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Abstract. On P3, we show that mathematical instantons in characteristic two are unobstructed. We
produce upper bounds for the dimension of the moduli space of stable rank two bundésron
characteristic two. In cases where there is a phenomenon of good reduction modulo two, these give
similar results in characteristic zero. We also give an example of a nonreduced component of the
moduli space in characteristic two.
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Introduction

The study of mathematical instantons on projective three space has been pursued
partly because of the Atiyah—Ward—Drinfeld—Manin theorem which showed that
the solutions of the self-dual Yang—Mills equations $thcould be described in
algebraic terms as particular cases of mathematical instanton bundl%s A8 a
conseguence, many workers have studied these bundles (and their generalizations
to P?'+1) over the complex numbers and are still studying issues like the smooth-
ness and irreducibility of the moduli spaces of these bundles. In this paper, we
would like to discuss mathematical instanton bundle®duefined over fields of

any characteristic. The question of whether such bundles are unobstructed is still
unknown in general, though it has been verified in some special cases. In [N-T],
unobstructedness is proved for all mathematical instantons with a section in degree
one. In [R-2], it is proved for those with a jumping line of maximal order.

Over a field of characteristic two, we will find (Theorem 2.4) that the unob-
structedness of all mathematical instantong8iis extremely easy to see. In fact,
these are the only unobstructed stable rank two bundI&s ¢with c; = 0) in this
characteristic. We also find a simple example (2.6) of a nonreduced component of
the moduli space in characteristic two. We expect that most components will have
this property of nonreducedness.

As a consequence, we show that in characteristic zero, a mathematical instanton
is unobstructed if some pull-back of it by an automorphisnPdfeduces modulo
2 to a mathematical instanton (Theorem 3.2). However, this result does not answer
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the problem for all mathematical instantons in characteristic zero. In fact, there
are examples, in characteristic zero, of such bundles for which no pull-back by an
automorphism oP? reduces modulo two to a mathematical instanton (Example
3.7).

These computations in characteristic two also allow us to bound the dimension
of each component of the moduli space of stable rank two bundleR®ofthe
bound has ordet? wheren is the normalized second Chern class (Corollary 2.8).
Once again this bound has a consequence in characteristic zero. Specifically, if
N is a component of the moduli space which contains one bundle that reduces to
a stable or semi-stable bundle in characteristic two, then the dimensighi®f
bounded above by a bound of the ordé(Theorem 3.8).

The first section contains a review of facts about bundleB%im any charac-
teristic, and includes a definition of mathematical instantons (1.5). In Section two,
some calculations in characteristic two are made. These arise from the relationship
between the second symmetric power in characteristic two and Frobenius pull-
backs. | would like to thank V. Mehta for pointing out to me this relationship. In
the last section, applications to characteristic zero are made.

1. We first review some elementary facts about vector bundles over a projective
space defined over an arbitrary figldviany of the results in the literature are dis-
cussed for an algebraically closed field, and in the case of mathematical instanton
bundles, even over the complex numbers. We observe that most of these conditions
can be relaxed.

ConsiderP}, projectiven-space defined over a field Let k be the algebraic
closure ofk. The notion of a (geometric) vector bundle o®frand the notion of a
locally free sheaf oi®; are equivalent ([H-1], Il, 5.18). Lef be a vector bundle
of rankr defined orP}. Let & = & ® k be its pull-back td.

1.1. The square

pr— . pr

k

N

Speck —— Specdk

is Cartesian witht — k faithfully flat. Hence
H (P!, &) =H' (P}, 8 ® k

and
H' (P!, &) =0« H' (P, &) =0.

1.2. The integers; (&) can be defined as(&). However since Pi&;)= Z, there
is an isomorphism\"& = Op: (c1) Which is defined ovek.
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1.3. Horrock’s Theorem states thats isomorphic ovek to a sum of line bundles if

and only ifH (P}, &) = 0 for alli between 1 and —1. This is valid over any field.

For example, consider the proof given in [O-S-S], which uses the complex numbers
as the base field. Upon reading the proof, we see only one place where the argument
does not work for arbitrarg. This is in the proof of Grothendieck’s theorem, an
auxiliary result needed in the proof. In this part, a sectioe H°(P:, & (ko))

is chosen, wheréyg is the least integer for which a nonzero sectioran be
chosen and the claim is made that this section is nowhere vanishing. For us, in our
context where is arbitrary, this should mean thathas no zeros ovek. Indeed

this is true, for ifs has a zero irP,%, we would conclude that comes from a
section ofHO(P,%, & (ko—1)). But thenH(PL, & (ko — 1)) itself is nonzero by (1.1)
contradicting our choices. Thus we still get

O—>(9p%—s>8(k0)—>$'—>0,

where¥ is a bundle orP,%, and the proof in [O-S-S] continues without change.

1.4. Therefore the results of [B-H] and [R-1] on the construction of monads for a
bundle€ of rank two onP? are valid in any characteristic. L&thave first Chern
classc;. Then there is an isomorphis&t = &(—c;) which is defined ovet. M =
H*l(P3, €) is a finite length module ovef = k[ Xq, X1, X, X3] . Let Lo — M be

a surjective homomorphism wherg is a sum of graded twists ¢f, picking out a

set of minimal generators @ff. Then there is a monad

0— Z,E]/(Cl)—ﬂ>l~,1—a>l~,0—>0,

where L, is also a sum of twists of and «, 8 are matrices of homogeneous
polynomials inS. Furthermore, there is an isomorphisitL; = L (c1) with
H a matrix of homogeneous polynomials Srsuch thatHg = «". This gives an
isomorphism between the monad and the dual monad which lifts the isomorphism
betweené” and & (—cy). If Hom(Lq, L) = 0, then thisH is unique and can be
chosen sothall¥ = —H.

The result in [R-1] says that we may takeas a minimal presentation of the
S-module M. Furthermore, ifL, — L; — Lo — M — 0 s part of a minimal

resolution forM, then the mag.(c1) LN L1 will be a direct-summand of the
mapL, — Li [H-R, 3.2].

1.5. We give the definition of a mathematical instanton of rank twd®pnThe
general definition due to Okonek and Spindler [O-S] of a mathematical instanton
onP?%*! has conditions on natural cohomology and trivial splittings on the general
line. We will relax this part of their definition for our case of rank twoRh

DEFINITION. An indecomposable rank two bundfeon P,f withecy =0,c0 =n
is called a mathematical instantonAf (P2, & (—2)) = 0.
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Recall that for a rank two bundle witly = 0 in characteristic zero, the con-
dition that it splits trivially on the general line is equivalent to the condition of
semi-stability. Likewise, natural cohomology in the rang8 to 0 also implies
stability (if H1(&) # 0.) We will not assume priori such conditions. However,
stability will follow below. In arbitrary characteristic, we do not know if the split-
ting type of a bundle as defined above can be non-trivial on the general line. The
following theorem is well known. We include a proof because, for example, the
proof in [B-H] uses trivial splitting on the general line and the corresponding proof
in [O-S] uses their condition of natural cohomology.

THEOREM.Let & be a mathematical instanton Grf withcy = 0, c; = n. Then

(a) HY(P3, &(—k)) = Ofor k > 2.

(b) M = H*l(P3, €) has all its minimal generators in degreel.
(c) HO(P3, &) = 0 (henceg is stabls.

(d) n = hY(P3, 6(-1)) > 0.

(e) €& is the homology of a minimal monad

0= n0ps(—1) —2+ (21 +2)0ps —+ nOpa(+1) — O.

(f) Conversely, any bundle which is the homology of such a monad @3 ima
mathematical instanton bundle with = 0, ¢» = n.

Proof. Since most of the statements are about dimensions of cohomology, by
(1.1) we will assume that is algebraically closed so that geometric construc-
tions work as usual. To prove (a), we will show thatcif¢) = 0 or —1 and
HY(P3, &(—m)) = 0 for somem > 0, thenH(P2, & (—k)) = O for allk > m. For
supposeH (P2, €(—k)) # 0 with k > m and letk be the least such. Leéf be a
general hyperplane iRZ, and consider

0— &(—k) 2+ 8(—k+1) - Ex(—k +1) — 0. (%)

Thené& g (—k + 1) clearly gets at least one global sectiofConsider
0 &(—k+1) L+ 8(—k+2) > &4(—k +2) — 0.

Since HYX(&(—k + 1)) = 0, the multiples oft in H°(&y(—k + 2)) arise from
sections o (—k+2). S0&(—k +2) has at least three global sections. The sections
of & in degrees less than or equal to O (if they exist) are all multiples of a single
sections and this section is the unique section in degre€sO whose zero-scheme
has codimension two. Sincek + 2 < 0, there is a single section, sayof & (—1)

for some!/ > 0. This induces a nonzero sectiehof &45(—1). If H is chosen
generally, the zero-scheme @fin H has codimension two. Hence all sections
of & in degrees< 0 must be multiples of’. It is evident from the long exact
sequence of cohomology ¢f) that the section of & ; (—k + 1) is not a multiple

of s’. This is a contradiction. Hence the result is proved.
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To prove (b), we study the minimal monad&fThe monad will be 0 Zg —
L1 — Lo — 0 as before. IfM has any generators in degrees 0 or 1 etc., it
means that.o has summands lik&§(0) or S(—1) etc. By the minimality of the
monad,L; must have summands likg—1) or S(—2) etc. ButL; = L,, henceL,
has summands lik§(1) or S(2) etc. Such summands must map to zerd. by
degree considerations and minimality. However, the thap~> Lg is a minimal
presentation off, hence no summands can map to zero. Hence all generators of
M are in degree-1.

To prove (c), we now know thatg is a sum ofS(1)’s. HenceL, cannot have
any summands likeS(1) or S(2), etc. SinceL, is selfdual,L; can contain only
S(0)’s. Hence the minimal resolution a¥/ which looks like— L, — L; —
Lo — M — 0 must havel, without anyS(0) or S(1), etc. NowL, = L & L)
and there is a surjection 053"2 — & which induces a surjection of global sections
in all twists. This shows thag has no sections in degree0.

(d) is merely a Riemann—Roch computation new- 0 because, for example,
if n = 0, then we get = 0 by (b). Hence, by Serre dualitif?(&) = 0 as well.
So¢& is decomposable by Horrock’s theorem. Therefore O.

Of course, by now (e) has been demonstrated. (f) is quite obvious from the
display of the monad. O

1.6. The coarse moduli schemepf(cl, ¢») of stable rank 2 bundles dﬁ,? with

Chern classes;, ¢, exists and is &-scheme ([M], Theorem 5.6). The fact that
this moduli scheme is quasi-projective has been proved by Maruyama and also
discussed in [H-2]. This scheme behaves well under base change ([M], Remark
5.9) so that for example i is the algebraic closure df, then .Mpg(cl, ) =

Mpg(cl, €2) XSpeck Spec. If & is a bundle onP,f giving a k-valued point on
Mps(c1, ¢2), thené = & ® k on Pg gives a geometric point. The Zariski tan-
gent space at this geometric point is givenBy(P2, Hom(&, €)) and if H2(P3,
Hom(€, &)) = 0, the moduli space is smooth at this point, with dimension equal

to h1(P2, Hom(€, &)). In this case, we shall say thétis unobstructed. Of course,
the dimensions of these vector spaces can be computed&isver k.

1.7. The spectrum of a semi-stable rank two bundl®phas been defined in char-
acteristic zero in [B-E] and in arbitrary characteristic in [H-3]. Since the spectrum
determines and is determined by dimension&&P?, €(/)), we do not need to
assume that is algebraically closed. Let us recall the spectrum as found in [H-3].
Let & be a semi-stable rank two bundle E‘r,ﬁ with ¢; = 0 or —1 andc¢, = n.
There is a unique set af integersk,, ko, ... k, called the spectrum & with the
following properties: let# denote the sheah©p1(k;) on PL.

(@) K1 (P2, &(1)) = hO(PY, #¢(1 + 1)) for I < —1.
(b) {—k;} = {k;} if ¢c; = 0 and
{(—ki} = {ki + 1} if c1 = —1.
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(c) The spectrum is connected, except possibly for a gap atidfstable, then
the spectrum is connected.

(d) An integer! may appear more than once in the spectruni. £ —2 and!
appears exactly once in the spectrum, then any smaller integer can occur at
most once in the spectrum. &fis stable and; = 0, we can say the same for
1< -1,

Property (d) was proved in [H-3 Prop. 5.1] using a characteristic zero hypo-
theses. However, this hypotheses was really heeded only to prove a stronger state-
ment about unstable planes and as was pointed out in [H-R], for the proof of (d),
characteristic zero is not required.

1.8. Whenc; = 0, the condition that/1(P3, €(—2)) = 0 is equivalent to the
condition that the spectrum &f (with ¢, = n) consists of: zeroes. Likewise, let
€ be a rank two bundle with; = —1, ¢c; = n and with H(P?, £(—2)) = 0. In
our proof of Theorem 1.5, we showed tiﬂi(P3, &(—k)) =0forallk > 2. ltis
easy to prove by the same techniques that, in the minimal mon&d foe termL,
has onlyS(0)’s andS(—1)’s, henceL, can contain only term$§(a) with a < —1.
Therefore g is stable.€ has spectrum consisting §f0’s and3 —1's.

2. Letm: X — Y be amorphism of schemes defined over a fteddi characteristic
p different from zero. We can define Frobenius automorphigimsf X and Y
induced by the Frobenius homomorphigm> a” on affine rings. Then the square

F

X X
Y F Y
commutes.

LEMMA 2.1. Let F: Py — P} be the Frobenius morphism in characteristic
Then (i) FlOpr(D] = @, _1a;Opr (—i) whereg; is the number of monomials
~

Xpxb .. Xt of degreel + pi with each exponenk; < p. (i) Whenk has
characteristic two

+1
Flom0= P (7+2i)(9p;;<—i>.

HEziz—g
Proof.For1<i <n—1,
H' (P, F.[0p; (D] ® Opr(m)) = H'(P}, Opr (1) @ F*[Op:(m)])

= H'(P}, Op:(l + pm)) =0
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for all m. Hence by Horrock’s theorem, the bundFe[(QpZ (D] is a sum of line
bundles. The number of summands in this bundle of the fowp(—i) can be

computed by finding the dimension &f' (P}, F.[Op: ()] ® le(i)) which is just
hi(Py, F*[Qéz](l + pi)). We have the sequence
0 — F' Q%10+ pi)

(X8, X}

— (n+DOp( + pli — 1)) Opi (I + pi) — O.

The lemma follows now from this sequence. O
PROPOSITION 2.2Let & be a rank two bundle oR; with first Chern class:,
wherek has characteristicp. Let F' be the Frobenius mapping d?;.. Then we
have exact sequences

0— F'¢ = S,(86) = 5,208 ® Opi(c1) > 0
and

0— (DPZ — Hom(¢€, &) — S8 ® (9P’,§(—Cl) — 0.

Proof. Consider the commuting square (not Cartesian)

P(&) —— P(&)
|
pr—L P
Let @, (1) denote the tautological line quotient bundleR(®). So we have
0— A2(1*8) ® O, (—1) — 1*& — O,(1) — 0.
Sincen?(*€) = m*Opr (c1), after applyingF* we get
0— F*'n*0pi(c1) ® F*Or(=1) — F'n*€ — F*0,(1) — 0,
hence
0— 7*Opy(pc1) ® Ox(—p) > " F€ — Ox(p) — 0.
Applying 7., we get (sincer,. (@, (—p)) = 0)

0— F*€ - m,0,(p) = Op:(pc1) ® R, O (—p) — 0.
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Now R, 0, (—p) = [1,.0,(p — 1Y ® (A28)Y ([H-1], lIl, 8.4), hence we get
0— F*€ - S,(6) = [S,26]" ® Opr(pc1 —c1) — 0.

Now in characteristig, [S,_26]" = S,_2(6Y) = S,_2(6) ® Opi (—(p — 2)c1)
hence we end with

0— F'¢ = S,(8) = 5,2(6) ® Op;(c1) — 0.

For the other part, observe that HENE) = €* ® &€ = € ® € ® Opy(—c1),
hence we have the sequence

0— Opr - Hom(E, &) — $2€ ® Opr(—c1) > 0

(obtained for example by the push down of the tautological sequend®®n
tensored by9,, (1)). O

COROLLARY 2.3.Let € be a rank two bundle oR?, wherek has characteristic
two.

() Letc; =0and letm > —4.
If m is even, theh?(P}, Hom(&, §)(m)) = h'(P}, 6(—2 — %)) + 6h1(P},
€(-3— %) +h* (P (-4 —%)).
If m is odd, themh?(P, Hom(€, §)(m)) = 4h*(P}, &(—32 — 1) + 4h (P,
g(—H2 —2)).

(i) Letc; = —1andletm > —4.
If m is even, theth?(P}, Hom(€, &)(m)) = 4h*(P}, &(—2 — 2)) + 4h* (P,
g(-3-1)).
If m is odd, thenh?(P{, Hom(€, &)(m)) = h'(P}, 6(—2E) + 6h1 (P},
E(—22 — 1) + h* (P}, 6(— 22 — 2)).

Proof. Whenm > —4,
h2(P3, Hom(&, €)(m)) = h2(P3, $,6 ® Ops(m — 1))
= h?(P}, F*[€]1® Ops(m — c1)
= h'(P}, F*(6) ® Ops(cr —m — 4))
= P F* (&) ® Ops(—2c1 + 1 —m — )
= h'(P}, € ® F.[Ops(—c1 —m — 4))).

Now if —c1—m—4 = 2, thenF,[Ops(—c1 —m —4)] = F,F*[0p(1)] = Op3() ®
F.[0p] = Ops(t) ® [0  60p3(—1) ® Op(=D)]. If —c1 —m —4 = 2t — 1, then
Fi[Ops(—c1 —m —4)] = F[F*[0p()] ® Ops(=1)] = Op3(r) ® Fi[Op3(—1)] =
Ops(t) ® [40p3(—1) ® 40p3(—2)]. 0
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THEOREM 2.4.f k is a field of characteristic two, then a stable rank two bundle
& with ¢; = Oiis unobstructed if and only & is a mathematical instanton d®g.
Proof. h2(P3, Hom(€, €)) = h'(8(—2)) + 6h1(€(—3)) + h'(&(—4)) by the
Corollary above. We saw earlier (Theorem 1.5 (a)) thiai€(—2)) = 0 implies
that the other terms are also zero. O

THEOREM 2.5.If k is a field of characteristic two, then a stable rank two bundle
€ with ¢; = —1 is unobstructed if and only #X(P2, &(—2)) = 0.

Proof. In this caseh?(P}, Hom(€, €)) = 4h*(§(—2)) + 4h'(€(—3)). Again,
if h1(&(=2)) = 0then so igi'(&(—3)) (see 1.8). O

With this situation, one expects that the moduli schemes in characteristic two will
be highly singular. Indeed, in the first example of a bundle family not of mathem-
atical instanton type, we find that the moduli scheme has a nonreduced component.
In contrast, at this time, very few examples of singular components of the moduli
scheme are known in characteristic zero ([Ma], [A-O]).

EXAMPLE 2.6. A nonreduced component #f(0, 3) in characteristic two.
Consider stable bundles cﬂf with ¢; = 0, ¢, = 3 and spectrum-1, 0, 1. The
monad of such a bundig (regardless of characteristic) has the form

0= Opa(~2) —"+ Opa(—1) & 2053 ® Opa(1) —"+ Opa(2) — 0.

Callingit0 - A —2+ B -2+ ¢ — 0, letg be the kernel of the right hand
map. 4 has a ten dimensional family of sections in degree 2, hence the set of
all such monads is parametrized by a quasi-projective vaietyf dimension

10+ dimHom(B, C) = 54. This space maps onto the moduli space of all stable
bundles of the type being considered. The group(AukAut(B) xAut(C) acts

on V and the orbit of a monad consists of monads for isomorphic stable bundles.
The subgroupk*, embedded diagonally, stabilizes a monad. On the other hand,
since HoniC, B) = Hom(B, A) = 0, results of Barth and Hulek [B-H] tell us that
any automorphism of a bund&is uniquely lifted to an automorphism of monads.
Sinceé is stable, Aut§) consists of elements &f, hence the stabilizer of a monad

is exactlyk*. Thus we get a dimension of 54 le@s+ 32+ 1 — 1) or a dimension

of 21 for this component of the moduli space.

The mathematical instantons form smooth components of the moduli space,
of dimension 21, proved above in characteristic two. (See also, for example, [L],
for a proof valid in any characteristic.) There are just two possible spectra for these
Chern classes. Hence, by reasons of dimension, the bundles with spectr@i
give a distinct irreducible component of the moduli scheme.

Now these bundles (with spectrum-1, 0, 1) haveh!(P3, €(—2)) = 1, Hence,
in characteristic two, by Corollary 2.%2(P3, Hom(€, €)) = 1. Sinceh!(P3,
Hom(&, &)) — h2(P2, Hom(€, €)) = 8¢, — 3 = 21, it follows that the Zariski
tangent space to each such pdnn this component of the moduli scheme is 22-
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dimensional and hence larger than the dimension of the component. Thus we get a
non-reduced component. O

THEOREM 2.7.Let & be a semistable bundle of rank two with= 0 or —1 and
c, = n onP3, in characteristic2.

(i) If c1 = 0O, thenh?(P3, Hom(€, €)) < (n — 1)2.
(i) If c; = 0andé is stable, them2(P3, Hom(€, €)) < (n — 2)2.
(iii) If c; = —1(so€ is stable) K2(P3, Hom(E, €)) < (n — 2)2.

Proof. By the earlier discussion, we just need to bohﬁ(Pﬁ, (F*&)(—c1—4))

above.
First, letc; = 0. Using Lemma 2.1, we see that

W' (P}, (F*8)(—4)) = h'(P}, F*(€(-2)))
= h'(P{. 6(~2) ® F.(0p)
= n'(P}, €(=2) + 6h* (P}, £(=3)) + h'(P}, €(—4)).
Now & has a spectrum of integers and let the positive integers in the spectrum
consist ofa; onesa, twos, ... g, r's with noa; equal to zero by the connectedness
of the spectrum. LeEq; = b. Let X = @;-0a;Op1(i). Thenh (P2, &(—m)) =
ho(PY, X (—m + 1)) form > 1.
Hence
h (P}, €(—2)) = a1 + 2ap + 3a3 - - + ra,,
6h'(P;. €(—3)) = 6(az + 2az- - + (r — Da,),
h'(P}, 8(—4) = az+ 2as- - + (r — 2)a,,
and
h* (P}, (F*€)(—4) = a1 + 8(az + 2a3+ - -~ + (r — D)a,).
If bis fixed, this sum will be maximized when eagh= 1, giving
WY P2, (F*€)(—4)) < 1+ 4(b — Db = (2b — 1%

Now wheng is semistable, we know by symmetry of the spectrumahsitn /2.
If in addition & is stable, then the spectrum is connected, hénee (n — 1)/2.
This gives (i) and (ii).

If c; = —1, we need to bound[A(P?, £(—2)) 4+ h'(P}, €(—3))] which is
equal to 4a; + 3a, + 5a3 + --- + (2r — 1)a,]. For fixedb = Xgq;, this sum
is maximized when all;'s are 1, hence by#. Now b < (n/2) — 1 since the
spectrum is connected and symmetric abellf2. Hence the bound of (iii). O

COROLLARY 2.8.In characteristic two, the moduli spaces of stable rank two
bundles onP? have each component bounded above in dimension: i the
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normalized second Chern class, the dimension is less than or equéitdn + 1
for c; = 0 and less than or equal t@? + 4n — 1for ¢; = —1.

Proof If ¢; = 0 (respectively—1), thenh(Hom(g, &)) — h?>(Hom(g, &))
equals 8 — 3 (respectively 8 — 5), for such a stable bund®. Now use the last
theorem to bound@!(Hom(g, &)). O

Remarks2.9. It is quite likely that this upper bound is too coarse. In fact, one
expects that nonreducedness contributes a part to this bound(féeom(&, &€)).
Known examples of large families of stable bundles have dimension much below
this bound. Examples of Ellingsrud and Stremme give componemt§ 0f 2k — 1)

of dimension 82 + 4k + 1, while Ein gives examples it (—1, 2k) of dimension

3k? + 7k + 2 (See [E] for bothk > 2 in these examples.) These dimensions are of
the order2n?.

3. We will try to draw some conclusions about bundles in characteristic zero from
these results in characteristic two. So &ebe a rank two bundle oR?, defined
over a fieldk of characteristic zero. By the discussion in the first secibis the
homology of a minimal monad

0— Z(\)/(Cl)—ﬂ>l~4]_—a>io—>0

wherea, 8 are matrices of homogeneous polynomialsSia= k[ Xo, X1, X5, X3].

Let A C k be a sub-integral domain @fwhose field of fractions i&. Since the
monad gives an equivalent monadifg are multiplied by nonzero elements/of
we may assume thaty, 3 are matrices of homogeneous polynomials in
Al[Xo, X1, X2, X3]. We will call this ‘a lift of the monad (and of the bundi&)

to A’. This lift is of course by no means unique. Now }ebe a prime ideal ofA
such that the residue fieldp) has characteristic two. For a given such an ideal
may not exist inA, but there will always be an in k for which such an ideal exists.
Then, taking the lifted monad f&, we may reduce it modulo this ideal, that is to
say, we may appl® 4k (p). In general, we do not expect this to be a monad over
the fieldk(p); for example, the reduce@l may not be an inclusion of bundles.

DEFINITION 3.1. We will say tha€ has a good monad reduction to characteristic
two if there is a minimal monad fog, as described above for some choicedof
andp, such that the reduction moduids still a monad over the residue field.

RemarksNote that in this definition, we are ending up with a bundle in char-
acteristic two which has the same monad type as the bundle we started with. So,
for example, if a mathematical instanton bundle has a good monad reduction to
characteristic two, it's lift toA specializes to a mathematical instanton bundle in
characteristic two.

We can also assume théA, p) is a discrete valuation ring. Indeed, by the
‘Lefschetz Principle’, we may assume thatthe field of definition of€) is fi-
nitely generated ove®. If an A has been found ik with ap giving good monad
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reduction, we can replacé with its integral closured’ in k and replace with

an over-idealp’ in A’, since reduction t&(p’) is obtained by base change after
first reducing tdk(p). Next, replacingd’” with its localization ap’, we may assume
that (A, p) is a local normal domain with fraction field The condition of good
reduction modulg and Nakayama’'s Lemma tell us that the lift of the monad to
defines a monad for a vector bundle B}, hence also at each localizatiety of

A. Since 2¢ p, we can choose a height one prime sub-ideabntaining 2, getting

a discrete valuation ring, with the required properties.

THEOREM 3.2.Let & be a mathematical instanton bundle éﬁ wherek has
characteristic zero

(1) If & has a good monad reduction to characteristic two, tles unobstructed
(2) Suppose there is an elemente GL(4, k) such thatp*€ has a good monad
reduction to characteristic two. Thehis unobstructed

Proof. This is a standard upper semi-continuity argument.A.gt be as in the
definition above. Then since moduylothe lift of the monad gives a monad over the
residue field, there is an open €étin SpecA which containg, and such that on
P32, the lift of the monad is a monad, i&.lifts to a bundleg, on P3. Since at the
prime p, the restriction of€ is a mathematical instanton, hence unobstructed (in
characteristic two), there is a perhaps smaller opei setU, where we may take
V = SpecA, for somef € A, over whichHZ(P3 ,Hom(&y, &y)) = 0, hence
also H?(P}, Hom(g, &)) = 0.

The second result follows sin€eandy*& have appropriate cohomology groups
of the same dimension. O

EXAMPLE 3.3. OnP%, consider the mathematical instanton bun@lle/ith ¢; =
0, ¢, = 1 and minimal monad

0= Ops(—1) L+ 40p —2+ Ops(1) — O,

where
—2X1
g = ol X 2% X 2Xal
—2X3
X2

Certainly, this monad (defined ové) has bad reduction modulo 2. Howeveér,
has an equivalent monad which has good reduction, for we see that there is an
isomorphism of monads ové} given by

0

Ops(—1) L 40ps — %+ Ops(l) ——— 0

1]

Ops(—1) L+ 40p — ¢+ Opa(l) —— 0,

0
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where
1 0 0 O —X1
B 0 2 0O g = Xo '~ [Xe X1 Xo Xa
Y = 00 1 0l = X, ) a = [Xo 1 2 3l
0O 0 0 2 X5

This new monad has good reduction modulo 2, and tusas a good monad
reduction modulo 2.

EXAMPLE 3.4. Consider the bundi& defined overQ by the monad

(-2X1.2X0,—X3,Xp)V (X0, X1,X2.X3)

0— (9p3(—1)

409ps Ops(1) — 0.
| claim that this€ does not have a good monad reduction modulo 2.

Proof. Of course, this particular monad is also a liftAavhich does not reduce
well modulo 2. However, it may be that some lift of an equivalent monad may exist,
that reduces well. So suppose thais some integral domain betwe&randQ and
suppose there is a lift tBi of a monad for¢ which reduces well modulo 2. This
lift will have matricesg, anda,. The two monads are equivalent ov@r hence
as = [Xo, X1, X0, X3l for some matrix/ in GL(4, Q). Clearlyys can be found
with entries inA. Since the right hand maps of both monads are surjective modulo
2, the determinant ofy is nonzero modulo 2. By localizing at the multiplicative
set obtained from the determinant ¥f we may assume that is invertible over
A and 2 is still in SpeA). Then we see thai8, = ¥ [—2X4, 2Xo, — X3, X»]"
wherec € Q. Write ¢ ase/f, a ratio of integers in lowest terms. If 2 divides
then[—2X1, 2Xo, — X3, X»]" is identically zero modulo 2, which is not true. 8o
is invertible at 2. Hence modulo 8, = iw‘l[O, 0, — X3, X5]Y. This contradicts

e

our assumption thad, modulo 2 is an injection of bundles. O

EXAMPLE 3.5. In Example (3.3), we could also have proceeded as follows: Con-
sider the automorphism &%) given byX; — Xo, X1 — X1/2, X; — X2, X3 —
X3/2. If ¢ is this automorphismy*€& has the monad witlg’, o’ as described there
(so that in this casey fixes §).

EXAMPLE 3.6. Let& be any mathematical instanton bundle with= 0, ¢, = 1
defined over a field. Then& has a minimal monad
0 — Ops(—1) L+ 40ps —%+ Ops(1) — O,
where after a change of basis, we may assumextthat{X, X; X, Xz]. Then
the kernel ofx is 9;3(1) and the mags can be understood as picking out a section
k
of HO(P?, 9;3(2)). If V is the vector spac&°(P3, 9ps(1) (defined ovek), B can
k
be viewed as picking an elementAiV. The fact thap is an inclusion of bundles
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means tha picks out an indecomposable vectoriRV (up to scalar multiples).
Now, the action of G4, k) on A%V has one orbit consisting of the indecomposable
vectors. Hence, given arg), there is an automorphisgmof Pf such thap*€ is the
standard bundle with the monad described in (3.3)

_Xl
Xo
_X3
X2

i.e. with matrixg’ =

Thus anyé& with ¢; = 0,c, = 1 defined over a field of characteristic zero
satisfies the second condition of the Theorem 3.2.

EXAMPLE 3.7. A mathematical instanton which satisfies neither of the assump-
tions of Theorem 3.2.

Let k = Q(+/—3) and letA be the ring of elements integral ové:. The
prime number 2 ofZ is undecomposed i@, hence at the prime 2, the exten-
sion of residue fields has degree 2. Let: be the skew lines i3, with ideals
(Xo, X1), (X2, X3) respectively. LetP,, P,, P3, P4 be the four points ori with
coordinateq0, 0, 1, 2),(0,0, 1, 1),(0,0, 1, 0), (0,0,0, 1) and Q1, Q», 03, Q4 the
four points onm with coordinates(1, «, 0, 0),(1, 1,0, 0), (1,0, 0, 0), (0, 1, 0, 0),
wherea € A is an element which reduces modulo 2 to an elemaenhich is not
in Z,. The cross-ratio oh of the four points in this order is 2 and that of the four
points onm is a. Recall that the cross-ratio of four distinct points on a line is an
element of the field which is not 0 or 1 and is invariant under automorphisms of
the line.

Now let¢ be an automorphism & defined over an extension fietdlof k. Let
I', P/,m’, Q; be the inverse images undgrof [, P;, m, Q;. The cross-ratio of the
appropriate inverse image points is unchanged from the cross-ratio of the original
points. Furthermore, suppodéis a ring ink’ whose field of fractions i&’ and letp
be a prime ideal with residue field of characteristic two. In the light of the remarks
following (3.1), we will assume thatA’, p) is a discrete valuation ring. Thetl
containsA and we can find equations and coordinateg’fa?/, m’, Q; defined over
A’. The Hilbert schemes of lines and pointsPiﬁ are proper oveA’, hence we can
find equations and coordinates which reduce well mogullmore concretely, we
can divide the equations and coordinates by a power of the uniformizing parameter
of p after which good reduction is possible.) Lgtm be the reductions df, m’
modulop. On/j, since the reduced cross-ratio is now zero, the four points are no
longer distinct. On the other hand, the four pointsigrdo reduce to distinct points
of mg by our choice ofa.

The unionY = P10, U P,Q, U P3Q3U P4Q4 is the zero-scheme of a section
s € HO(P3, £(1)) for a mathematical instanton bundtewith ¢, = 3, defined over
k. In fact, sinceY does not lie on a quadri& has a unigue section up to scalar
multiples. We will use three facts in the following:
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(i) Thelinem is a jumping line for€ of order 3 since it is a quadri-secant fior

(Indeed, consider the restriction of the sequencd foio m: 0,,(—1) — &,, —
Iy(D) ® 0,, — 0). Hence the same is true far as a jumping line o&’ = ¢*¢€.
Furthermore, i€’ is a vector bundle oﬁ"j,, then the specializatiom, of m" after
reducing modulg will be a jumping line foré; of order at least 3.

(ii) Let s be a section in degree one for a mathematical instafftand letY
be the zero-scheme. Suppdsés a reduced subschemelofvhich lies on a plane.
ThenC is aline. For ifH is the plane so obtained, wheilis restricted to a section
of ¥y, it vanishes along the cur«&, hence is divisible by the equation 6f So
F u(—d) has a section wher is the degree of. The result now follows from
the restriction sequence &f to H.

(iii) A result of NuRler and Trautmann (true in any characteristic) states that if
F is a mathematical instanton with a sectioin degree one and if: is any line
contained in the support of the zero scheme,adhen¥,, = 0,,(-1) ® 0,,(1)
[N-T].

CLAIM. Letk’ be an extension field & and let¢ be any automorphism &t:,.
Theng&’ = ¢*€& does not have a good monad reduction modulo. two

Proof. Assume the contrary. By this assumption, using the same notation as
above, there is a vector bund#, on P3, which specializes to a mathematical
instanton&; on Pf(p). Along with a lift of the monad tod’, we can lift the section
s of &'(1) to A". Hence the specialization sfwill give a sections; of &€;,(1) which
defines a codimension two zero-scheljen P,f(p). By our choice of cross-ratios,
the lines inY, (the zero-scheme af) cannot specialize to four disjoint lines in
Pf(p). In fact, we claim thatn, the specialization of:” is contained inv;.

Indeed, the four point®)’, 05, 05, O, onm’ reduce to four distinct points on
my, While the four points ord’ don'’t. SinceY;; cannot have a component whose
reduced subscheme is planar of degkee, in particularY; cannot contain two
distinct lines meeting at a point. So the only conclusion is igties insideY.
But this is a contradiction, since on the one hand the restricticg}, ab m, splits
asO(—1) ® 0 (1) using (iii) above and on the other hand@6-3) & O (3) since
the limit of a jumping line of order 3 is a jumping line of order at least three (and
hence equal to 3 as the maximal possible order of a jumping line is 3).

Thus the claim. O

Lastly, we get the following consequence of Corollary 2.8.

THEOREM 3.8.Letk be a field of characteristic zero. Suppa¥éds a component
of Mpi(cl, n) which contains one bundi& which reduces modulo two to a stable
bundle. ThenV has dimension bounded aboveidy+ 4n + 1 for ¢; = 0 and by
n?+4n — 1for ¢ = —1.

Proof. Our definition of good reduction here is more general than the definition
in (3.1). It means merely that there is a vector bur&lleon P3 such thai€ 4, ® 4 k
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equalsg, and such tha&, ®, k(p) is stable. The bounds fdrt(Hom(g, &)) of
(2.8) are valid ovek as well, by upper semi-continuity. O

Remarks3.9. We do not know if there are componemswhich violate the
condition of Theorem 3.8. The condition of degenerating to a stable bundle can be
relaxed to one of degenerating to a semi-stable bundle without any great change in
the dimension bound, since Theorem 2.7 still applies. A remark similar to the above
theorem can be made about mathematical instantonsV lbeta component of the
moduli space of mathematical instantons with= 0, ¢, = n in characteristic
zero. Suppose tha¥ contains one bundl& which has a good monad reduction
modulo two. ThenV is generically smooth of dimensiom 8- 3. Of course this is
well known for the usual component of instantons, i.e. the component containing
the bundles corresponding to skew lines. Even in the example we gave in (3.7), if
the example is deformed in moduli by changing the cross-ratio of 2 to a value not
in Z,, we end up with a bundle with good monad reduction. It may well be (as
seems to be generally expected) that there is only one component for this moduli
space, in which case this remark gives nothing new.
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