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Abstract

Cardona and Lario [‘Twists of the genus 2 curve y2 = x6 + 1’, J. Number Theory 209 (2020), 195–211]
gave a complete classification of the twists of the curve y2 = x6 + 1. In this paper, we study the twists of
the curve whose automorphism group is defined over a biquadratic extension of the rationals. If the twists
are of type B or C in the Cardona–Lario classification, we find a pair of elliptic curves whose product is
isogenous with the Jacobian of the twist.
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1. Introduction

Given a curve defined over a field, its twist is another curve that becomes isomorphic
to the given curve over the algebraic closure. For example, an elliptic curve over a field
k whose defining equation is y2 = f (x) is isomorphic to a curve defined by the equation
Dy2 = f (x) over k(

√
D). This is called a quadratic twist of the elliptic curve. In the case

of a generic elliptic curve (that is, its j-invariant is not equal to 0, 1728), every twist is
a quadratic twist.

For a curve of genus ≥ 2, the notion of the quadratic twist of an elliptic curve can be
generalised to the hyperelliptic twist. A hyperelliptic twist of a curve y2 = f (x) has an
affine equation Dy2 = f (x) for some D ∈ k×/(k×)2. We denote by X(D) the hyperelliptic
twist of the curve X. Again, X and X(D) become isomorphic over k(

√
D). Since the

automorphism group of a hyperelliptic curve can be larger than that of an elliptic
curve, there are also nonhyperelliptic twists in the genus 2 case. The automorphism
group of the genus 2 curve is one of
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2 K. Jeong, Y.-W. Kwon and J. Park [2]

C2, V4, D8, D12, C10, S̃4, 2D12,

where Cn is the cyclic group of order n, Dn is the dihedral group of order n, V4 is
the Klein 4 group, S̃4 � GL2(F3) is a double cover of the symmetric group S4 and
2D12 is a double cover of D12. The classification of isomorphism classes of curves
whose automorphism group is D8, D12, S̃4 and 2D12 is studied by Cardona and his
collaborators [1–3].

We consider twists of a genus 2 curve defined over Q whose automorphism group is
isomorphic to 2D12. There is only one such Q-isomorphism class, and a representative
is given by the equation y2 = x6 + 1. From [2], the classification of the Q-isomorphism
class of the curve y2 = x6 + 1 is given by two steps: first, the classification of the
possible Galois module structures on 2D12; second, the classification of the curves
whose automorphism group has the given Galois module structure.

For nonhyperelliptic twists, we consider twists whose automorphism group has the
Galois module structure defined over a biquadratic extension ofQ. From [2, Section 7]:

(i) the biquadratic extension of Q should have Q(
√
−3) as a subfield;

(ii) let Q(
√

d,
√
−3) be the biquadratic extension. Then, there are six types

A, B, . . . , E, G (see (2.2) and the discussion following Definition 2.5) so that
any twist whose automorphism group is Q(

√
d,
√
−3) is one of VA

4 , . . . , VE
4 , VG

4
(type F does not appear when the base field is Q);

(iii) if two curves of the same type also have the same biquadratic extension, then
they are hyperelliptic twists of each other.

In short, the Q-isomorphism class of a twist is determined by three parameters: a type
in {A, B, . . . , E, G}, the defining field of the automorphism group Q(

√
d,
√
−3) and a

hyperelliptic twist.
Types B and C are relatively simple because, in this case, the parameter d has no

additional restrictions. We give a concrete decomposition of twists of these types.

THEOREM 1.1. Let X/Q be a twist of type VB
4 or VC

4 . Then, there are d, D ∈ Q×/(Q×)2

such that the Jacobian of X is isogenous to E(−D)
0 × E(−dD)

0 or E(D)
0 × E(dD)

0 where Em
0 for

m ∈ Q× is the elliptic curve given by my2 = x3 + 1.

The main tool is a computation of L-factors of twists of y2 = x6 + 1 which is done
by Fité and Sutherland [5]. In Section 2, we recall previous results on the twists of
the curve y2 = x6 + 1. In Section 3, we study some properties of our twist families. In
Section 4, we give a proof of the main theorem.

2. Preliminaries

In this section, we recall the classification [2] of twists of the curve y2 = x6 + 1,
with an emphasis on the biquadratic case, and some previous results of [5].

For a curve X over a field k, we say that another curve X′ over k is a twist
of X if X′ becomes isomorphic to X over the algebraic closure k of k. The set of
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[3] Decomposition of the Jacobian 3

k-isomorphism classes of X is denoted by Twist(X/k). In what follows, we abbreviate
Autk(X) := Autk(Xk). It is well known (see, for example, [6, Theorem X.2.2]) that there
is a canonical bijection

Twist(X/k) ∼ �� H1(Gk, Autk(X)).

From now on, let X0/Q denote the genus 2 curve defined by the equation y2 =

x6 + 1. We recall that Aut
Q

(X0) is isomorphic to 2D12 as an abstract group. Following
[2], we use a group presentation

A := 〈U, V ,−1 : (−1)2 = U2 = V6 = 1, (UV)2 = (VU)2 = −1,−1 ∈ Z(A)〉,
which is isomorphic to 2D12 as a group. Its automorphism group is isomorphic to
C2 × D12. We specify the elements of Aut(A) as follows: ι, j are two central involutions,
s the noncentral involution, t the automorphism of order 3 with relation ts = st2 (see
[2, Section 3]).

Suppose that X is a twist of X0. Then Aut
Q

(X) is also isomorphic to 2D12 as a group,
so we first consider possible GQ-module structures on A. Since giving a GQ-structure
on A is equivalent to giving a morphism GQ → Aut(A), we concentrate on the latter.
Let K be the field of definition of the GQ-structure on A so that

GQ
·|K �� �� Gal(K/Q) ∼ �� H ≤ Aut(A) = 〈ι, j, s, t〉

for a certain subgroup H in C2 × D12. Then, a GQ-structure on A is determined by K, H
and a group isomorphism between H and Gal(K/Q). To describe the extension K/Q,
we need to define some subfields of K. We consider subgroups of H, which are

H ∩ 〈ι, s, t〉, H ∩ 〈ι, j, t〉, H ∩ 〈 j, s, t〉.
They are index 1 or 2, so induce a quadratic or trivial extension of Q. We denote
them by

K1 = Q(
√

u), K2 = Q(
√

v), K3 = Q(
√

v′). (2.1)

In other words, we define u, v, v′ ∈ Q×/(Q×)2 determined by a GQ-action on A.
Since we only consider a biquadratic extension K/Q, the subgroup H is isomorphic

to V4. We recall that there are seven subgroups of C2 × 2D12 isomorphic to V4:

〈ι, j〉, 〈ι, s〉, 〈 j, s〉 〈ι j, s〉, 〈ι, js〉, 〈 j, ιs〉, 〈ιs, js〉. (2.2)

They correspond to the type V•4 for • ∈ {A, . . . , G} (see [2, Table 3]). To describe a
specific isomorphism (in 6 = |Aut(V4)|-choices) between Gal(K/Q) and H, it suffices
to give quadratic subfields of K corresponding to the generators of H. For instance,
we consider VA

4 , which corresponds to 〈ι, j〉 ≤ Aut(A). Then an isomorphism between
Gal(K/Q) and 〈ι, j〉 can be described by K〈ι〉, K〈 j〉, which are quadratic extensions ofQ.

We next describe a constraint for our GQ-module A.

LEMMA 2.1 [4, Ch. 1]. If X/k is of genus 2, then there is an injection Autk(X) ↪→
GL2(k) of Gk-groups.
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By Lemma 2.1, we only consider GQ-subgroups of GL2(Q) whose underlying
groups are isomorphic to 2D12. To get a more explicit condition using the parameters
in (2.1), we introduce the following definition.

DEFINITION 2.2. If u, v ∈ Q satisfy (u,−3v) = 1 ∈ Br2(Q), then by [2, Remark 1],

x2 +
3
v

y2 = u

has solutions in Q×. Once solutions α, β ∈ Q× are chosen, we define constants

z = 4α3 − 3uα, s =
u2 − 2α2u + αz

3β
.

THEOREM 2.3 [2, Theorem 2]. Let A be a GQ-group with underlying group isomorphic
to 2D12, K the defining field of the GQ-module structure on A which is a biquadratic
extension of Q, Ki the subfield of K defined by (2.1) for i = 1, 2, 3, and u, v, v′ elements
in Q×/(Q×)2 also defined by (2.1). Then A can be embedded in GL2(Q) if and only if
(u,−3v) = 1 ∈ Br2(Q) and v′ ≡ −3v (mod Q×2). In this case, A � 〈U, V ,−1〉, where

U =
1
√

u

(
α β

3β/v −α

)
, V =

√
−3
2

(
1

√
v/3

−1/
√

v 1

)
, −1 =

(
−1 0
0 −1

)
and the field of definition is K = Q(

√
u,
√

v,
√
−3).

In particular, the biquadratic extension K should include Q(
√
−3). Using these

parameters, we can give a concrete defining equation of a twist.

THEOREM 2.4 [2, Propositions 3 and 4]. For a GQ-group A embedded in GL2(Q) and
isomorphic to 2D12 as an abstract group, there is a twist with defining equation

y2 = 27zx6 − 162svx5 − 135vzx4 + 180sv2x3 + 45v2zx2 − 18sv3x − v3z,

whose automorphism group is GQ-isomorphic to A. Furthermore, two twists, whose
automorphism group is GQ-isomorphic to A, differ by a hyperelliptic twist.

Together with a classification of hyperelliptic twists [2, Proposition 6], we obtain the
complete classification of twists of X0, whose automorphism group is defined over K.

DEFINITION 2.5. A twist X/k of X0/k is said to be of biquadratic type if the defining
field of Autk(X) is a biquadratic extension of k.

We note that this terminology works well with [2] since the twists of biquadratic
type are twists of type V•4 for • ∈ {A, B, . . . , G} in [2].

We also have a complete classification of twists of biquadratic type. The classifi-
cation is given in two steps. First, we specify the GQ-module structure on 2D12 by
describing the quadratic subfields (2.1). After that, Theorem 2.4 gives a twist whose
automorphism group is isomorphic to a given GQ-module, and any other twists with
the same conditions are the hyperelliptic twists of the given twist. By [2, Section 7], we
give Ki (and hence, a GQ-module structure on 2D12) for each type V•4 , • ∈ {A, B, . . . , G}.
Here is a summary of [2, Section 7]:
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[5] Decomposition of the Jacobian 5

• if (d,−3) = 1 ∈ Br2(Q), there is the twist of type VA
4 with u = d, v = 1;

• there is the twist of type VB
4 with u = 1, v = d;

• there is the twist of type VC
4 with u = d, v = −3;

• if (d, d) = 1 ∈ Br2(Q), there is the twist of type VD
4 with u = d, v = −3u;

• if (d,−3d) = 1 ∈ Br2(Q), there is the twist of type VE
4 with u = d, v = d;

• there is no twist of the form VF
4 ;

• if (−3d,−3) = 1 ∈ Br2(Q), there is the twist of type VG
4 with u = −3, v = d.

We recall that K1 = Q(
√

u), K2 = Q(
√

v) and K3 = Q(
√

v′).

REMARK 2.6. We emphasise that the word ‘biquadratic’ in ‘biquadratic type’ is not
the same as in the ‘quadratic’ twists of elliptic curves. In the case of elliptic curves,
the only twists come from a character of order 2, 3, 4, 6 (see [6, Example X.2.4]). They
are usually called quadratic, cubic, quartic and sextic twists of elliptic curves, referring
to the minimal field defining φ : C′

k
→ Ck. For example, the map φ(x, y) := (

3√
A2x, Ay)

that gives a Q-isomorphism between EA : y2 = x3 + A2 and E1 : y2 = x3 + 1 is defined
over Q( 3√A). This is a cubic extension of Q when A is a cube-free integer, so it is called
a cubic twist.

The following definitions come from [5].

DEFINITION 2.7. Let X′/k be a twist of X and let φ : X′
k
→ Xk be a k-isomorphism.

We use the following notation:

(1) Lφ is the defining field of the isomorphism φ;
(2) K is the defining field of Autk(X′);
(3) L is the compositum of the defining fields of k-isomorphisms from X′ to X.

We note that K, L depend on X′ and Lφ further depends on the choice of φ.
In the above example concerning EA and E1, there are other choices of φ making
L0 = Q(ζ3

3√A) or Q(ζ2
3

3√A). However, K = Q(ζ3) and L = KL0 = Q(ζ3, 3√A) for any
choice of φ. Hence a quadratic, cubic, quartic and sextic twist on an elliptic curve
indicates the degree of Lφ, and the word ‘biquadratic’ in the phrase ‘twists of
biquadratic type’ means the extension of K/Q.

LEMMA 2.8 [5, Lemmas 4.2 and 4.3 and Proposition 4.6]. The following statements
hold for a twist X of X0.

(1) K is the defining field of endomorphisms of Jac(X
Q

).
(2) The following extensions of K coincide:

(a) L as in Definition 2.7;
(b) the compositum of K and Lφ for any Q-isomorphism φ : X → X0;
(c) the defining field of all homomorphisms from Jac(X0)

Q
to Jac(X)

Q
.

(3) [L : K] ≤ 2.
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3. Twist families of biquadratic type

In this section, we give a concrete parametrisation of twist types VB
4 and VC

4 . Then
we prove that L is a subfield of K(i) in both cases.

3.1. Type C. For VC
4 , we have u = d, v = −3. According to Definition 2.2,

x2 − y2 = d has solutions in Q×. We choose (with d � ±1)

α =
d + 1

2
, β =

d − 1
2

so that the defining equation in Theorem 2.4 becomes y2 = fd(x), where

fd(x) = 54(d3 + 1)x6 + 324(d3 − 1)x5 + 810(d3 + 1)x4 + 1080(d3 − 1)x3

+ 810(d3 + 1)x2 + 324(d3 − 1)x + 54(d3 + 1). (3.1)

Let XC
d be the twist defined by the equation y2 = fd(x). Then, the field K of XC

d is
Q(
√

d,
√
−3) since u = d and v = −3. Also, by Theorem 2.4, {XC

d } is the one-parameter
twist such that:

• none of the elements is a hyperelliptic twist of another element;
• every twist of type VC

4 is a hyperelliptic twist of {XC
d }.

Hence, one can say that this family is a family of twists orthogonal to the hyperelliptic
twists. This is the first motivation of our paper.

The polynomial fd(x) in (3.1) factors into

54((d + 1)x2 + 2(d − 1)x + d + 1)

× ((d2 − d + 1)x4 + 4(d2 − 1)x3 + (6d2 + 2d + 6)x2 + 4(d2 − 1)x + d2 − d + 1).

We further suppose that d � 0 and set δC = (1 +
√
−3)/2d. Then the zeros are

−(d − 1) ± 2
√
−d

d + 1
, −1 −

√
δC

1 +
√
δC

, −1 +
√
δC

1 −
√
δC

, −
1 −

√
δC

1 +
√
δC

, −
1 +

√
δC

1 −
√
δC

.

LEMMA 3.1. Let d be a nonsquare rational number and let Ld be the splitting field of
the quartic factor of fd(x), that is,

(d2 − d + 1)x4 + 4(d2 − 1)x3 + (6d2 + 2d + 6)x2 + 4(d2 − 1)x + d2 − d + 1.

Then, Ld is a biquadratic extension of Q satisfying Ld ⊂ K(i) when d � ±1,±3.

PROOF. One can easily compute that√
δCδC =

1
d
∈ Q,

(√
δC +

√
δC

)2
= δC + δC + 2

√
δCδC ∈ Q
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and

1 −
√
δC

1 +
√
δC
− 1

1 −
√
δC

1 +
√
δC
+ 1
= −

√
δC.

Hence,

Ld = Q

(1 −
√
δC

1 +
√
δC

,
1 −

√
δC

1 +
√
δC

)
= Q

(1 −
√
δC

1 +
√
δC

)
= Q(

√
δC).

We note that each root of the quartic part of fd is not in Q because

1 −
√
δC

1 +
√
δC
= −1 +

2
1 +
√
δC
� Q,

√
δC � Q, δC � Q.

Hence, if the quartic part is reducible, then it is a product of two quadratics over Q. So
in this case, Ld ⊃ Q(

√
−3) is a biquadratic extension of Q.

Otherwise, the discriminant of the quartic is 216 · 32 · d6/(d2 − d + 1)6 and the
resolvent of the quartic is

x3 +
−6d2 − 2d − 6

d2 − d + 1
· x2 +

12d4 + 8d3 − 44d2 + 8d + 12
d4 − 2d3 + 3d2 − 2d + 1

· x

+
−8d4 − 16d3 + 104d2 − 16d − 8

d4 − 2d3 + 3d2 − 2d + 1

=

(
x +
−2d2 − 10d − 2

d2 − d + 1

)
· (x − 2) ·

(
x +
−2d2 + 6d − 2

d2 − d + 1

)
.

Hence, Ld is again a biquadratic extension of Q, since the discriminant is square and
the resolvent is reducible.

We can say that Ld = Q(
√
−3,
√

t) for some t ∈ Q×/(Q×)2 since
√
−3 ∈ Ld. Then,

K(
√
δC) = Q(

√
−3,
√

d,
√

t) should be a triquadratic extension containing Q(
√
δC) or

Q(
√
δC) itself. However,

√
d
√
δC =

√
1 +
√
−3

2
=

i
1+
√
−3

2

∈ K(
√
δC),

which implies that i ∈ K(
√
δC). Hence, when d � ±3, K(

√
δC) = Q(

√
−3, i,

√
d) and

Q(
√
δC) ⊂ K(i). �

3.2. Type B. For VB
4 , we have u = 1 and v = d. According to Definition 2.2, x2 +

(3/d)y2 = 1 has solutions in Q×. We choose (with d � ±3)

α =
d − 3
d + 3

, β =
2d

d + 3
,
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so that the defining equation in Theorem 2.4 becomes of the form y2 = fd(x), where

fd(x) = 27
(d − 3)(d2 − 42d + 9)

(d + 3)3

(
x2 +

4d
d − 3

x − 1
3

d
)

×
(
x4 +

32d2 − 96d
d2 − 42d + 9

x3 +
− 14

3 d3 + 68d2 − 42d

d2 − 42d + 9
x2 +

− 32
3 d3 + 32d2

d2 − 42d + 9
x +

1
9

d2
)
.

As before, we denote by XB
d the twist y2 = fd(x). Then the family {XB

d } has the same
properties as the family {XC

d } discussed in the previous section.
The zeros of the quadratic factors of fd are

−6d ± (d + 3)
√

3d
3(d − 3)

,

and the zeros of the quartic factor are

−1
2

(
δB ±

√
δ2B +

4d
3

)
, −1

2

(
δB ±

√
δB

2
+

4d
3

)
,

where

δB :=
−16d2 + 48d + 2(d + 3)2

√
d

d2 − 42d + 9
, δB :=

−16d2 + 48d − 2(d + 3)2
√

d
d2 − 42d + 9

.

The defining fields of zeros of the quadratic and the quartic are

Q(
√

3d), Q

(√
d,

√
δ2B +

4d
3

,

√
δB

2
+

4d
3

)
.

The latter is denoted by Ld, which is the splitting field of the quartic part of fd.

LEMMA 3.2. In the above settings, Ld = Q(
√

d,
√

3) when d � ±3 is a nonsquare
rational number.

PROOF. The quartic part of fd is

x4 +
32d2 − 96d

d2 − 42d + 9
x3 +

− 14
3 d3 + 68d2 − 42d

d2 − 42d + 9
x2 +

− 32
3 d3 + 32d2

d2 − 42d + 9
x +

1
9

d2.

Since √
δ2B +

4d
3

√
δB

2
+

4d
3
=

16
3

d(d + 3)2

(d2 − 42d + 9)
∈ Q,

we have

Ld = Q

(√
d,

√
δ2B +

4d
3

,

√
δB

2
+

4d
3

)
= Q

(√
δ2B +

4d
3

)
.

However,(√
δ2B +

4d
3
+

√
δB

2
+

4d
3

)2

= δ2B + δB
2
+

8d
3
+

√
δ2B +

4d
3

√
δB

2
+

4d
3
∈ Q,
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which means that

Q

(√
δ2B +

4d
3
+

√
δB

2
+

4d
3

)
⊂ Q

(√
δ2B +

4d
3

)
is a quadratic subfield. Since(√

δ2B +
4d
3
+

√
δB

2
+

4d
3

)2

=

(
8
3

(d − 3)(d + 3)
d2 − 42d + 9

√
3d

)2

,

we can conclude that Ld ⊃ Q(
√

d,
√

3).
Next, we claim that each zero of the quartic is not rational. Suppose that

δB ±
√
δ2B +

4d
3
∈ Q.

Then there is a rational number a such that√
δ2B +

4d
3
= a ∓ 2(d + 3)2

d2 − 42d + 9

√
d.

Taking the squares of both sides,

16d(d + 3)2(d2 + 30d + 9)
3(d2 − 42d + 9)2 ∓ 64(d − 3)d(d + 3)2

(d2 − 42d + 9)2

√
d

= a2 +
4d(d + 3)4

(d2 − 42d + 9)2 ∓
4a(d + 3)2

(d2 − 42d + 9)

√
d.

Comparing the coefficients of
√

d,

a =
16d(d − 3)

d2 − 42d + 9
.

Substituting this yields

16d(d + 3)2(d2 + 30d + 9)
3(d2 − 42d + 9)2 =

162d2(d − 3)2

(d2 − 42d + 9)2 +
4d(d + 3)4

(d2 − 42d + 9)2 .

This is equivalent to
4
3 (d2 − 42d + 9)2 = 0,

which does not have a solution in Q. To deal with the other case:

δB ±
√
δ

2
B +

4d
3
∈ Q,

it suffices to replace
√

d by −
√

d in the above computation. Therefore, we arrive at the
same conclusion. Hence, if the quartic part of f is reducible over Q, it is a product of
two quadratics, which means that Ld is a biquadratic extension of Q.
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Suppose that the quartic part is irreducible over Q. Its discriminant is

216

34

d6(d + 3)12

(d2 − 42d + 9)6 ,

which is a square, and its resolvent is(
x +

−2
3 d3 − 36d2 − 6d

d2 − 42d + 9

)
·
(
x +

2
3

d
)
·
(
x +

14
3 d3 − 4d2 + 42d

d2 − 42d + 9

)
,

which is reducible. Hence, Ld is also a biquadratic extension of Q. Consequently, we
have Ld = Q(

√
d,
√

3) in both cases. �

3.3. Computation of the number field L.

PROPOSITION 3.3. Let Xd : y2 = fd(x) be a twist of type V•4 with • ∈ {A, B, . . . , G} and
K = Q(

√
d,
√
−3). Suppose that fd(x) is decomposed in K(i). Then, L is K(i) or K.

PROOF. By Lemma 2.1, every isomorphism from X0 to Xd can be represented by a
linear fractional transformation on x. More precisely, an isomorphism is given by

x→ mx + n
px + q

, y→ (mq − pn)y
(px + q)3

with mq − pn � 0. Let γi denote the zeros of fd. Since the zeros of x6 + 1 are
±i,±iζ3,±iζ2

3 , at least one of the linear fractional transformations that satisfy

γk1 → i, γk2 → −i, γk3 → iζ3

for ki ∈ {1, . . . , 6} is the isomorphism from C1 to Cd, which is defined over (possibly a
subfield of) Q(i, ζ3, γ1, . . . , γ6).

Let Lφ be the defining field of this isomorphism so that Lφ ⊂ Q(i, ζ3, γ1, . . . , γ6). By
assumption, Q(γ1, . . . , γ6) and also Q(i, ζ3, γ1, . . . , γ6) are subfields of K(i). Therefore,

L =
{

K if Lφ ⊂ K,
K(i) otherwise,

since LφK = L by Lemma 2.8. �

COROLLARY 3.4. Let Xd be a twist of type VB
4 or VC

4 . Then, L is K(i) or K.

PROOF. This is a direct consequence of Lemmas 3.1, 3.2 and Proposition 3.3. �

4. Proof of the main theorem

4.1. Proof for type B, C. Let E be an elliptic curve. Then, its L-function is a product
of L-factors, Lp(E/Q, s) = (1 − ap(E)p−s + p1−2s)−1, where E has good reduction at p.
Here, ap(E) is the trace of the Frobenius which is in the interval [−2

√
p, 2
√

p].
Similarly,

Lp(X/Q, s) = (1 + ap,1(X)p−s + ap,2(X)p−2s + ap,1(X)p1−3s + p2−4s)−1,
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TABLE 1. The L-factors of Jd corresponding to I(p).

I(p) ap,1(J•d) ap,2(J•d) Lp(J•d/Q, s)−1

(1, 1, 1) −2ap a2
p + 2p 1 − 2ap p−s + (a2

p + 2p)p−2s − 2ap p1−3s + p2−4s

(2, 1, 1) 2ap a2
p + 2p 1 + 2ap p−s + (a2

p + 2p)p−2s + 2ap p1−3s + p2−4s

(2, 2, 1) 0 −a2
p + 2p 1 − (a2

p − 2p)p−2s + p2−4s

(2, 2, 2) 0 2p 1 + 2p1−2s + p2−4s

when X is a curve of genus 2 and has good reduction at p. For an elliptic curve E and
a genus 2 curve X, we denote by E(D) and X(D) the respective hyperelliptic twists given
by the field Q(

√
D). It is also well known that

Lp(E(D)/Q, s) = (1 − ap(E)χD(p)p−s + p1−2s)−1,

where χD is the quadratic character attached to the field extension Q(
√

D)/Q.
Let XB

d and XC
d be the twists of X0 of biquadratic type B, C studied in the previous

section. We denote by J0, JB
d , JC

d their Jacobians, by X(D)
0 , XB,(D)

d , XC,(D)
d the hyperelliptic

twists and by J(D)
0 , JB,(D)

d , JC,(D)
d the Jacobians of the hyperelliptic twists. Finally, we

denote by E0 the elliptic curve over Q defined by the equation y2 = x3 + 1.
We also recall some notation from [5, Section 4]. Let M = Q(

√
−3). The definition

of L, K which depends on the choice of the twist X of X0 is given by Definition 2.7.
For a number field F, the residue degree at p in F/Q is denoted by fF(p). We define
I(p) = I(p, C) := ( fL(p), fK(p), fM(p)).

PROPOSITION 4.1. Let X•d be a twist of X0 with • ∈ {B, C}, and let p be a prime greater
than 3, where X•d have good reduction at p. Table 1 gives the L-factors for J•d (with
ap = ap(E0)).

PROOF. This is an application of [5, Proposition 4.9] in our cases, but we note that [5]
uses a normalisation ap,i(J)/pi/2 and a1(E)(p) = −ap(E0). (For example, the L-factor
of an elliptic curve is 1 + a1(E)(p)T + T2 in [5, page 555].)

By Corollary 3.4, L = K(i) or L = K. By [5, Proposition 4.9], the possible values of
I(p) are

(1, 1, 1), (2, 1, 1), (2, 2, 1), (4, 2, 1), (2, 2, 2), (4, 2, 2),

and I(p) determines ap,1 and ap,2. When L = K(i), which is a triquadratic field, the first
entry of I(p) cannot be 4. This gives the first three columns of Table 1 and the last one
can be easily computed.

When L = K, the only possible value of I(p) is one of (1, 1, 1), (2, 2, 1) and (2, 2, 2).
The other results are not changed. �

We note that each entry of the fourth column in Table 1 can be factorised, namely
(1 − ap p−s + p1−2s)2, (1 + ap p−s + p1−2s)2, (1 − ap p−s + p1−2s)(1 + ap p−s + p1−2s) and
(1 + p1−2s)2.
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Suppose that L = K(i). Since there is no rational prime whose residue degree is 4
in a biquadratic extension, the conditions on I(p) are:

• I(p) = (1, 1, 1) if and only if p totally splits in L;
• I(p) = (2, 1, 1) if and only if p is inert in Q(i) and totally splits in K;
• I(p) = (2, 2, 1) if and only if p is inert in Q(

√
d) and splits in Q(

√
−3);

• I(p) = (2, 2, 2) if and only if p is inert in Q(
√
−3).

Let us define

S1 = {p : I(p) = (1, 1, 1)}, S2 = {p : I(p) = (2, 1, 1)},
S3 = {p : I(p) = (2, 2, 1)}, S4 = {p : I(p) = (2, 2, 2)}.

It follows that half of the primes are in S4, 1
4 in S3 and 1

8 in each of S2, S1.
When L = K, a rational prime is an element of S1, S3 or S4. Also in this case:

• p ∈ S1 if and only if p totally splits in L = K;
• p ∈ S3 if and only if p is inert in Q(

√
d) and splits in Q(

√
−3);

• p ∈ S4 if and only if p is inert in Q(
√
−3).

Hence, in this case, half of the primes are in S4 and 1
4 in each of S3, S1.

PROOF OF THEOREM 1.1. We first consider the case L = K(i). By Proposition 4.1,

L(J•d/Q, s)−1 ∼
∏
p∈S1

(1 − ap p−s + p1−2s)2
∏
p∈S2

(1 + ap p−s + p1−2s)2

×
∏
p∈S3

(1 − ap p−s + p1−2s)(1 + ap p−s + p1−2s)
∏
p∈S4

(1 + p1−2s)2,

where • ∈ {B, C}. Here, ∼means that the quantities are the same at unramified primes.
We consider L-functions of E(−1)

0 × E(−d)
0 . Note that p ≡ 2 (mod 3) if and only if p is

inert in Q(
√
−3). Since ap = 0 when p ≡ 2 (mod 3),

L(E(D)
0 /Q, s)−1 =

∏
p

(1 − apχD(p)p−s + p1−2s)

=
∏
p∈S1

(1 − apχD(p)p−s + p1−2s)
∏
p∈S2

(1 − apχD(p)p−s + p1−2s)

×
∏
p∈S3

(1 − apχD(p)p−s + p1−2s)
∏
p∈S4

(1 + p1−2s).

We have χ−1(p) = χ−d(p) = 1 for a prime in S1 and χ−1(p) = −1, χ−d(p) = 1 for a
prime in S2. In S3, there are two subclasses of primes:

S3,1 := {p ∈ S3 : p splits in Q(i)}, S3,2 := {p ∈ S3 : p is inert in Q(i)}.

Since p ∈ S3 if and only if χd(p) = −1, we have χ−d(p) = χ−1(p)χd(p) = −χ−1(p).
Hence, for a prime p ∈ S3, p is in S3,1 if and only if χ−1(p) = 1 and p is in S3,2 if
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and only if χ−d(p) = 1. Consequently, L(E(−1)
0 /Q, s)−1 is given by∏

p∈S1∪S3,1

(1 − ap p−s + p1−2s)
∏

p∈S2∪S3,2

(1 + ap p−s + p1−2s)
∏
p∈S4

(1 + p1−2s)

and L(E(−d)
0 /Q, s)−1 is given by∏
p∈S1∪S3,2

(1 − ap p−s + p1−2s)
∏

p∈S2∪S3,1

(1 + ap p−s + p1−2s)
∏
p∈S4

(1 + p1−2s).

Therefore, L(J•d/Q, s) ∼ L(E(−1)
0 /Q, s)L(E(−d)

0 /Q, s), which means that J•d is isogenous
to E(−1)

0 × E(−d)
0 over Q. When L = K, the same argument shows that J•d is isogenous to

E0 × E(d)
0 .

Let ρJ, be the -adic Galois representation attached to the abelian variety J. It is
well known that ρJ(D), ∼ ρJ, ⊗ χD and J1 is isogenous to J2 if and only if ρJ1 ∼ ρJ2 (see
[6, Section III.7]). Hence, for • ∈ {B, C},

ρJ•,(D)
d , ∼ ρJ•d , ⊗ χD ∼ ρE(−1)

0 ×E(−d)
0
⊗ χD = (ρE(−1)

0
⊕ ρE(−d)

0
) ⊗ χD

= (ρE(−1)
0
⊗ χD) ⊕ (ρE(−d)

0
⊗ χD) = ρE(−D)

0
⊕ ρE(−dD)

0
.

This proves the result. �

We give two remarks on Theorem 1.1. Some values of d are naturally excluded in
the family {XB

d } or {XC
d } since they do not define a twist of biquadratic type. Also,

Theorem 1.1 shows that two curves in the family {XB
d } (or {XC

d }), where d ∈ Q×/(Q×)2,
are not isogenous.

4.2. Remarks for other types. In this section, we give some remarks on the other
types A, D, E and G. Compared with the types B and C, there are two main obstacles.

(i) The Brauer group condition becomes nontrivial.
(ii) For each integer d, we have to find a solution x, y ∈ Q of

x2 +
3y2

v(d)
= u(d). (4.1)

In practice, we should express x and y as rational functions in d.

Note that when we deal with types B and C, we have easy solutions for obstacle (ii).
In some cases, we may restrict d to make obstacle (i) simpler. However, even in this

case, obstacle (ii) may remain nontrivial. In the following examples, we numerically
verify the expected nonsimplicity for some small d by finding explicit solutions (α, β)
of (4.1).

EXAMPLE 4.2. The Brauer group condition (d,−3) = 1 ∈ Br2(Q) for type A is equiv-
alent to d ≡ 1 (mod 3) when d is prime. In this case, (α, β) is a solution of

x2 + 3y2 = d.
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TABLE 2. The solutions (α, β) associated to d and the resulting fd for type A.

d (α, β) fd(x)

7 (2, 1) −2(3x2 − 18x − 1)(3x2 + 3x − 1)(15x2 − 6x − 5)
13 (1, 2) −(3x2 + 12x − 1)(15x2 − 18x − 5)(21x2 + 6x − 7)
19 (4, 1) 2(3x2 + 30x − 1)(6x2 + 3x − 2)(21x2 − 18x − 7)
31 (2, 3) −2(3x2 + 9x − 1)(21x2 − 30x − 7)(33x2 + 6x − 11)
37 (5, 2) −(3x2 − 42x − 1)(15x2 + 12x − 5)(33x2 − 18x − 11)
43 (4, 3) −2(6x2 + 9x − 2)(15x2 − 42x − 5)(39x2 − 6x − 13)
61 (7, 2) (3x2 + 54x − 1)(21x2 + 12x − 7)(39x2 − 30x − 13)
67 (8, 1) 2(12x2 + 3x − 4)(15x2 + 54x − 5)(33x2 − 42x − 11)

For example, we have (α, β) = (2, 1) when d = 7. With the calculations of previous
sections, we find the list of (α, β) and fd for primes d < 70 shown in Table 2.

By computing the discriminant of each quadratic divisor of fd, we have Ld =

Q(
√

3d), which is a subfield of K(i). By Proposition 3.3, L = K or L = K(i). Hence,
the proof of Proposition 4.1, and Theorem 1.1 also works. Consequently, JA

d is not
simple for primes d < 70 satisfying the Brauer group condition.

EXAMPLE 4.3. In the case of type D and prime d, the Brauer group condition gives
d ≡ 1 (mod 4). Since numerical computation is too complicated, we omit a detailed
description as in the previous example. For such primes d < 70, the factorisation of
fd(x) over Q(i) shows that Ld is a quartic extension of Q whose unique intermediate
field is Q(i). By the proof of Proposition 3.3, Lφ is a subfield of Ld(i) = Ld. Hence, L
is a subfield of LdK with [L : K] ≤ 2. Therefore, we can conclude that L = K or K(i).
This implies that JD

d is not simple for primes d < 70.

EXAMPLE 4.4. For type E, the Brauer group condition makes the prime d ≡
1 (mod 12). Analogous computation shows that fd has three quadratic factors over
Q(
√

3) and Ld is a quartic extension whose quadratic subfield is Q(
√

3). By the same
argument as for type D, we have checked that JE

d is not simple for primes d < 190.

EXAMPLE 4.5. In the case of type G, a simple computation shows that d = −p with
p ≡ 1 (mod 3) satisfies the Brauer group condition. This case may require more effort
to find explicit α, β.
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