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APPROXIMATION BY UNIMODULAR FUNCTIONS 

STEPHEN FISHER 

I n t r o d u c t i o n . T h e theorems in this paper are all concerned with either 
pointwise or uniform approximation by functions which have uni t modulus or 
by convex combinations of such functions. The results are related to, and are 
outgrowths of, the theorems in [4; 5; 10]. 

In § 1, we show tha t a function bounded by 1, which is analytic in the open 
uni t disc A and continuous on A may be approximated uniformly on the set 
where it has modulus 1 (subject to certain restrictions; see Theorem 1) by a 
finite Blaschke product ; t h a t is, by a function of the form 

(*) x f l [ ( s - a , ) ( l - a « * r \ 

where |X| = 1 and |a*| < 1, i = 1, . . . , N. In § 1 we also discuss pointwise 
approximation by Blaschke products with restricted zeros. In § 2, we show 
t h a t continuous functions from the uni t circle T into the set of unimodular 
continuous functions on some compact Hausdorff space X may be ' 'approxi
mately factored" as the quotient of analytic functions, with values in C ( X ) , 
which closely resemble (*). In § 3, we prove t h a t a function analyt ic in a 
neighbourhood of Â and bounded by 1 may be approximated in a number of 
very strong norms by convex combinations of finite Blaschke products . 

In § 1 we will frequently make use of the factorization theorem for bounded 
holomorphic functions. This theorem states t ha t each bounded holomorphic 
function h may be expressed uniquely as h — BSF, where B is a (possibly 
infinite) Blaschke product, 5 is a singular function, t ha t is, S(z) = exp[ — g(z)], 
where 

1 /»2TT i6 , 

g(z) = 7T I 7* -dn{eie) 
ZlT « / O 6 — Z 

and M is a non-negative measure on the uni t circle which is singular with respect 
to Lebesgue measure a (we shall call 5 the singular function determined by /*), 
and finally, F(z) = exp[ / (z) ] , where 

f{z) = f rÇ^log\h(ete)\da(ete). 
Z7T «/(J € — Z 

The proof of this factorization theorem and further discussion of Blaschke 
products , singular functions, and outer functions may be found in 
[8, Chapter 5]. 
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1. Approximation of analytic functions. 

THEOREM 1. Let K be a compact subset of the unit circle T. Suppose that f is 
analytic in the unit disc A, continuous on the closed unit disc, and bounded by 1. 

(a) 7/1/1 = 1 on a neighbourhood of K, then f may be uniformly approximated 
on K by finite Blaschke products. 

(b) If K has Lebesgue measure zero, then the conclusion holds if only | / | = 1 
on K. 

Proof, (a) Let / = BSF be the canonical factorization of / into a Blaschke 
product B, a singular function 5, and an outer function F. We shall deal with 
these terms one at a time. 

If / has only finitely many zeros, then B is a finite Blaschke product and we 
may pass onto consideration of S and F. Otherwise, note that since/ ^ 0 on a 
neighbourhood © of K, the zeros of B do not collect in ©. The finite sub-
products of B converge to B uniformly on any compact subset of the plane 
which does not meet the points [af1] or their points of accumulation in T, 
where {af\ is the set of zeros of B\ in particular, they converge uniformly on 
K to B. 

The measure that determines S is supported off ©, again by the continuity 
of/ and the fact t h a t / i£ 0 on ©. By Frostman's theorem [6] we may choose a 
sequence of points an in A tending to zero such that for each n, 

Bn = (S-an)(l -anS)-i 

is a Blaschke product. The only singularities of Bn on T are at the points in the 
closed support of the measure that determines S and these do not lie in ©. 
An argument like the one in the previous paragraph shows that 5 may be 
approximated uniformly on K by a finite subproduct of one of the Bn. 

Finally, we consider F = exp(u + i*u), where u 6 Ll(T), u ^ 0, and *u 
is the conjugate function of u. Since |F| = | / | = 1 on an open set U, u = 0 
on C7. I claim that there is a singular function Si whose determining measure 
is supported off K such that Si approximates F to within a given e on K. Once 
this is established, an argument like that in the preceding paragraph will 
complete the proof of (a). To prove the existence of such a measure, we proceed 
as follows. 

For eie (? K, let ue be the negative harmonic function on A determined by 
extending the point mass with weight — 1 at eid to the disc 

«.(«") = -Pr(t -e) = - 1 _ 2 f < ^ 7 / I g ) + f » . 
where PT is the Poisson kernel. The conjugate function, *uo, of ue, is given by 

* / ih 2rsinQ - 6) 
Mre )==-r-2rcos(t-e) + r>' 

Both ue and *u$ extend across any arc of T which does not contain eid and, 
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in particular, Ue(eu) = 0 for all eu £ T, t ̂  6. Consider the convex cone C 
consisting of all functions of the form 

v(eu) = Z * i *«*(«"), eueK, 

where Sj ^ 0 for j = 1, ..., N and eie' (? K. These functions are all continuous 
on K. I claim that *u lies in the (uniform) closure on K of C. For suppose that 
X is any real measure on K with 

-x _sin(̂ 0)_ ^ d x ( / ) g Q for a U ̂  ^ g ^ 
/* 1 - cos(^ - 0) 

Since u(6) ^ 0 and w = 0 on a neighbourhood U of X, we then have 

sin(< — fl) f f «WT-

X 
- cos(/ — 0) 

*u(t)d\(t). 

dOd\(t) 

'K 

This implies that there is a sequence un of positive combinations of the ues, 
with e** (? K, such that ||ww + i*un — (u + i*w)IU:-* 0. Exponentiating, we 
have the desired singular function. 

(b) The proof of (b) is a continuation of that of (a). It is clear that we need 
only show that the outer part off is the uniform limit on K of singular functions 
whose measures have no support in K, and this is done as above but is some
what more difficult because we do not know that u vanishes on a neighbourhood 
of K, only on K itself. 

However, again consider the cone C defined above and let X be any real 
measure on K with 

V - £ l ^ U - V X ( 0 * ° f°ra11*' '"«*• 
Let U\ 3 U2 2 ••• be a decreasing sequence of open sets each containing K 
with the measure of Un decreasing to zero. It is easily proved that if / is a real 
twice differentiate function on T, then 

converges uniformly on K to */(/), / € Ky as n —> 00. In particular, this holds 
when/(0) = Pr{^ ~ 0), the Poisson kernel for re**. Hence, using (1) and (2) 
we find that 

(3) 0 è f *PM-t)d\(f) 
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for all r, 0 ^ r < 1, and all \f/, 0 ^ \p < 2ir. Le t v(reid) be the harmonic 
extension to A of the measure X, and *v its conjugate. Equa t ion (3) shows t h a t 
*v(z) S 0 on A. Note t h a t v extends continuously to T — K and vanishes there. 
Finally, p u t 

h(z) = exp[*v(z) — iv(z)}. 

Then h is a bounded analyt ic function on A and the boundary-values of h are 
real almost everywhere. Hence, h is cons tan t ; this implies t h a t X is zero, and 
gives the desired conclusion. 

Remarks. I t is clear from the proofs of (a) and (b) t h a t we did not n e e d / 
to be continuous on all of T; i t would be sufficient f o r / to be continuous in 
some neighbourhood of K. Fur thermore , the conclusion in (a) holds for any / 
with jus t | / | = 1 on K provided u (and h e n c e / ) satisfies some sort of smooth
ness condition, for example if u is continuously d i f fe rent ia te or satisfies some 
Lipschitz condition on a neighbourhood of K. T h e conclusion in (a) also holds 
with no special assumptions o n / , if the complement of K in T has only a finite 
number of components . Fur ther , the technique used in [5], with result (b) in 
place of Lemma 2, provides a new proof of the result in [4]. Finally, Carleson 
has proved (a) in [3, p . 195]. (I wish to thank the referee for this reference.) 

Definition. Le t E be a subset of the open uni t disc A; B(E) will denote the 
set of all finite Blaschke products formed from points of E. 

Carathéodory ' s theorem [2, p . 13] shows t h a t if E = A (and hence B(E) 
is the set of all finite Blaschke products ) , then each function which is analyt ic 
on A and bounded by 1 is the pointwise limit of a sequence of elements of B (E). 
I t is easy to see t ha t if we wan t to get every analyt ic function which is bounded 
by 1 as a pointwise limit of a sequence of elements of B (E), E mus t be dense in 
A, and Carathéodory 's theorem tells us t h a t this condition is also sufficient for 
such approximation. However, suppose t h a t we choose an a rb i t ra ry subset E 
of A; can we describe which functions m a y be approximated uniformly on 
compact subsets of A by a sequence of elements of B(E)? T h e answer is given 
in Theorem 2 below. 

T H E O R E M 2. Let E be a discrete subset of A and let K be the set of accumulation 
points of E on the unit circle T. An analytic function h on A is the limit, uniformly 
on compact subsets of A, of a sequence of functions from B(E) if and only if h is 
bounded by 1, is continuous at each point of T — K, has modulus 1 on T — K, 
and the zeros of h (if h has any zeros) lie in E. 

Proof. Le t h be one of the functions with the described propert ies. If h = BSF 
is the canonical factorization of h into a (possibly infinite) Blaschke product By 

a singular function S, and an outer function F, then the hypotheses imply t h a t 
the zeros of B lie in E (if h has any zeros), the measure ^ which determines S 
is supported on K, and log|F\ = 0 on T — K. Le t w = — jK\og\F\ da + \\n\\ and 
let {an) be a sequence of positive measures converging to [ — log|F|] da + d\x in 
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the weak-* topology in the space of measures on T where, for each n, (l/w)orn 

is a convex combination of point masses, the points being in K. Such a sequence 
exists by the Kreïn-Milman theorem, for example. Clearly the singular 
functions determined by the measures an converge uniformly on compact 
subsets of A to SF as n —> co. T h u s to prove the theorem we need only show 
t h a t the singular func t ion / determined by placing a mass of weight w > 0 a t a 
single point X of K is the pointwise limit of elements of B(E). (The part ial 
subproducts of B lie in B(E), of course, and converge uniformly on compact 
subsets of A to B.) 

We may assume without loss of generali ty t h a t X = 1. Let {ai, a2, . . . } be a 
sequence of dist inct points of E which converge to 1; we may suppose wi thout 
loss of generality t h a t |ay | s trictly increases to 1. There is a positive integer 
iV(l) and non-negative integers mi, . . . , m ^ i ) such tha t 

mi) 

n m - ^ 1/2. 

Let B\ be the finite Blaschke product 

jt-i Ll - akz fltJ 
z e A. 

Then Bx € B(E) and |J3i(0) - e~w\ ^ 1/2. 
There is a positive integer N(2) > N(l) and non-negative integers mkl 

k = N(l) + 1, . . . , iV(2), such t ha t 

N(2) 

n 
lc=N(D+l 

\ak\ — e ^ 1/4. 

Le t B2 be the finite Blaschke product 

N(2) r 

Bt(z) = IX . [I 
a* die z G A. 

Then B2 G 5 ( £ ) and |B2(0) - e~w\ S 1/4. 
Continuing this process we see t h a t we may construct for each n, a finite 

Blaschke product Bn such t ha t 
(i) |B,(0) - e-\ S 2~\ 

(ii) the zeros of Bn move out to T as n increases, and 
(iii) the only point of accumulation of the zeros of all the Bn is 1. 

I claim t h a t the finite Blaschke products so constructued converge uniformly 
on compact subsets of A t o / . T o show this we need to do some computat ions . 

When n is sufficiently large, all the zeros of Bn lie within ô of 1; hence, if 
\z — 1| ^ 25, then we have 

s(i - Irf^D s^tt - W)Ed -1» < i 2 ) . <4> - V - l i - M 
Here the bts are a listing of the a^s, where each ak is repeated wfc times and the 
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summat ion is extended over those indices so t h a t every ak in Bn is included. P u t 

Si = \bt — z\2\l — btz\~2 and wt = scl(l — st). 
Then 

\Bn(z)\2 =Ust è e x p [ - X > J . 

However, by (4), Y,wt = C(l — NI2)Z!(1 ~" l^|2)> where C is a cons tant 
depending only on 8. T h e term ]£ (1 — |fr*|2) remains uniformly bounded for all 
n because the products II |&j| converge to e~w. Thus , | ^ ( s ) | is bounded away 
from zero when \z — 1| §: 25. 

Now let / be a point of T — {1} and let D be a small closed disc centred 
a t t which does not contain 1. If z £ D and \z\ > 1, then 

\Bn(z)\ = IB .Gr 1 ) ! - 1 ^ M , 

where I f is a cons tant depending only on the distance from D to 1. Hence, some 
subsequence of {Bn) converges uniformly on compact subsets of the interior 
of D to a holomorphic function. Repeat ing this procedure and then taking a 
diagonal sequence we find t h a t there is a subsequence of {Bn} which converges 
uniformly on compact subsets of A — {1} to a holomorphic function h. I t 
follows t h a t h is continuous a t each point of T — {1} and has modulus 1 there 
and, since the zeros of the Bns move out to T as n —•> oo , h does no t vanish 
in A. Examining the factorization of h, we conclude t h a t h is a singular function 
obtained by placing a mass of weight Wi a t 1. However, e~w = lim Bn(0) = 
h(0) = e~Wl. T h u s w ~ W\ and hence h = / , as desired. 

T h e converse s t a tement concerning the cont inui ty and other properties 
of a sequential limit of elements of B(E) is proved jus t as in the two previous 
paragraphs . 

COROLLARY 1. If E clusters at every point of T, then every holomorphic function 
on A which is bounded by 1 and whose zero set lies in E (including all the zero-
free functions) is the limit, uniformly on compact subsets of à, of a sequence of 
elements of B(E). 

Remarks. T h e corollary implies the somewhat surprising conclusion t ha t no 
condition on E other than the obviously necessary one t h a t E cluster a t every 
point of T is needed to obtain every zero-free holomorphic function in the 
sequential closure of B(E). Fur ther , the hypothesis t h a t E be discrete is not 
needed; the only addit ional functions t h a t lie in the sequential closure of B(E) 
are the ones with zeros in A C\ E (and which, of course, satisfy the cont inui ty 
and modulus 1 conditions on T - I ) . 

Ahern and Clark [1, L e m m a 4.1 and the first lines of the proof of L e m m a 4.2] 
show t h a t if a mass of weight w > 0 is placed a t X G T, then it is possible to 
find finite Blaschke products with zeros in the set E which converge uniformly 
on compact subsets of A to the singular function determined by this mass, 
provided t h a t E clusters a t X. Thei r proof is qui te different from t h a t of 
Theorem 2, and does, of course, give a proof of the reverse implication of 
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Theorem 2 and thus of the corollary, too, when coupled with the opening 
paragraph of the proof of Theorem 2. 

2. Approximation by quotients of unimodular functions. The results 
of this section are concerned with conditions under which a unimodular 
function on some space 5 may be approximated (uniformly) by a quotient of 
two other unimodular functions having some other prescribed property, for 
example, belonging to some specified function algebra on S. The following 
elementary proposition will be needed several times. 

PROPOSITION 1. Suppose that 

P{ei6) = S a ^ 6 + e-ijd) for eid £ T, aN * 0, 

N a positive integer, and suppose that p (eie) ^ Ofor all eie G T. Then there are N 
points au • • • > <*N, not necessarily distinct, in the open unit disc A such that 

Pie*) = c ft (e* - a,)fl (e-{* - a,), 
3=1 j=l 

where c = (—l)NaN£\f==i (p^j)"1-

Proof. Let Q(z) = zNJ2%o cij(zj + l/zj)- Then Q is a polynomial of degree 
2N and e~iNdQ(eid) = p(eid) for all eie 6 T. Furthermore, 

z2NQ(l/z) = Q(z) fors ^ 0. 

Hence, if a is a zero of Q, then so is or1 (note that Q(0) = aN ^ 0). Hence, 

N N 

Q(z) = aNYl (z - ai) f i 0 - a/"1)* 
j=i j=i 

where «i, . . . , aN lie in A (since p, and hence Q, is not zero on T). This yields the 
desired conclusion. 

THEOREM 3. Let X be a compact Hausdorff space and let A be a uniformly 
closed subalgebra of C(X) which contains the constants. Suppose that g Ç A, 
\g(x)\ = 1 for all x G X, and u = Re g. If a is any real number, then the 
unimodular function f = exp[iau] is the uniform limit of quotients of unimodular 
elements of A. 

Proof. Since g is unimodular, 2u = g + g = g + g_1. Let b = ( l /4)a and 
/ i = exp[ib(g + g -1)]- Let N be a large positive integer and define 

PN = g l„ - 7 ] - (g + g ) • 

Then pN £ A and g~NpN approximates / i uniformly to within e/4 for large 
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enough N; furthermore, since g has unit modulus we have^by Proposition 1, 

AT N 

3=1 3=1 

where «i, . . . , aN are points of the open unit disc in the complex plane and c is 
defined by c(N\)(IL*,) = (-l)N(ib)N. 

Put 

B = fl(g~c*j)(l-âjgT1 

3=1 

and 

N 

3=1 

Then B and C are in the algebra A, are unimodular, and 

arg^OO = 2 a r g [ ^ n (g(x) - a3) j , 

arg C(pc) = - 2 arg[ ft (1 - «*(*)) J + 2 a r g ( f t a , j . 

Hence, arg[CJ5 -1^2] = 0 (mod 2-K) when TV is a multiple of 4 and thus 

lAv2s-2iV - Bc-H~2N\ = l ^ c s - 1 — x| — |x — | M | 
and the last term is less than e/2 when N is large. Thus/ i 2 = / may be approxi
mated uniformly by quotients of unimodular elements of A. 

Definition. For a positive integer N, A (AN) will denote the algebra of 
functions analytic on the polydisc A^ and continuous on its closure. 

A monomial m is an element of A {AN) of the form 

m(zu ... ,zN) = Zikl . . . zN
ksr, 

where fei, . . . , kN are non-negative integers. 
A function/ Ç A (AN) is inner if \f(w)\ = 1 for all w 6 TN. 
Rudin's proof in [10] also yields the following result. 

THEOREM 4. Let G be a compact abelian group with dual T and let 2 be a 
semigroup in T which generates T. Let Cs be the algebra of continuous functions 
on G whose transforms are supported on 2. Then the closed convex hull of the 
quotients of the unimodular elements of Cs is the closed unit ball of C(G). 

COROLLARY 2. The closed convex hull of the quotients of the inner functions in 
A (AN) is the closed unit ball of C(TN). 

It is interesting to note that when N > 1, the next theorem shows that there 
are unimodular functions in C(TN) which cannot be uniformly approximated 
by quotients of inner functions in A (AN) although, of course, the corollary 
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above shows that they may be approximated by convex combinations of such 
quotients. 

THEOREM 5. Letf 6 C(TN),f unimodular. Then f may be uniformly approxi
mated on TN by quotients of inner functions in A (AN) if and only if there are 
monomials mi and m2 such that m^m^f is the uniform limit on TN of functions of 
the form exp(ig), where g is the real part of a function in A {AN). 

Proof. Suppose that / is the uniform limit of quotients of the form FG~~l, 
where F and G are inner functions in A (AN). F has the form mQ(l/z)/Q(z), 
where m is a monomial, Q is a polynomial with no zero in the closed unit poly-
disc, and Q is the polynomial obtained from Q by replacing the coefficients by 
their complex conjugates. (Here \/z means (l/si , . . . , l/zN) [11, Theorem 5.2.5].) 
However, Q has a logarithm q in A (AN) and since Qil/z) = Q(z) for z £ TN, 
we have 

F(z) = m(s )exp( -2 ; Im q(z)), z £ TN, 

where q Ç A (AN). Likewise, we find that 

G{z) = n(z)exp(-2i Im p(z)), z € TN, 

where p Ç A (AN) and n{z) is a monomial. This yields the desired conclusion. 
The converse is even easier. Suppose that / is of the form WiW2 exp(ig), 

where m\ and m2 are monomials and g = Re G, G G A (AN). Clearly we need 
only approximate exp(^'g) by quotients of inner functions in A (AN). However, 
A (AN) is generated by its unimodular elements, and so the conclusion follows 
from Theorem 3. 

THEOREM 6. Suppose that the unimodular elements of the function algebra A 
separate the points of X. Then the closed convex hull of the quotients of the uni
modular elements of A is the closed unit ball of C(X). 

Proof. The algebra generated by the quotients of the unimodular elements of 
A is dense in C(X) by the Stone-Weierstrass theorem. Lef/ G C(X), | | / | |œ ^ 1. 
Choose unimodular functions gi, . . . , gk, and h in A such that 

Il k II 
\\Ecjgj - f h \ \ < e 
II ;=i II 

where c\, . . . , ck are complex scalars. We may assume that | E J = I Cjgj\\ S 1. 
Define <i>: X -> Tk+1 by $(x) = (gi(x), . . . , gk(x), h(x)) and let K = $ (X) . 
Define G(p) = ^ ( ^ _ 1 ( P ) ) I ] ; = I Cjgj($~1(p)) f° r P € K. G is a continuous 
function on K which is bounded by 1 and as such may be uniformly approxi
mated on K by convex combinations of quotients of inner functions in A (AN) 
by Corollary 2. Since the composition of a unimodular element in A with an 
inner function in A {AN) is again a unimodular element of A, this implies that 
h^2 j=i Cjgj may be approximated uniformly on X by convex combinations of 
quotients of unimodular elements of A and hence the same is true of/. 
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THEOREM 7. Let X be a compact Hausdorff space and let f: T —> C(X) be a 
continuous function such that f (eie) is a unimodular function for each 0, 
0 ^ 0 S 27T. Then there are functions g and h analytic on a neighbourhood of the 
closed unit disc with values in C(X) such that 

(i) g(eie) and h(eid) are unimodular functions for each 0, 0 ^ 0 ^ 2ir, 
(ii) \\f(ei9) — g(eie)h(eie)\\ < e for each 0 ^ 0 ^ 2iry where the vertical bars 

denote the supremum norm on X. 

Proof. For x Ç X, let fx(e
ie) = /(e i e) (x) ; fx is a continuous function on T 

with values in T and hence there is an integer k (x) and a continuous real-valued 
function g(x, eie) on T with fx(e

ie) = exp[ik(x)6]exp[ig(x, eie)]. We may 
assume without loss of generality tha t / s (1) = 1 for all x Ç X and hence also 
that g(x, 1) = 0 for all x £ X. Given e > 0 there is a neighbourhood N(e, x) 
of x and a neighbourhood M(e, 0) of eie such that |/z(^ i e) — fy{e^)\ < e for 
y £ iV(e, x) and e** Ç M(e, 0). A finite number of the neighbourhoods 
{M(e, 0): 0 ^ 0 < 2w] cover 7\ and hence x has a neighbourhood 0(e, x) such 
that 

!/*(*") - fy(ei9)\ < e for all 0 and y Ç 0( € , x). 

It follows that k(x) is a continuous function of x and g is continuous on 
X X T. Hence, g may be approximated uniformly by sums of products of 
elements from Cr(T) with elements from Cr(X) where the subscript r denotes 
the real-valued functions. Thus we may assume without loss of generality that 
g(x, 0) = g(x)h(6), where g £ Cr(X),h Ç Cr(T). Since h may be approximated 
uniformly by a real trigonometric polynomial, we may further assume that 
h(0) = acosnd or h(6) = a sin n6, where a is real and n is a non-negative 
integer. For definiteness we will take h (0) = a cos ^0; the case &(0) = a sin w0 
can be handled analogously. Consequently, we have reduced the theorem to 
approximating a unimodular function of the form 

exp [ik (x ) 0] exp [ig (x ) cos nd], 

where k(x) is a continuous integer-valued function on X and g(x) is a con
tinuous real-valued function on X. We may assume without loss of generality 
that 1 ^ g(x) S 2. 

Let F(eie) = exp(zg(x)cos ^0) and 

AT •£ / \ * r ^ "Ifc 

and finally 

M * ) = znNFN{z). 

Then £^(2) is an analytic function (on the whole plane) with values in C{X) 
and z2NnpN(l/z) = pN(z). Hence, for each x Ç X, PN(Z)(X) has iVn roots 
ai(x), . . . , «ivw(^) in the open unit disc and its other roots are at 

[on(x)]-\ . . . , [ûw(x)]"1. 
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Furthermore, an application of Cauchy's formula shows that the coefficients 
of pN(z) are continuous complex-valued functions on X, and hence the sym
metric functions in ax, . . . , aNn are continuous. Note that no c^ vanishes since 
PN(0) 9^ 0. Thus Proposition 1 yields 

nN nN 

pN{z) = c(x) n o - «,(*)) n (i - <xjWz), 
3=1 3=1 

where 
(—-{\N /io\N nN 

c(x) = ̂ - ( J J n Mx))-1 e c(X). 
Let 

nN 

B(z) = n (*-«,(*)) (l-a^)*)"1 

and 

Then J3 and C are analytic in a neighbourhood of the closed unit disc, take 
values in C(X), and both B(eie) and C(eiB) are unimodular elements of C(X). 
Finally, as in the proof of Theorem 3, we clearly have 

\\F(eie)C(eid)e2iNnd - B(eid)\\ < e 

when TV is sufficiently large. Since exp(ik(x)6) is easily seen to be a quotient of 
functions of the desired form, our proof is complete. 

COROLLARY 3. The quotients of the finite Blaschke products are uniformly 
dense in the continuous unimodular functions on T. 

Proof. Take X to be a single point. 

Remark. The corollary has been proved, by different methods, by Helson 
and Sarason [7, p. 9]. (I am indebted to the referee for this reference.) 

3. Banach spaces of analytic functions on the unit disc. 

THEOREM 8. Let A be a Banach space consisting of functions analytic on the 
unit disc A and suppose that A contains every function which is analytic in a 
neighbourhood of the closed unit disc. If f is analytic in a neighbourhood of Â and 
bounded by one on A, then f may be approximated in the norm of A by convex 
combinations of finite Blaschke products. 

Proof. We may assume without loss of generality that the norm of A is at 
least as strong as the sup norm, for otherwise the theorem is known (see [4]). 
Since/ is analytic on a neighbourhood of Â, there is an F Ç A (A) and an r < 1 
with f(z) = F(rz), z Ç A. We may assume that H^IU ^ 1. By the closed 
graph theorem, there is a constant c(r) depending only on r such that 
||g(rs)||A ^ ^(OlI&O l̂loo f° r BII g £ A (A). By [4] there is a convex combination 

https://doi.org/10.4153/CJM-1971-025-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-025-4


268 STEPHEN FISHER 

b of finite Blaschke products with \\b(z) — F(z)| |œ < c(r)~le. Hence 

| | & ( r * ) - / ( * ) | L < e . 

However, by the proof in [4], b(rz) is itself actually equal to a convex combina
tion of finite Blaschke products, completing the proof. 

COROLLARY 4. If the functions analytic in a neighbourhood of Â are dense in A, 
then every function in A which is bounded by 1 is the limit in the norm of A of a 
sequence of convex combinations of finite Blaschke products. 

Examples. (1) Let p ^ 0 and let A consist of all those analytic functions 
53"=o anz

n in A for which ££Li nv\an-\\ is finite, with that sum as norm. 
(2) Let A consist of all functions/ G A (A) for which/ is in the class Lip (a) 

on T with norm: | | / | |A = \\f\\œ + | | / | |a , where 

||/||« = sup{|/(x) -f(y)\ \x - y\~a: x, y G T, x ^y}. 

(3) Let A consist of all functions/ G A (A) for which/ is in the class Cin) (T) 
with norm: \\f\\A = ZU | | / W I U 

Each of these examples satisfies the conditions of the theorem and (1) and (3) 
those of the corollary so that the convex hull of the finite Blaschke products 
contains in its A -norm closure each function analytic in a neighbourhood of Â 
and bounded by 1. 

THEOREM 9. Let B be a semisimple commutative Banach algebra with unit. 
Suppose that B is generated by an element x with \x\ = 1 on bB, the Silov boundary 
of B. Then the closed convex hull of the unimodular elements of B (that is, those 
y G B with \y\ = I on bB) is the closed unit ball of B. 

Proof. Let 
I oo co I 

A = )f(z) = ^2 anz
n analytic in A: ^2 W | |*W | |B < °° ( 

v n=0 n=0 J 

and define a norm on A by 

II/IU = £KMIXBIU. 

Then A fulfills the hypotheses of Theorem 8 and Corollary 4, and hence, if 
/ G A and \\f\\œ ^ 1, then there is a convex combination C of finite Blaschke 
products with | | / — C\\A < e. 

Let p be a polynomial and suppose that p(x) = y G B has norm less than 1. 
Since we may assume without loss of generality that x maps the maximal ideal 
space of B onto the whole unit circle (the only other possibility is that it is 
mapped onto a proper compact subset K of T and in that case B must be 
isometrically isomorphic to C(K) and the theorem is known in this case 
[9, Theorem 1]), we have H^IU < 1- This means that there is a convex 
combination C of finite Blaschke products with \\p — C\\A < e and hence 
€ > \\p — C\\A ^ \\p(x) — C(x)\\B. However, C(x) is a convex combination 
of unimodular elements of B, proving the theorem. 
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