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Solar thermochemical hydrogen (STCH) production is currently being investigated in the push towards a 

clean energy infrastructure.1, 2 The STCH process uses solar energy to drive the necessary redox reactions 

for water-splitting. A STCH cycle consists of a thermal reduction step, releasing O2, and an oxidation or 

water-splitting step, releasing H2. In order to understand the rate-limiting and mechanistic details of this 

process, it is necessary to investigate (1) how the electrons are being transported through the active 

material during redox cycling and (2) the effects of any structural rearrangements, including defect 

formations or phase changes, on water-splitting activity. Transition-metal-based perovskites are 

frequently reported as active STCH cycle materials.3-7 Atomic substitution enables the composition of 

these perovskites to be varied, resulting in a range of compositions to be explored and discovered as 

increasingly active STCH materials.   The electronic and structural changes of novel ABO3-type 

perovskites during STCH cycling are examined here. We combine STEM-EELS, electron diffraction 

analysis, and atomic-resolution STEM imaging to understand the effects of STCH cycling on perovskite 

structural stability and long-term activity. We apply STEM-EELS to both the oxidized and reduced states 

of these materials to determine the valence state changes of the A- and B-site ions during the redox 

reactions.8, 9 In addition, in situ heating in the microscope column vacuum allows us to view the 

progressive, temperature-dependent chemical changes during reduction, providing mechanistic insight 

into the redox chemistry of these materials. During the thermal reduction, or activation step, oxygen gas 

is spontaneously released from the crystalline lattice, forming oxygen vacancies. The resulting strain can 

lead to the formation of crystalline defects or even complete phase transitions.3 The combination of 

diffraction analysis and atomic resolution imaging allows us to correlate the crystalline defect formations 

with the electronic changes that are measured with EELS.  Here, we will compare the water-splitting 

activity of different perovskite-based STCH materials in correlation with the corresponding 

microstructural and electronic structure evolution observed during redox cycling. The combination of 

multiple electron-microscopy based techniques provides valuable nanoscale insight into mechanistic 

details of the redox reactions that are not obvious when bulk techniques that average measurements over 

larger volumes are used. Sandia National Laboratories is a multimission laboratory managed and operated 

by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of 

Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security 

Administration under contract DE-NA0003525. This paper describes objective technical results and 

analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily 

represent the views of the U.S. Department of Energy or the United States Government. 
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