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The process of deconvolving wide-field or confocal microscopical image stacks comprises the 
convolution of the dataset with the inverse point-spread function (PSF) subject to a set of constraints 
or cost-functions to prevent the amplification of noise. For the implementation as a filter, it generally 
is difficult to predict and limit the filter size (support) of discrete inverse PSF, and the computational 
overhead of straightforward filtering is directly proportional to the size of the filter (i.e. the number 
of elements within the filter). The discrete convolution process itself can be expressed as a simple 
element-wise scalar multiplication if the image has been transformed into frequency space by a FFT, 
this advantage justifies its popularity in the deconvolution operation. The “cost” of transformation to 
and from frequency space is lower than straight convolution if the filter of the inverse PSF requires 
more than some 10 to 50 elements. To be able to exploit this benefit, the convolution and the 
application of the constraints are implemented as two separate and consecutive steps despite being 
tightly linked. Due to this implementation, the choice of the constraints and cost functions becomes 
somewhat arbitrary set from the perspective of the involved physics and is mostly driven by the 
achievable computational efficiency. As a consequence, the steps of convolution and re-establishing 
constraints are iterated; if the series of produced images converges, the outcome will depend only on 
the PSF and the set of constraints, not on the implementation of the algorithm itself.  

However, the beauty of the FFT in convolution applications is somewhat shadowed by the fact that 
its results are expressed in complex vectors. In addition, there is a need to use meaningful cut-off 
functions at the edge of the image volume to prevent the introduction of artificial ripple frequencies 
induced by sudden changes in brightness. Both requirements drive up memory allocation and 
computational resources. The expenditure is of non-negligible magnitude. Despite being an 
optimized method, the major drawback of iterated deconvolution in microscopy remains the time 
requirement. In comparison to confocal microscopy which can obtain satisfactory optical sections 
within minutes, a typical commercial deconvolution system operating on a state-of-the-art personal 
computer may take several minutes to hours to perform the operation, rendering the technique much 
less attractive for biological sciences. 

 

Real-space frequency transformations are less general than the FFT, and they do not share its 
property of offering a trivial convolution operation; but they feature, at most, half the appetite for 
memory and CPU cycles. The aim of this talk is to demonstrate that meaningful boundary conditions 
or window functions for image stacks exist which allow for the use of a more restricted frequency 
transformation [5,7,10] for which efficient implementations exist [1, 2, 5, 6, 8]. The implementation 
of convolution operators immediately derives from the one-dimensional solutions [4, 5], the 
implementation stays efficient, however it is far less elegant than the FFT equivalent. For two 
images 0I  and 1I , the famous Fourier identity ( ) ( ) ( )1110 IFIFIIF ⋅=⊗

 

holds, whereas for the Hartley 
transform, the bulkier equivalence 
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has to be employed which illustrates why one should invest effort to bypass the full generality of 
FFT operations in the process. From the scheme also the benefits of symmetric – or forced 
symmetric – images become obvious, as four out of six transformations disappear.  

The other equivalence heavily exploited for symmetric functions ( ) ( )uIuI −=  becomes obvious if the 
discrete FT is written in components centered around the origin:  
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where the imaginary term is zero due to ( ) ( )usinusin −−=

 

and the transform becomes identical to the 
discrete cosine transform.  

The real-to-real space transformations fail dramatically for PSFs which are not axially symmetric [9], 
for these cases, hybrid transformations have to be introduced which focus on fast processing of the 
image data and use pre-computed static inverse PSFs derived via FFT or Hartley transform. Filter 
algorithms have to be redesigned to handle these now split data paths, forming a class of hybrid 
algorithms for a mixture of real domain transformations and FFT covering most deconvolution 
requirements. The performance of the hybrid algorithms directly derives from the ratio of real-to-real 
transformations vs. required FFTs. The optimization strategy is to minimize the use of the inverse 
FFT to preferably once per data set and to recycle non-symmetric data to keep ‘FFTed’ data sets 
static during the computation, employing a result-cache.  
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