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NORM CONVERGENCE OF T 

GLENN R. LUECKE 

Introduction. Throughout this paper X will denote a complex Banach 
space and all operators T will be assumed to be continuous linear transforma
tions from X into X. If T is an operator then a(T), r(T), and R(T) will denote 
the spectrum of T, the spectral radius of T, and range of T, respectively. This 
paper contains necessary and sufficient conditions for the (norm) convergence 
of {Tn) when T is an operator on X. The results of this paper generalize results 
of Yosida and Kakutani [10] and of M. Lin [7]. Recall that T is quasi-compact 
if there exists a compact operator K and a positive integer n such that 
11 Tn - K\| < 1. In [10, Theorem 4, p. 200] Yoshida and Kakutani have proved: 

THEOREM 1. (Yosida and Kakutani). If T is quasi-compact and if there exists 
a constant Csuch that \\Tn\\ ^ Cfor alln = 1, 2, . . . then a(T) Pi {z: \z\ = 1} = 
{\i, . . . A*}, a finite set, where each \ t is an eigenvalue of finite multiplicity. 
Furthermore, there exists compact operators K1} . . . , Km and a quasi-compact 
operator S such that 

m 

r = Z \inKt+ Sn,n = 1,2, . . . 
2 = 1 

and 

for some e > 0. 

Let 5 be a topological space and let C(S) denote all bounded continuous 
scalar-valued functions on 5 with the sup norm. The following theorem is 
similar to Theorem 1 and is found in Dunford and Schwartz [1, Theorem VIII. 
8.6]. 

THEOREM 2. / / T is a positive quasi-compact operator in C(S) such that Tn/n 
converges to zero weakly, then the same conclusions found in Theorem 1 are valid. 

M. Lin [7, p. 337] has shown the following. 

THEOREM 3. (M. Lin) / / T is an operator on X such that \\Tn/n\\ —> 0 then 
the following are équivalent: 

(1) T — I has closed range, 
(2) T — I has closed range and X = ker {T — I) 0 R(T — I), and 
(3) the sequence {A^- 1 ^^ ! Tl\ (norm) converges. 

Received January 25, 1977 and in revised form, May 3, 1977 and June 1, 1977. This re
search was supported in part by funds from the Iowa State University Science and Humanities 
Research Institute. 

1340 

https://doi.org/10.4153/CJM-1977-133-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-133-0


CONVERGENCE 1341 

Necessary and sufficient conditions for Tn to converge. It has already 
been shown by J. J. Koliha [5, Theorem 2.5] tha t Tn converges if and only if 
sup|cr(T) ~ {1}| < 1 and l i s a pole of (T - A/)" 1 of order ^ l.Ha(T) = {1} 
take sup \a(T) ~ {1}\ = 0. 

Koliha [5, Theorem 3.2] has shown tha t if (1) supn | | r* | | < oo, (2) T - 7 
has closed range, (3) T — I has finite descent, and if (4) X G <r(T) ^ {1} im
plies |X| < 1, then Tn converges. Using a result of AI. Lin the following im
provement is true. 

T H E O R E M 4. If (1) \\Tn/n\\ -> 0, (2) T - I has closed range, and (3) X G <r(T) 
^ {1} implies |X| < 1, then T" converges. 

Proof. Since \\Tn/n\\ —> 0 and T — I has closed range, X = ker (T — I) © 
R(T - 7) (see [7, p. 337]). Since ker (T - I) and R(T - I) are invariant 
under T we may write T = I © A. Since T — I is invertible on K(T — 7), 
and since 1 ^ À G <r(T) implies |X| < 1, A — X7 is invertible for all |X| = 1 
so tha t r(A) < 1. r(A) < 1 implies An -> 0 so tha t Tn = I © An -> 7 © 0 
and the proof is complete. 

T H E O R E M 5. 7/ (1) X = ker (7^ - 7) © M, r ( M ) ç M, (2) 7 ^ - 7 to 

c/ased range, and (3) X £ o"(T) ^ {1} implies |X| < 1, /feew 7"" converges. 

Notice t ha t in Theorem 5 the first hypothesis is weaker than the first hypoth
esis ( | | rVw| | —* 0) of Theorem 4. This is true since | |7^/w| | —> 0 and T — I 
has closed range implies X = ker (T - 7) © R(T - 7) [7, p. 337], bu t the 
converse is false (for example take T = 27). Notice tha t for Theorem 5 there 
are no a priori bounds on ||7"w|| bu t tha t it follows from Theorem 5 tha t 
supw ||7^n | | is finite. Also notice tha t the third hypothesis of Theorem 5 allows 1 
to be an accumulation point of a(T). 

Recall t ha t the approximate point spectrum of an operator A, a7r(A), is the set 
of all X G a (A) such tha t there exists \\xn\\ = 1 such tha t ||(^4 — \I)xn\\ —> 0. 
In [2, Problem 63] a proof is given tha t for any (bounded) operator i on a 
Hilbert space tha t da (A) is a subset of av(A). By appropriately modifying the 
proof given in [2, Problem 63] we have the following lemma for operators on a 
Banach space. 

LEMMA, da (A) C ar(A). 

Proof. Let X G da (A). Wi thou t loss of generality assume X = 0. Since 
0 Ç da(A), there exists invertible An—>A. Suppose, to the contrary, tha t 
0 (2 av(A). Then there exists e > 0 such tha t \\Ax\\ ^ e||x|| for all x. Therefore 
A is one-to-one and has closed range. Since A is not invertible, the closed set 
R(A) is not dense in the Banach space X. Thus there exists y (z X and <5 > 0 
so tha t \\y — Ax\\ ^ <5 for all x £ X. Define xn = An-

ly/\\An~
ly\\. Then 

||*n | | = 1, \\Anxn - Axn\\ g \\An - ^ | | - > 0 , and 

\\Anxn - Axn\\ = \\y/\\An-iy\\ - Axn\\ = \\y - A (xn/\\An^y\\)\\/\\An^y\\ 

è o/\\A-'y\\. 
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Therefore ||^4W
_13;|| —» + 00. Hence 

\\Axn\\ S \\Anxn - Axn\\ + \\Anxn\\ S \\An - A\\ + \\y\\/\\An-
ly\\ -> 0. 

Bu t this contradicts ||^4x|| ^ e||x|| for all x and the proof of the lemma is 
complete. 

Proof of Theorem 5. Since X = ker (T - 7) © M, T(M) Q M, T = I ® A 
so tha t Tn = I © /lw . Therefore, to show 2"w converges it suffices to show 
An - > 0 . 

If 1 g d f i ) , then since X 6 < r ( 4 ) ^ { l | implies |X| < 1 (this is t rue for A 
since it is t rue for T),r(A) < 1. Therefore, since \\An\\1/n -> r ( 4 ) < 1 , 4 * - > 0 . 

Next suppose 1 Ç o-(^4). T h e n since do-(.4) C o v ^ ) , 1 G ovG4). T h u s there 
exists \\xn\\ = 1 such t ha t ||(^4 — I)xn\\ —> 0. Since T — I has closed range, 
A — I has closed range. By construction 4̂ — 7 is one-to-one. T h u s A — I is 
one-to-one and has closed range so there exists 8 > 0 such t ha t || (A — I)x\\ ^ 
d\\x\\ for all x. Bu t this contradicts \\(A - I)xn\\ —> 0. Therefore 1 ? a-(,4) and 
the proof of Theorem 5 is complete. 

COROLLARY 1. T" —> 0 if and only if r(T) < 1. 

COROLLARY 2. 7/ (1) X Ç o-(jn) ~ {1} implies |X| < 1, (2) T — 7 to c/osed 
range, and (3) Tn —> Q weakly, then Tn —» Q (in norm). 

Proof. Since Ç2 = Q = TÇ = QF, X = A?" © M where AT and ilf are in
var ian t under T, N = R(Q), and M = ker Q. I t follows t ha t ker (T - I) = 
R(Q) so t ha t X = ker ( r - 7) © 17, r (Af ) C M. T h u s the corollary follows 
from Theorem 5. 

Another variat ion of Theorem 5 is 

T H E O R E M 6. If (1) \\Tn(T - 7 ) | | - > 0 , (2) T - I has closed range and (3) X = 
ker (T - I) © M, T(M) Q M, then Tn converges. 

Proof. As in the proof of Theorem 5 write T = 7 © A. I t follows t ha t 4̂ — 7 
is one-to-one and has closed range. Hence there exists 8 > 0 such t ha t 
\\(A - I)x\\ ^ <$||x|| for all x Ç M. Since Tn(T - I) -+Q,An(A - I) -> 0. Now 
||4W(,4 - 7)x| | = ||(/1 - I)Anx\\ è <5p"x| | so t ha t ô p n x | | ^ p w ( , 4 - 7)x | | 
for all x. Hence 8\\An\\ S \\An(A - 7 ) | | -> 0 which implies , 4 W - * 0 and the 
proof is complete. 

T H E O R E M 7. If 7^ —> Q then (1) (T — z 7 ) _ 1 has a pole of order ^ 1 at z= 1, 
(2) sup |(7(r) ~ {1}| < 1, (3) T - 7 to dosed nmge, (4) X = ker ( r - 7) 
© R(T - I), and (5) 

Q = - IT-, j (T- ziy'dz 
ZlTl J \Z-l\ = e 

for some e > 0 sufficiently small. 
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Proof. (1) and (2) have been proved by J. J. Koliha [5, Theorem 2.5]. Since 
Tn - » Q implies \\Tn/n\\ -* 0 and ||7V-i £ £ : J Tn - Q\\ -> 0, we may apply a 
result of M. Lin (see Theorem 3) to conclude t ha t (3) and (4) are true. T o 
prove (5), choose e > 0 so tha t {z: \z — 1| ^ e} H a(T) C {1} and define 

E = - ^7 f (T- ziy'dz. 
l-Kl J | 2 _ l | = e 

Then 7^E = ET = E = E2 [8, p. 421]. By (1) (z - 1)(T - zl)~l is analyt ic 
in a neighborhood of z = 1 so tha t 

T h u s T £ = £ . By (2) there exists 0 < p < 1 so t h a t c r ( r ) ~ {1} C {z:|2 | < £ } . 
Then 

r-E-±J (r-,/,-b 
îat 

II A * 

| |r(7-£) | | = - ^ 7 I fiT-zI)-1^ 
Il Z7TÎ */ | 2 | = n 

^ ^ + 1 s u p \\(T -ziy'W-^O. 
\z\=V 

Therefore Tn = TnE + Tn\I - E) = E + Tn(I - E) -> E and the proof is 
complete. 

We conclude this paper with three examples: 

Let X = R2 and T = \ l j . Then <r(T) = {1} and T - I has closed 

range. Suppose X = ker ( r — I) ® M, T(M) C M. One checks tha t ker 

(T — I) = span < > and hence M ^ {0}. Let x G M, x ^ 0. Since 

T(M) Ç i f and since I f has dimension one, f x = Xx for some X. Since a(T) 
= {1}, X = 1 and Tx = x, i.e. x £ ker (T — f ) , a contradiction. Therefore 
hypothesis (1) cannot be omitted from Theorem 5. If we let S = —T then 
r(S) = 1 and S — I is invertible bu t | |5n /w| | -A 0. This shows tha t in Theorem 
3 r(T) = 1 cannot replace | |7^/w| | —» 0. By letting X = l2 and T = diag 
(0, 1/2, 2 / 3 , 3 /4 , 4 / 5 , . . .) one easily sees tha t hypotheses (2) and (3) of 
Theorem 5 cannot be deleted. 

This next example shows tha t Theorem 5 is false if we omit hypothesis (2), 
i.e. T — I has closed range. Let X = /2. Let Xi, X2, . . . be the canonical or tho-
normal basis for l2 and define Axn = anxn+i where an [ 0, an > 0 for all n. Then 
from [2, Problem 80] a (A) = {0}, <rp(A) = 0 , and A does not have closed range. 
Let T = I + A so tha t <r(T) = {1}, T — I does not have closed range, and 
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since ker (T - I) = ker A = {0}, X = ker (7 - 7) 0 X and hypothesis (1) 
is satisfied trivially. One computes that 

Tnxk - xk = akafc+i . . . ak+n-ixk+n + n a^ . + 1 . . . aA:+n_2xA-+„_i 

+ n akak+1 . . . ak+n-3Xk+n-2 + . . . + n akak+i. 

Hence | |(7^ - I)xk\\ ^ nak. If we let ak = 1/k for k = 1, 2, . . . then 
|| (T* — JT)x„|| ^ 1 for all n. Suppose {Tn\ converged (in norm). Then by 
Theorem 7, Tn —> E where 

* - - J, / (r _ ,„-* 
Since o-(T) = {1}, £ = J. Thus, if {P<} converged then T"-+I. But 
||(TW — i)x„|| ^ 1 for all n, \\x„\\ = 1. Hence {P2} does not converge. 

Acknowledgement. The author would like to thank the referee for suggesting 
Theorems 4 and 6 and for suggesting the above proof of Theorem 7 (parts (1) 
through (4)) and the above proof of Theorem 5 which are much shorter than 
the original proofs. 
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