma 4.4. Let L(i), i = 1, 2, denote two L-valued random variables with

E[‖πk(L(i))‖k
2 ] < ∞ for any k � 1.

Then, for any m � 1 and p ∈ [1, ∞), there exists C > 0 such that

‖Exp(Γπm〈
√

s, L(1)〉)(Exp[Γπm〈
√

s, L(2)〉](x))

− Exp[Γ (πm log(exp〈
√

s, L(2)〉 ⊗ exp〈
√

s, L(1)〉))](x)‖Lp � Cs(m+1)/2

for all s ∈ (0, 1] and x ∈ R
N .

Note that
Exp(Γπm〈

√
s, L(1)〉)(Exp[Γπm〈

√
s, L(2)〉](x))

is the composition of Exp(·) functions.
The following lemma bounds the difference between flow and tensor approximation. It

improves on [7] by considering a different truncation of the Taylor approximation.
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Lemma 4.5. Let m � 2 and suppose that w ∈ πm(L). Then, for any f ∈ C∞
b (RN ),

we have

sup
x∈RN

|f(Exp[Γ (w)](x)) − (Γ [πm exp(w)]f)(x)|

�
m+1∑
j=2

∥∥∥∥
∑

i2+···+ij�m,
i1+···+ij>m

1
(j − 1)!

Γ (wi1 ⊗ · · · ⊗ wij )f
∥∥∥∥

∞
.

If in addition w satisfies (w, ε0) = 0, there exists C(w) > 0 independent of s and f such
that

sup
x∈RN

|f(Exp[Γ 〈
√

s, w〉](x)) − (Γπm exp(〈
√

s, w〉)f)(x)| � C(w)
2m∑

j=m+1

sj/2‖f‖V,j

for any s ∈ (0, 1].

Proof. Let w =
∑m

i=1 wi, such that each wi ∈ (πi − πi−1)(L) (i.e. each wi is a
homogeneous Lie polynomial of degree i). We first proceed as in [7, Proposition 9] by
noting that Γ (w) is a smooth vector field defined on all of R

N . Thus, for any smooth f ,
we have

d
dt

f(Exp(tΓ (w))(x)) = ((Γw)f)(Exp(tΓ (w))(x)).

Using this identity iteratively to expand f(Exp(tΓ (w))(x)) in a Taylor expansion, one
sees that

f(Exp(tΓ (w))(x)) −
m∑

j=0

tj

j!

(
Γ

( m∑
i1+···+ij=0

wi1 ⊗ · · · ⊗ wij

))
f(x)

=
m+1∑
j=2

∑
i2+···+ij�m,
i1+···+ij>m

∫ t

0

(t − s)j−1

(j − 1)!
[Γ (wi1 ⊗ · · · ⊗ wij )f ](Exp[sΓ (w)](x)) ds.

Setting t = 1, we deduce that

∣∣∣∣f(Exp(Γ (w))(x)) −
m∑

j=0

(
Γ

( m∑
i1+···+ij=0

1
j!

wi1 ⊗ · · · ⊗ wij

))
f(x)

∣∣∣∣

�
m+1∑
j=2

∥∥∥∥
∑

i2+···+ij�m,
i1+···+ij>m

1
(j − 1)!

Γ (wi1 ⊗ · · · ⊗ wij )f
∥∥∥∥

∞
.

Noting that

πm exp(w) =
m∑

j=0

m∑
i1+···+ij=0

1
j!

wi1 ⊗ · · · ⊗ wij
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yields the first claim. The second follows by considering 〈
√

s, w〉 in place of w and noting
that under the assumption (w, ε0) = 0 the vector field V0 does not appear on its own in the
composition of the differential operators on the right-hand side of the last inequality. �

The last lemma is obtained by combining arguments from [13] and [7].

Lemma 4.6. Let t ∈ (0, 1] and let Qt be a cubature measure for Wiener space. Then,
for any x ∈ R

N ,

|EQt
(f(ξt,x)) − EQ1{f(Exp[Γπm〈

√
t, log S0,1(◦B)〉](x))}| � Ct(m+1)/2‖∇f‖∞

for all f ∈ C∞
b (RN ), where C is a constant independent of t and f .

Proof. Let g ∈ C∞
b (RN ). By Lemma 2.3, we may write

EQt |g(ξt,x) − Γ (πm exp(log S0,t(◦B)))g(x)| � C

m+2∑
j=m+1

tj/2 sup
α∈A(j)\A(j−1)

‖Vαg‖∞. (4.1)

Letting w = πm log S0,t(◦B) and applying Lemma 4.5, we see that

EQt
|g(Exp[Γw](x)) − Γ (πm exp(w))g(x)| � C

2m∑
j=m

tj/2 sup
α∈A(j)\A(j−1)

‖Vαg‖∞. (4.2)

Combining (4.1) and (4.2) with g, the identity function, we see that

EQt
|ξt,x − Exp[Γπm log S0,t(◦B)](x)| � C

2m∑
j=m

tj/2 sup
α∈A(j)\A(j−1)

‖Vα Id ‖∞

and the lemma follows. �

We are now ready to prove Theorem 4.1. Our proof is modelled on [7, Lemma 18]. We
shall go through a sequence of approximations for the expectation of f(ξs,x) under the
Wiener measure and the cubature measure. Finally, we shall show that the approxima-
tions at each end agree.

Proof of Theorem 4.1. Let µ1,s = P be the Wiener measure on paths parametrized
over [0, s] and µ2,s = Qs. From Lemmas 4.3 and 4.6 we see that, for i = 1, 2,

sup
x∈RN

|Eµi,s(f(ξs,x)) − Eµi,1{f(Exp[Γπm〈
√

s, log S0,1(◦B)〉](x))}| � Cs(m+1)/2‖∇f‖∞.

(4.3)
Let

L(1) = πm log S
(m)
0,1 (◦B) and L(2) = −ε0.

It is well known (see, for example, [11]) that the log-signature of Brownian motion is a
Lie series with probability 1. Also, we have E[‖πk(log S0,1(◦B))‖k

2 ] < ∞. In fact, using
the techniques of rough paths, a similar statement can be obtained at the level of paths.

https://doi.org/10.1017/S0013091513000485 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000485


On the error estimate for cubature on Wiener space 389

For example, in [12] Lyons and Sidorova compute the radius of convergence for the log
signature.

Hence, Lemma 4.4 implies that, for i = 1, 2,

|Eµi,1f(Exp(Γπm〈
√

s, L(1)〉)(Exp[Γπm〈
√

s, L(2)〉](z)))

− Eµi,1f(Exp[Γπm log(exp〈
√

s, L(2)〉 ⊗ exp〈
√

s, L(1)〉)](z))| � Cs(m+1)/2‖∇f‖∞.

(4.4)

Writing
x = Exp(Γ 〈

√
s,−ε0〉)(z),

the inequality (4.4) becomes

|Eµi,1f(Exp(Γπm〈
√

s, L(1)〉)(x))

− Eµi,1f(Exp[Γπm log(exp〈
√

s, L(2)〉 ⊗ exp〈
√

s, L(1)〉)](Exp(Γ 〈
√

s, ε0〉)(x)))|
� Cs(m+1)/2‖∇f‖∞.

(4.5)

Thus, combining inequalities (4.3) and (4.5) and using the triangle inequality, we see
that

sup
x∈RN

|Eµi,s
f(ξs,x) − Eµi,1f(Exp[Γπm log(exp(〈

√
s,−ε0〉)

⊗ 〈
√

s, S0,1(◦B)〉)](Exp(Γ 〈
√

s, ε0〉)(x)))|
� Cs(m+1)/2‖∇f‖∞.

(4.6)

It follows from the Baker–Campbell–Hausdorff formula that

πm log(exp(〈
√

s,−ε0〉) ⊗ 〈
√

s, S0,1(◦B)〉) (4.7)

has no ε0 component, i.e.

(πm log(exp(〈
√

s,−ε0〉) ⊗ 〈
√

s, S0,1(◦B)〉), ε0) = 0,

where the inner product is defined in (3.1).
Moreover, as the log signature of the Brownian motion is a Lie series with probability 1,

(4.7) is a Lie polynomial.
Hence, we may apply Lemma 4.5 to inequality (4.6) and, once again using the triangle

inequality, we obtain, for i = 1, 2,

sup
x∈RN

|Eµi,s
(f(ξs,x)) − Eµi,1((Γπm exp〈

√
s, πm log(exp(−ε0) ⊗ S0,1(◦B))〉f)(y))|

� C

( 2m∑
j=m+1

sj/2‖f‖V,j + s(m+1)/2‖∇f‖∞

)
,

(4.8)
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where y = Exp(Γ 〈
√

s, ε0〉)(x) = z. Note that in the previous step we have used the fact
that the scaling operation 〈s, ·〉 commutes with log and exp. We have also used the fact
that

πm exp〈
√

s, πm log(exp(−ε0) ⊗ S0,1(◦B))〉 = πm〈
√

s, exp(−ε0) ⊗ S0,1(◦B)〉.

Finally, using the cubature relation (3.3),

EP (πmS0,1(◦B)) = EQ1(πmS0,1(◦B)),

and noting that the multiplication by a deterministic tensor can be taken out of the
expectation, we have

EP (πm(exp(−ε0) ⊗ S0,1(◦B))) = EQ1(πm(exp(−ε0) ⊗ S0,1(◦B))).

Hence, it follows that

EP [(Γπm〈
√

s, exp(−ε0) ⊗ S0,1(◦B)〉f)(z)] = EQ1 [(Γπm〈
√

s, exp(−ε0) ⊗ S0,1(◦B)〉f)(z)].

Using this identity in (4.8), a final application of the triangle inequality completes the
proof of the theorem. �

Remark 4.7. The truncated log signatures of the cubature paths of a degree-m
cubature measure satisfy the definition of an m-L-moment-similar random variable of
Kusuoka [7] with respect to the truncated log signature of the Brownian motion. Con-
versely, for any finite such family we can find paths that satisfy a degree-m cubature
formula. The approximation operator for Psf whose error bounds are analysed in [7] can
be written as

EQLf(Exp[Γ 〈
√

s, πmL〉](x))

and it is clear from our discussion that the same bounds as in Theorem 4.1 can be
obtained for this approximation.
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