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Base change and Grothendieck duality for

Cohen–Macaulay maps

Pramathanath Sastry

Abstract

Let f : X → Y be a Cohen–Macaulay map of finite type between Noetherian schemes,
and g : Y ′ → Y a map, with Y ′ Noetherian. Let f ′ : X ′ → Y ′ be the base change of f
under g and g′ : X ′ → X the base change of g under f . We show that there is a canonical
isomorphism θfg : g′∗ωf � ωf ′ , where ωf and ωf ′ are the relative dualizing sheaves. The
map θfg is easily described when f is proper, and has a more subtle description when f is
not. If f is smooth we show that θfg corresponds to the canonical identification g′∗Ωr

f = Ωr
f ′

of differential forms, where r is the relative dimension of f . This work is closely related
to B. Conrad’s work on base change. However, our approach to the problems and our
viewpoint are very different from Conrad’s: dualizing complexes and their Cousin versions,
residual complexes, do not appear in this paper.

1. Introduction

Our approach to Grothendieck duality is the approach of Deligne and Verdier [Del66, Ver69] with
important elaborations by Alonso et al.. [AJL99]. In particular, we do not use residual complexes
or dualizing complexes, which are crucial ingredients in the approach laid out in Hartshorne’s
voluminous book [Har66]. We will be examining the behavior of relative duality for a Cohen–
Macaulay map f : X → Y of Noetherian schemes. Our intent is to show that the main result of
Conrad’s recent book [Con00] on Grothendieck duality concerning base change for relative dualizing
sheaves and traces for Cohen–Macaulay maps (see [Con00, pp. 172–173, Theorem 3.6.5]) can be
established without recourse to dualizing or residual complexes.

Our approach is the ‘soft’ approach, with emphasis being placed on functorial aspects (i.e. on how
‘upper shriek’ behaves and what it does, rather than its precise description via residual complexes).
In the case where the map f : X → Y is smooth, our techniques also establish the commutativity
of diagram (1.1.3) of [Con00], one of the main motivations for Conrad’s book.

A word about our philosophy. We have already pointed out our functorial bent. In other words
we would like to believe that there is so much information built into the abstract definitions of
the various objects associated with duality theory, that explicit information can be elicited with
minimum computations. For a practitioner of such a philosophy the hard work is in finding the
intricate web of relationships between the abstractly defined objects (e.g. the pseudofunctoriality
of (·)!, and compatibility with (Zariski, étale, smooth, flat) localizations). Lipman’s notes [Lip03]
give an indication of the effort involved in getting the setup right. While the effort involved can be
(and is) considerable, it often results in conceptual clarifications. At the concrete level, computations
do occur in duality theory. In such instances we give primacy to residues rather than residual
complexes and in general, we believe, this can always be done. In sharp contrast, Conrad uses
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residual complexes. If one shows that residues (rather than traces) behave well with respect to base
change of Cohen–Macaulay maps, then local duality gives the rest. We leave it to the reader to
judge if our approach results in conceptual clarifications.

From our point of view, the general base change theorem for Cohen–Macaulay maps is a careful
functorial upgrading of the following easy base change formula

HomA(B,A)⊗A A′ = HomA′(B′, A′), (1.1)

where A → B is a finite, flat map of Noetherian rings, A′ is an A-algebra and B′ = B ⊗A A′.
This upgrading requires establishing local duality and setting up the right functorial machinery.
Note that formula (1.1) says that the relative dualizing sheaf for a finite flat map of Noetherian
schemes f : X → Y (i.e. a proper Cohen–Macaulay map of relative dimension 0) behaves well with
respect to base change and so does trace (‘evaluation at 1’). Conrad informs me that the above
formula is also the key to his approach.

We have included a number of appendices giving (hopefully) something of a coherent survey of
facts scattered in the literature regarding base change for direct images with support and for local
cohomology. We have only included those facts which are needed for this paper. Appendices are
labeled by the upper case letters in the English alphabet, and so one has to look at Appendix A for
(say) Proposition A.1.3.

In a short while we will give a quick summary of the Deligne–Verdier (DV) approach to duality.
The classic references are [Del66] and [Ver69]. Deligne’s and Verdier’s results apply to (finite-type,
separated) maps between Noetherian schemes of finite Krull dimension. This is generalized to
arbitrary Noetherian schemes by Alonso, Jeremı́as and Lipman in [AJL99]. In fact, their results
are far more general than we need in this paper. They work with Noetherian formal schemes. Since
our interest is not restricted to schemes with finite Krull dimension, we will appeal to [AJL99]
for our results (and make a respectful bow towards [Del66] and [Ver69] by also giving appropri-
ate references to the analogous results there). The key results in the DV approach to duality are:
(a) the existence of a right adjoint to the (derived) direct image functor for a proper map – the
twisted inverse image functor in Verdier’s terminology [Del66, pp. 416–417], [Ver69, pp. 393–394,
Theorem 1], [AJL99, p. 5, Theorem 1] and [Lip99, p. 120, Corollary (4.3)]; (b) compatibility of
this twisted inverse image functor with flat base change [Ver69, pp. 394–395, Theorem 2], [AJL99,
pp. 8–9, Theorem 3]; and as a consequence (c) the localness of the twisted inverse image functor
[Ver69, p. 395, Corollary 1], [AJL99, p. 88, Proposition 8.3.1]. We should point out that Neeman
has an intriguingly different approach to the above results (see [Ne96]).

1.1 Notation and terminology
Schemes will mean Noetherian schemes. For any scheme Z, Zqc (respectively Zc) will denote the
category of quasi-coherent OZ -modules (respectively coherent OZ -modules). The category whose
objects are complexes of OZ -modules whose cohomologies are quasi-coherent and vanish in suffi-
ciently negative degrees and whose morphisms are homotopy equivalence classes of maps of
complexes will be denoted K+

qc(Z). The corresponding derived category (obtained by formally
inverting quasi-isomorphisms) will be denoted D+

qc(Z). The resulting localization functor will be
denoted

QZ : K+
qc(Z)→ D+

qc(Z).

Recall that an injective object of Zqc is an injective object in the category of OZ -modules (since Z
is Noetherian), and hence is flasque. By an injective sheaf on Z we will always mean an injective
object in Zqc. Higher direct images (with or without supports) of maps of schemes h : Z → W
will, unless otherwise stated, be thought of as functors on Zqc. In view of the previous comment,
and the existence of enough injectives in Zqc, it is simply the restriction of the usual higher direct
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images to Zqc. In particular, a statement of the form Rih∗ = 0 means that it is zero when applied
to objects in Zqc (though perhaps not zero when applied to an arbitrary sheaf of abelian groups).

1.2 Sign conventions for complexes
We follow the following (standard) sign conventions. These differ somewhat from the (non-standard)
conventions in [Har66]. If A• and B• are complexes in an abelian category A which admits infinite
direct sums and a tensor product ⊗, then the following hold.

i) Hom•(A•, B•) is the complex whose nth graded piece is

Homn(A•, B•) = Homgr(A•, B•[n]),

where Homgr denotes graded maps of degree zero. The differential follows the rule

dnf = dB◦f − (−1)nf◦dA
= (−1)n+1(f◦dA − dB[n]◦f).

ii) A• ⊗B• is the complex whose nth piece is

(A• ⊗B•)n = ⊕p∈ZAp ⊗Bn−p

and the differential is
dn|Ap ⊗Bn−p = dpA ⊗ 1 + (−1)p ⊗ dn−pB .

iii) We have an isomorphism

θij : A•[i]⊗B•[j] ∼−→ (A• ⊗B•)[i+ j],

which is ‘multiplication by (−1)pj ’ on Ap+i ⊗ Bq+j. Note that θij = θi0[j]◦θ0j, but θij =
(−1)ijθ0j[i]◦θi0. See [Lip03, p. 20, (1.5.4)] for the reason for introducing θij.

iv) We use the standard identification, the one without the intervention of signs (cf. [Con00, p. 7,
(1.3.1)]), of H i(A•[r]) with H i+r(A•). This identification is functorial in A•. In other words we
have an identity of functors

H i((·)[r]) = H i+r(·). (1.2)
The identity (1.2) is robust under translations. In other words, the two identifications of
H i(A•[r][s]) with H i+r+s(A•) (i.e. by either using (1.2) twice or by using A•[r][s] = A•[r + s]
and then applying (1.2)) agree.

Now suppose R is a (commutative) ring. If P is a finitely generated projective module, we
identify P with its double dual in the standard way. Let P • be a complex of finitely generated
projective modules over R. Then we check (using the conventions above) the following.

1) the complex P̃ • = Hom•
R(Hom•

R(P •, R), R) has as its differentials the negatives of the differen-
tials of P •. There is an isomorphism of complexes P • ∼−→ P̃ • given by multiplication by (−1)n

at degree n.
2) If Q• is the complex obtained from Hom•

R(P •, R) by changing all the differentials to their
negatives, then

P • = Hom•
R(Q•, R).

3) If M• is a complex of R-modules, the natural isomorphism of R-modules

Mp ⊗R HomR(P s, R) ∼−→ HomR(P s,Mp)

gives (without auxiliary signs) an isomorphism of complexes

M• ⊗R Hom•
R(P •, R) ∼−→ Hom•

R(P •,M•),

provided M• or P • is bounded. Note the order in which the tensor product is taken.
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We end this subsection with a discussion concerning translates and derived functors. A clarifi-
cation becomes necessary in view of the convention adopted by Conrad in [Con00, p. 151, (3.4.13)].
One of our aims is to establish (1.4), which on first glance seems obvious, but which needs explica-
tion. If A is an abelian category with enough injectives, F : A → B a covariant left exact functor (B
another abelian category) and A is an object in A, then (1.2) allows us to make an identification

H i(RF (A[r])) = Ri+rF (A) (1.3)

in the following way: choose an injective resolution I• of A (in degrees �0), and use the induced
injective resolution I•[m] of A[m] to compute derived functors of A[m] for any m. Then, as in
[Con00, p. 8, (1.3.4)], we have

H i(RF (A[r])) = H i(FI•[r]) = H i+r(FI•) = Ri+rF (A).

Now suppose we have a map in the derived category of complexes in B,

f : RF (A[r])→ B[0]

for some object B in B. Let s be any integer. We claim that under the identification (1.3) we have
the following equality of maps (with source RrF (A) and target B):

H−s(f [s]) = H0(f). (1.4)

The claim is proved as follows. There exists a complex C• in B which, though not necessary for
what follows, may be taken to be bounded below, and maps of complexes g : C• → B[0] and
u : C• → F (I•)[r], with u a quasi-isomorphism, such that in the derived category of complexes
in B we have (with localization functors suppressed) f = g◦u−1. It follows that f [s] = g[s]◦u[s]−1.
By (1.2) we have

H−s(g[s])◦H−s(u[s])−1 = H0(g)◦H0(u)−1,

giving (1.4). Note that the robustness of (1.2) under translation reconciles any ambiguity in the
interpretation of (1.4) (see the comment immediately following (1.2)).

In the special case of F = f∗ where f : X → Y is a smooth proper map of relative dimension
r, and A = ∧rOX

Ω1
X/Y (the relative canonical sheaf), (1.3) differs from the convention adopted by

Conrad in [Con00, p. 151, (3.4.13)] by a sign (if i = 0, the sign is (−1)r).

1.3 Summary of the DV approach

Here is the promised summary of the key points of the DV approach. Let f : X → Y be a separated
finite type map of schemes. One ‘constructs’ a functor f ! : D+

qc(Y ) → D+
qc(X) in two steps. If f is

proper, then f ! is defined as the right adjoint to Rf∗ : D+
qc(X)→ D+

qc(Y ) (which is shown to exist).
If f is not proper, then we pick a compactification f̄ : X̄ → Y of f , and f ! is defined to be i∗◦f̄ !,
where i : X ↪→ X̄ is the natural inclusion. The local nature of f ! (see Remark 1.3.1 below) ensures
that the end result is canonically independent of the compactification f̄ . Recall that Nagata’s result
in [Nag62] ensures the existence of a compactification of f . Nagata’s proof is difficult to follow since
it does not use the language of schemes. There are proofs of Nagata’s result in the language of
schemes, such as those by Lütkebohmert [Lut93] and an old unpublished one by Deligne written up
by Conrad [Con].

The localness of ‘upper shriek’ needs, in a critical way, the results in [Ver69] and [AJL99]
concerning flat base change and the twisted inverse image functor, therefore we quickly review
this. First note that if f : X → Y is proper, then we have a natural transformation

Tf : Rf∗f ! → 1D+
qc(Y ) (1.5)
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(the trace map) corresponding to the identity morphism f ! → f !. Let

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

be a cartesian diagram with g flat and f proper. We have a composite map

g#Tf : Rf ′∗g
′∗f ! ∼−→ g∗Rf∗f ! g

∗Tf−→ g∗.

(See Remark B.2.2 in Appendix B for the isomorphism.) By the universal property of (f ′!, Tf ′) we
get a unique map

Θf
g : g′∗f ! −→ f ′!g∗ (1.6)

such that Tf ′◦Rf∗Θ
f
g = g#Tf . The flat base change assertion in [Ver69, pp. 393–395, Theorem 2]

and [AJL99, pp. 8–9, Theorem 3] is that Θf
g is an isomorphism.

Remark 1.3.1. Here is how the local nature of ‘upper shriek’ is proved using flat base change of
proper maps. Suppose first that we have two compactifications (ık, fk : Xk → Y ) of f and that
these compactifications can be embedded in a commutative diagram

X
ı1 �� X1

h
��

f1

���
��

��
��

�

X ı2
�� X2 f2

�� Y

(1.7)

such that the square is cartesian. The last condition is satisfied, for example, when ı1 : X ↪→ X1 is
scheme theoretically dense. Indeed, if this is so, the natural mapX → h−1(X) is scheme theoretically
dense, and being proper (for the composite X → h−1(X) h−→ X is the identity map, which is proper)
is an isomorphism, proving that the square in (1.7) is cartesian in this case. Next, since f !

1 � h!f !
2

(we are using the isomorphism Rf1∗ � Rf2∗h∗ and the adjointness of ‘upper shriek’ and ‘derived
lower star’), by flat base change we have

ı∗1f
!
1

∼−→ ı∗1h
!f !

2
∼−→ 1!

X ı
∗
2f

!
2 = ı∗2f

!
2.

One checks from the definitions that this isomorphism has another description which is more useful
at times. Let T ′

h : Rh∗f !
1 → f !

2 be the map that arises from the isomorphism f !
1 � h!f !

2 and Th.
Then the above isomorphism can be described by

ı∗1f
!
1 = ı∗2Rh∗f

!
1

ı∗2T
′
h−→ ı∗2f

!
2. (1.8)

This latter description is used in the proof of Proposition 3.1.1 and in Proposition 4.2.1.
We have assumed that f1 and f2 are related by a commutative diagram of the type (1.7) with

X = h−1(X). The general case can be reduced to this by finding a third compactification (ı3 : X ↪→
X3, f3 : X3 → Y ) of f such that for k = 1, 2 we have a cartesian square of Y -schemes

X
ı3 �� X3

hk

��
X ık

�� Xk

(1.9)

and then using the isomorphisms ı∗3f !
3 � ı∗kf

!
k to get ı∗2f !

2 � ı∗1f !
1. Such a compactification can be

found by setting X3 equal to the scheme theoretic closure of the diagonal embedding X → X1×Y X2
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(and setting ı3, h1, h2 and f3 equal to the obvious maps). Note that, with this choice of X3, X is
scheme theoretically dense in X3 and hence (1.9) is cartesian for k = 1, 2. It can be checked that
the resulting isomorphism ı∗2f !

2
∼−→ ı∗1f !

1 is independent of the auxiliary data (ı3, h1, h2, f3).
If µij : ı∗jf

!
j

∼−→ ı∗i f
!
i is the isomorphism described above for two compactifications (ıi, fi) and

(ıj , fj) of f , then it is easy to see that:

a) µij is compatible with open immersions into X;

b) for three compactifications, we have µij◦µjk = µik.

We should point out that in a different context (but with the same formalism) this has been worked
out by Lipman in [Lip84, p. 46, Lemma (4.6)].

We can, in light of the above discussion, talk about f ! even if f is not proper (though separated-
ness is necessary). Moreover if g : Y → Z is another separated finite type map, then we have an
isomorphism

(gf)! ∼−→ f !g! (1.10)

arising, when f and g are proper, as the isomorphism adjoint to the isomorphism Rg∗◦Rf∗
∼−→

R(gf)∗, and defined in general by compactifying and then restricting. One sees that (1.10) is
independent of compactifications of f and g by considering diagrams as in [Del66, p. 413] (the order
of f and g is reversed there), especially the second diagram (from which a south-west pointing
arrow from X̄ to Y is missing). We leave the details to the reader. In conceptual terms we are
talking about the pseudofunctoriality of (·)! which, roughly speaking, refers to the associativity of
the isomorphism (1.10).

Remark 1.3.2. The µij above are compatible with flat base change. More precisely, let g : Y ′ → Y
be a flat map and (·)′ = (·)×Y Y ′. Then the compatibility statement being made is that the diagram
(with (i, j) = (1, 2) and Lg∗ = g∗, Lg′∗ = g′∗ etc.)

g′∗ı∗2f !
2

g′∗µ12

��

ı′∗2g′
∗
2f

!
2

∼ �� ı′∗2f ′
!
2g

∗

µ′12
��

g′∗ı∗1f !
1 ı′∗1g′

∗
1f

!
1

∼ �� ı′∗1f ′
!
1g

∗

(1.11)

commutes, where the horizontal isomorphisms are ı∗kΘ
fk
g , k = 1, 2. By (1.6) and the ‘associativity’

of (1.10) we only need to check that diagram (1.11) commutes when f1 dominates f2, i.e. there
is a map h : X1 → X2 such that (a) f2◦h = f1 and h−1(ı2(X)) = ı1(X) (see Remark 1.3.1). In
this situation, one checks that (1.11) commutes by verifying Θh′

ı′2
◦ı′1

∗Θh
g′2

= g′∗Θh
ı2 and, after making

the identifications f !
1 = h!f !

2 and f ′! = h′!f !
2, that h′!Θf2

g ◦Θh
g2 = Θf1

g (i.e. (1.6) is compatible with
(1.10)). These identities are proved in the appendices, the first in Remark B.2.4 and the second
by the commutativity of the diagram (B.3). In view of the above discussion it makes sense to talk
about Θf

g : g′∗f ! → f ′!g∗ for a separated finite type map f : X → Y and a flat map g even when f
is not proper.

1.4 The problem
To explain the problem we will first consider a simpler situation, in which we have more hypotheses
than we really need. Following [Con00], first consider a proper map f : X → Y which is Cohen–
Macaulay of relative dimension r. The condition in italics means that:

a) f is flat (of finite type) and

b) the non-empty fibers of f are Cohen–Macaulay of pure dimension r.
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It is well known that in this situation, for i �= −r, H i(f !OY ) = 0 and hence f !OY ∼−→ ωf [r],
where ωf = H−r(f !OY ) [Lip79, p. 39, Lemma 1(i)]. Note that ωf is coherent on X. It is further
proved in [Lip79] that ωf is flat over Y . It should be pointed out that the statement in [Lip79] is
for r = 2, but the proof works for arbitrary r.

Let ∫
f

=
∫ OY

f
: Rrf∗ωf → OY

be induced by the trace map Tf : Rf∗f !OY → OY (we remind the reader of our convention (1.3)).
The pair (ωf ,

∫
f ) induces a functorial isomorphism HomOX

(F , ωf ) ∼−→ HomOY
(Rrf∗ωf ,OY ) for

F ∈ Xqc, and hence (ωf ,
∫
f ) is unique up to unique isomorphism. Next suppose that f is embedded

in the cartesian square as follows.

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

Since Rrf∗(·) commutes with arbitrary base change (see Proposition B.1.2), we see that the natural
map g∗Rrf∗ωf → Rrf ′∗g′

∗ωf is an isomorphism. We therefore have a map

g#

∫
f

: Rrf ′∗g
′∗ωf → OY ′

defined by the composite

Rrf ′∗g
′∗ωf

∼−→ g∗Rrf∗ωf
g∗
∫
f−→ g∗OY = OY ′ .

The universal property of (ωf ′ ,
∫
f ′) (note that f ′ is also Cohen–Macaulay of relative dimension r)

immediately gives us a (unique) map

θfg : g′∗ωf −→ ωf ′

such that
∫
f ′ ◦R

rf ′∗(θ
f
g ) = g#

∫
f .

Remark 1.4.1. If g is flat and Θf
g : g′∗f ! ∼−→ f ′!g∗ is the isomorphism defined in (1.6) (see

Remark 1.3.2), then one checks easily that H−r(Θf
g (OY )) = θfg .

Roughly speaking, Conrad’s main results are as follows:

i) θfg is an isomorphism.
ii) If f is smooth, so that (via Verdier’s identification [Ver69, p. 397, Theorem 3]) ωf = Ωr

f ,

ωf ′ = Ωr
f ′ , then θfg is the canonical identification of differential forms g′∗Ωr

f = Ωr
f ′ . Here Ωr

f

and Ωr
f ′ are the respective relative Kähler r-forms on X and X ′.

Our main task in the proper case is to prove results i and ii based on our functorial foundations.
The above rough description involves some loss of the general flavor of [Con00]. Conrad begins

with an explicit local description of ωf and ωf ′ in terms of Ext sheaves. A little more precisely,
if X is a closed subscheme of a smooth Y -scheme p : P → Y (locally on X such an embedding
is possible), then ωf can be identified with ω̃f := ExtdOP

(OX ,Ωr+d
p ), where d is the codimension

of X in P (see § 8.1). A similar description applies to ωf ′ in terms of P ′ = P ×Y Y ′. One has
then, for these explicit versions of the dualizing sheaves, an explicit isomorphism (see (8.9) in § 8.1)
ψ : g∗ω̃f

∼−→ ω̃f ′ obtained naturally on Ext sheaves (see [Con00, pp. 164–165, Theorem 3.6.1]) and
which is shown to be independent of the local factorization of f into a closed immersion followed by
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a smooth map. Conrad also has in place canonical traces for Rrf∗ωf and Rrf ′∗ωf ′ . (See the proof
of [Con00, p. 173, Corollary 3.6.6].) He shows that his map ψ is compatible with the canonical
traces. In other words, the explicit isomorphism ψ he obtains is what we have called θfg . (He calls
it βf,g.) In contrast, our definition of θfg is global (a priori it requires f to be proper), and by
definition is compatible with traces. We have to show that it is an isomorphism (and in the smooth
case is a specific isomorphism.)

Remark 1.4.2. We have quoted Lemma 1, p. 39 of [Lip79] for a proof of the fact that the relative
dualizing complex is concentrated in one degree, and the corresponding homology is flat over the
base. The same lemma also asserts that the ωf is well behaved with respect to base change, but
this assertion is not completely proved there. The proof given in [Lip79] shows that there are local
isomorphisms between g′∗ωf and ωf ′ , but it is not clear that these isomorphisms patch. This will
follow from Theorem 2.3.6. (See question d raised in § 1.5 below.)

1.5 The problem refined
Coming back to our formulation of the problem, a natural question is how necessary is the hypothesis
of properness for our result? Note that the very definition of θfg needs f to be proper. Suppose we

drop the properness assumption of f . Then f can (at least locally) be compactified by X̄
f̄−→ Y

whose fibers are of dimension at most r (see § 2.2). These compactifications need not be Cohen–
Macaulay, but if we set ωf̄ = H−r(f̄ !OY ), we have a functorial isomorphism HomOX

(F , ωf̄ ) =
HomOY

(Rrf̄∗F ,OY ) for F ∈ Xqc, whence an ‘integral’
∫
f̄ : Rrf̄∗ωf̄ → OY . Arguing as before, we

get a map θf̄g : ḡ∗ωf̄ → ωf̄ ′ , where f̄ ′ : X̄ ′ → Y ′ is the base change of f under g, and ḡ : X̄ ′ → X̄ the

base change of g under f̄ . The map θf̄g need not be an isomorphism (see [HS93, p. 773, Remark 3.4]),
but (in light of Conrad’s local and explicit results) we ask the following:

a) Is θfg := θf̄g |X ′ : g∗ωf → ωf ′ an isomorphism?

b) Is θfg independent of the compactification of f̄?

c) If f is smooth, is θfg the canonical identification of differential forms?

d) Given a factorization of f as a closed immersion followed by a smooth map, and if the answer
to questions a and b is ‘yes’, is there an explicit description of θfg along the lines of Conrad’s
map?

e) Finally, is it possible to make explicit the trace map Rrf∗Ωr
f → OY associated to Verdier’s

isomorphism when f is smooth and proper?

These then are the problems. In this paper, we answer the first four questions affirmatively with-
out recourse to dualizing complexes, and remaining faithful to the DV viewpoint. As for question e,
we plan to address it in a later paper using the results of this paper together with the explicit
computations made by Lipman in the proof of his ‘residue theorem for projective space’ [Lip84,

p. 75, Proposition (8.5)]. Using c we note that if {Uα fα−→ Y } is an open cover of X
f−→ Y such that

each fα has an r-compactification (see § 2.2 below for the precise definition of r-compactification),
the various θfα

g patch together on X ′ to give a global isomorphism θfg : g∗ωf
∼−→ ωf ′ , which is

independent of the cover {Uα}. On the smooth locus of f , this isomorphism will be shown to be the
canonical identification of differential forms. We state our results precisely in Theorems 2.3.3, 2.3.5
and 2.3.6.

Our techniques are such that we do not need dualizing complexes or their Cousin versions –
residual complexes. In later work we hope to use the DV approach to rework the theory of residues
of Kunz, Hübl and Lipman [Hub89, HK90a, HK90b, Lip84, Lip87].
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2. The main results

2.1 Verdier’s isomorphism
Let f : X −→ Y be a smooth separated map of finite type. Theorem 3 (p. 397) of [Ver69] gives an
isomorphism

f !OY ∼−→ Ωr
f [r] (2.1)

for f smooth. We give Verdier’s proof in § 7.1. The theorem depends only upon his flat base change
theorem [Ver69, Theorem 2]. In [Ver69] the flat base change is only proved for schemes of finite Krull
dimension. Fortunately, recent results of Lipman [Lip99, p. 120, Corollary (4.3)] yield the flat base
change theorem (and even more), and hence (2.1), without the dimension hypotheses. One checks
easily from the proof of [Ver69, Theorem 2] that the isomorphism (2.1) localizes well over open sets
in X. This has implications when f is just smooth and of finite type (not necessarily separated).

2.2 Equidimensional maps
In order to define θfg for a Cohen–Macaulay map f that is not proper, it becomes necessary to
consider local compactifications of f by maps whose fiber dimensions never exceed the relative
dimension of f (see § 2.3). It is possible to get such local compactifications because f is equi-
dimensional. We now recall the notion of an equidimensional map as discussed in [GD64, 13.3] (see
[GD64, (13.3.2)]). We restrict ourselves to finite type maps and retain our Noetherian hypothesis
(though the notion of an equidimensional map is defined in greater generality in [GD64]). A finite
type scheme map f : X → Y is said to be equidimensional if f takes each maximal point of X (i.e.
a generic point of an irreducible component of X) to a maximal point of Y , and if there exists an
integer r such that every component of every non-empty fiber of f has dimension r. Such an r is
called the relative dimension of f . We often abbreviate ‘f is equidimensional of relative dimension r’
to ‘f is equidimensional of dimension r’. A Cohen–Macaulay map of relative dimension r (or any
finite type flat map whose fibers have pure dimension r) is clearly equidimensional. Equidimen-
sionality need not be preserved under base change (unless f is flat). One could lose the dominance
property, i.e. we could lose the property that generic points map to generic points. For example,
set X equal to an affine plane over a field, and set Y equal to the union of this plane with a line
L meeting the plane in one point. Let f : X → Y be the inclusion map. Make the base change
g : L→ Y (g = inclusion map), and note that equidimensionality is lost. In order to have a notion
which is compatible with base change, we make the following definition.

Definition 2.2.1. Let r be a non-negative integer and f : X → Y a finite type map. The map
f is r-proper if it is proper and its fibers have dimension at most r. An r-compactification of f
is a compactification f̄ : X̄ → Y which is r-proper. The map f is r-compactifiable if it has an
r-compactification, and f is locally r-compactifiable if X can be covered by open sets each of which
is r-compactifiable.

Note that the property of being r-proper (respectively r-compactifiable, respectively locally
r-compactifiable) is preserved under base change.

Coming back to equidimensional maps, an equidimensional map f : X → Y of relative dimension
r is locally r-compactifiable. In greater detail, f : X → Y is equidimensional of dimension r if and
only if X can be covered by open sets Uα such that the induced maps fα : Uα → Y factor as
Uα

hα−→ PrY
π−→ Y where hα is equidimensional of dimension 0 (in particular quasi-finite) and π

is the usual projection (cf. [GD64, Proposition (13.3.1)]). By Zariski’s Main Theorem, we have

a compactification Ūα
h̄α−→ PrY of hα such that h̄α is finite. The resulting map f̄α = π◦h̄α is an r-

compactification of fα. In fact f̄α can be made equidimensional of dimension r, but its base changes
need not be equidimensional of dimension r.
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2.3 Kleiman’s functor fK

Suppose a Cohen–Macaulay map f has an r-compactification f̄ . To construct a comparison map
θfg for appropriate g we extend the relative dualizing sheaf for f to the compactification. There are
many ways of doing this, but we choose a method involving the r-dualizing functors of Kleiman.
The r-compactness of f̄ and our choice of the extension of ωf allow us to define a comparison map
θf̄g associated with this extension. The map θfg is then obtained by restricting. In greater detail,
for a locally r-compactifiable map consider the variant fKr = H−r(f !) : Yqc → Xqc of Kleiman’s
r-dualizing functor (see [Kle80] for the definition of an r-dualizing functor). If the integer r is clear
from the context, and in most cases it will be, we will write fK for fKr .

Note. Since we are not assuming separatedness now, f ! does not make sense. However, its −rth
cohomology does make sense. To begin with, X can be covered by open subschemes on which f ! is
defined. Over triple intersections, these objects formally satisfy cocycle rules. But that is not enough
to glue them together as objects in D+

qc(X) (the reason why Hartshorne upgrades his constructions
to Cousin complexes). However, the −rth cohomology does glue together since we are now in the
category of sheaves! This is the slick way of understanding [HS93, p. 760, Corollary 1.7].

Remark 2.3.1. In view of the remarks made towards the end of § 2.1, it is clear that if f is smooth
and not necessarily separated, we have an isomorphism

fKOY ∼−→ Ωr
f . (2.2)

If f is r-proper we claim that fK is isomorphic to Kleiman’s r-dualizing functor. To see this,
first note that under our hypotheses Rsf∗ = 0 for s > r, and from this one can (using descending
induction on k) deduce that H−k(f !G) = 0 for k > r, G ∈ Yqc ⊂ D+

qc(Y ). Therefore we have a
bifunctorial isomorphism (from the adjoint relationship between f ! and Rf∗)

HomOX
(F , fKG) ∼−→ HomOY

(Rrf∗F ,G)
for F ∈ Xqc and G ∈ Yqc. The adjoint relationship between fK and Rrf∗ means that fK is an
r-dualizing functor (by definition). Note that this adjoint relationship immediately gives rise to
an OY -linear integral ∫ G

f
: Rrf∗fKG −→ G.

The pair (fKG, ∫ G
f ) is unique up to unique isomorphism.

Note that (·)K is local (in the same sense that (·)! is local, see Remark 1.3.1). In fact the local
property of (·)K is defined via the local property of (·)!. If ı : U → X is a open immersion, and
fU : U → Y the map induced by the f : X → Y as above, then

βı = βı(f) : ı∗fK ∼−→ fKU (2.3)

will denote the resulting functorial isomorphism.

Remark 2.3.2. Let G ∈ Yqc and let f be as above. Suppose f proper. Since the complex f !G has
no cohomology below degree −r, we have a natural map κG : fKG[r] −→ f !G in D+

qc(X). Since
Rkf∗(fKG[r]) = 0 for k > 0, we get a map κ′G : Rf∗fKG[r] → H0(Rf∗(fKG)[r]) = Rrf∗fKG (see
(1.3)). One checks easily that

Tf (G)◦Rf∗(κG) =
∫ G

f
◦κ′G .

Set ωf = fKOY . For f proper, if no confusion arises, we will write
∫
f for

∫ OY

f . The pair (ωf ,
∫
f )
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is called a dualizing pair for f . Now consider the cartesian diagram

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

(2.4)

with (proper) f as above. The canonical map g∗Rrf∗ −→ Rrf ′∗g′
∗ is an isomorphism (see Proposi-

tion B.1.2). Hence, as in the Cohen–Macaulay case, we have a map

g#

∫
f

: Rrf ′∗g
′∗ωf −→ OY ′

induced by g∗
∫
f . As before we have a map

θfg : g′∗ωf −→ ωf ′ . (2.5)

Our main theorem is as follows.

Theorem 2.3.3. Let

X̄ ′

f̄ ′

���
��

��
��

��
��

��
��

ḡ �� X̄

f̄

����
��
��
��
��
��
��
�

X ′
� �

ı′
����������

f ′
��

g′ �� X
��

ı
����������

f

��
Y ′

g
�� Y

be a commutative diagram of schemes such that

• f is Cohen–Macaulay of relative dimension r;

• ı is an open immersion;

• f̄ is r-proper;

• the inner square, the outer trapezium, and the trapezium bordered by g′, ı′, ı and ḡ are all
cartesian.

Then the following hold.

a) The map θf̄g |X ′ : g′∗ωf → ωf ′ is independent of the r-compactification f̄ of f . Call the map θfg .

b) θfg is an isomorphism.

c) If f is smooth, and we identify ωf , ωf ′ respectively with Ωr
f , Ωr

f ′ , via Verdier’s isomorphism

(2.1) (or (2.2)), then θfg is the canonical identification of differential forms g′∗Ωr
f = Ωr

f ′ .

Explanation. Part a needs slight elaboration. Suppose f̄j : X̄j → Y , j = 1, 2, are two
r-compactifications of f , with ıj : X → X̄j the corresponding open immersion. Suppose (in an
obvious notation) βj : ωf → ıj

∗ωf̄j
and β′j : ωf ′ → ı′j

∗ωf̄ ′j , j = 1, 2, are the resulting isomorphisms
(see (2.3)). Then part a asserts that

β′1
−1◦ı′1

∗
θf̄1g ◦g′∗β1 = β′2

−1◦ı′2
∗
θf̄2g ◦g′∗β2.

Remark 2.3.4. Assume g is flat. Let Θf̄
g be as in Remark 1.3.2 (see (1.6)). One checks that θf̄g =

H−r(Θf̄
g (OY )). If f̄ = f then we recover Remark 1.4.1. Moreover, diagram (1.11) shows that the
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map θf̄g |X ′ (which equals H−r(ı′∗Θf̄
g (OY ))) is independent of the r-compactification f̄ of f (in

the sense of the Explanation above). Since Θf̄
g is an isomorphism, therefore so is θf̄g |X ′. Thus

parts a and b of Theorem 2.3.3 are true for g flat. Incidentally, if g is flat, θfg can be defined
even if the compactification f̄ is not r-proper. Indeed the map H−r(ı′∗Θf̄

g (OY )) is independent of
the compactification f̄ in the sense of the Explanation above with ωf̄j

and ωf̄ ′j
being replaced by

H−r(f̄ !
jOY ) and H−r(f̄ ′!jOY ′) respectively (cf. (1.11)). Clearly θfg so defined is an isomorphism.

Now suppose f : X → Y is Cohen–Macaulay of relative dimension r (not necessarily separated)
and consider the base change diagram as follows.

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

Since f is equidimensional of dimension r, it is locally r-compactifiable. In other words, X can be
covered by open subsets {Uα} such that each map fα := f |Uα : Uα → Y has an r-compactification
f̄α. By part a of the previous theorem, the maps θfα

g glue together to give a global OX′-map

θfg : g′∗ωf −→ ωf ′ .

This map (again from part a of Theorem 2.3.3) is independent of the cover {Uα}. Part b of the
theorem then implies that θfg is an isomorphism. Therefore Theorem 2.3.3 has the following, seem-
ingly more general, reformulation.

Theorem 2.3.5. Let

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

be a cartesian square of schemes, with f Cohen–Macaulay of relative dimension r. Then the following
hold.

a) There exists an isomorphism

θfg : g′∗ωf
∼−→ ωf ′

characterized by the property that if U ⊂ X is an open set admitting an r-compactification

over Y and θ
f |U
g is the map in Theorem 2.3.3, part a, then

θfg |g′−1(U) = θf |Ug .

b) If f is smooth and ωf , ωf ′ are identified with Ωr
f , Ωr

f ′ via (2.2), then θfg is the canonical

identification of differential forms g′∗Ωr
f = Ωr

f ′ .

Our final result is concerned with question d raised in § 1.5. (See the discussion on Conrad’s
work at the end of § 1.4.) To that end, suppose f : X → Y is Cohen–Macaulay of relative dimension
r and f factors as X ı→ P

p→ Y where ı is a closed immersion and p is a smooth map of relative
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dimension r + d. Let g : Y ′ → Y be a map of schemes and

X ′ g′ ��

ı′
��

X

ı

��
P ′ q ��

p′
��

P

p

��
Y ′

g
�� Y

the resulting composite cartesian diagram. Let ω̃f be the coherent OX -module associated to the
ı∗OX-module ExtdOP

(ı∗OX ,Ωr+d
P/Y ) and ω̃f ′ the coherent OX′-module associated to ExtdOP ′ (ı

′∗OX′ ,

Ωr+d
P ′/Y ′). It is well known (adjunction) that ω̃f and ω̃f ′ are explicit representations of ωf and ωf ′ . In
§ 8.1 we spell out these identifications. Next, there is an obvious isomorphism between g′∗ω̃f and ω̃f ′ .
One wants to know if this isomorphism is θfg . In greater detail let ϕ : ωf

∼−→ ω̃f and ϕ′ : ωf ′
∼−→ ω̃f ′

be the isomorphisms described in (8.4) and (8.7) and ψfg : g′∗ω̃f
∼−→ ω̃f ′ the isomorphism (8.9). Our

third main result, to be proven in § 8, is as follows (cf. [Con00, pp. 164–165, Theorem 3.6.1]).

Theorem 2.3.6. The following diagram commutes.

g′∗ωf

θf
g

��

g′∗ϕ �� g′∗ω̃f

ψf
g

��
ωf ′

ϕ′
�� ω̃f ′

Remark 2.3.7. If d = 0 in the above theorem, then we recover part b of Theorem 2.3.5.

Remark 2.3.8. We would like flexibility in choosing dualizing pairs when proving our theorems. To
this end let f : X → Y be r-proper and consider the base change diagram (2.4). Suppose (ω̃f ,

∫̃
f )

(respectively (ω̃f ′ ,
∫̃
f ′)) is another r-dualizing pair for f (respectively f ′). Let θ̃fg : g′∗ω̃f → ω̃f ′ be

the map defined in the way that θfg was defined in (2.5). Then

g′∗ωf
θf
g �� ωf ′

g′∗ω̃f

�
��

θ̃f
g

�� ω̃f ′

�
��

commutes, where the vertical isomorphisms arise from uniqueness (up to unique isomorphism) of
dualizing pairs. Indeed, if η : ω̃f → ωf and η′ : ω̃f ′ → ωf ′ are these unique isomorphisms, then∫

f ′
◦Rrf ′∗(θ

f
g ◦g

′∗η) =
∫
f ′

◦Rrf ′∗(θ
f
g )◦R

rf ′∗(g
′∗η)

= g#

∫
f
◦Rrf ′∗(g

′∗η)

= g#
˜∫
f
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and ∫
f ′

◦Rrf ′∗(η
′◦θ̃fg ) =

∫
f ′

◦Rrf ′∗(η
′)◦Rrf ′∗(θ̃

f
g )

=
˜∫
f ′

◦Rrf ′∗(θ̃
f
g )

= g#
˜∫
f
.

Thus by the universal property of (ωf ′ ,
∫
f ′), η

′◦θ̃fg = θfg ◦g′∗η. Note, in particular, that θfg is an

isomorphism if and only if θ̃fg is.

3. Main ideas

The key idea is this: we define a residue map resZ : RrZf∗ωf → OY for appropriate closed subschemes
Z of X. The residue map is a formal analog1 of the integral

∫
f . The idea of using residues and so

working with formal schemes (in perhaps a disguised way) has many precedents and we mention
[Ver69, Lip84, HK90a, HK90b, HS93, LS92, Con00] in passing. In this paper, we will show, in a
fairly elementary way, that for special Z (we call such Z’s good) resZ has a local duality property
and is well behaved with respect to base change. Recall that if Z


↪→ X is a closed subscheme of

X, then RpZf∗ denotes the pth right derived functor of f∗ΓZ , where ΓZ is the sheafified version
of ‘sections with support in Z’. The corresponding derived functor D+

qc(X) → D+
qc(Y ) is denoted

RZf∗.

3.1 Residues

Let f : X → Y be a separated Cohen–Macaulay map of relative dimension r, Z

↪→ X a closed

immersion such that h = j◦f : Z → Y is proper. Suppose

X

f ���
��

��
��

�
ı �� X̄

f̄
��
Y

is a compactification of f (not necessarily r-proper). In D+
qc we have a sequence of maps (the second

one arising from excision)

RZf∗ωf [r]
∼−→ RZf∗ı∗f̄ !OY ∼−→ RZ f̄∗f̄ !OY −→ Rf̄∗f̄ !OY

Tf̄−→ OY . (3.1)

Taking the 0th cohomology of the above composite (and using (1.3)) we get the (OY -linear) residue
map:

resZ : RrZf∗ωf −→ OY . (3.2)

Proposition 3.1.1. The residue map resZ : RrZf∗ωf → OY does not depend on the compactification
(ı, f̄) of f .

Proof. Let (ık, fk : Xk → Y ), k = 1, 2, be two compactifications of f . By taking the closure of the
diagonal embedding of X in X1 ×Y X2 if necessary, we may assume that we have a commutative

1This philosophy is made precise in [AJL99]. However, we will not appeal to that work for residues.

742

https://doi.org/10.1112/S0010437X03000654 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000654


Base change for Cohen–Macaulay maps

diagram

X
ı1 �� X1

h
��

f1

���
��

��
��

�

X ı2
�� X2 f2

�� Y

with the square being cartesian. The proposition follows from the commutativity of

RZf∗ı1∗f !
1OY

�
��

∼ �� RZf1∗f !
1OY

�
��

�� Rf1∗f !
1OY
�

��

Tf1

		�����������

RZf∗ωf [r]

∼


�������������

∼
��													

RZf∗ı2∗Rh∗f !
1OY

Th

��

∼ �� RZf2∗Rh∗f !
1OY

Th

��

�� Rf2∗Rh∗f !
1OY

Th

��

OY

RZf∗ı2∗f !
2OY ∼ �� RZf2∗f !

2OY �� Rf2∗f !
2OY

Tf2

��












(3.3)

We point out that the triangle on the left commutes since it does so before applying the functor
RZf∗ (see Remark 1.3.1, especially the isomorphism (1.8)).

Remark 3.1.2. If (ı, f̄ : X̄ → Y ) is an r-compactification of f (so that f̄K : Yqc → X̄qc is defined),
then with ωf̄ = f̄KOY we see easily that resZ can be defined by the commutativity of the following
diagram.

RrZf∗ωf

resZ

��

∼ �� RrZf∗ı
∗ωf̄

∼ �� RrZ f̄∗ωf̄

��
OY Rrf̄∗ωf̄∫

f̄





The following result is a way of saying that residues behave well with respect to certain base
changes.

Proposition 3.1.3. Let

Z ′

′
��

gZ �� Z



��
X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

be a commutative diagram of cartesian squares with f a separated Cohen–Macaulay map of relative

dimension r and  : Z ↪→ X a closed immersion such that Z is proper over Y . Suppose (X
ı
↪→

X̄, X̄
f̄−→ Y ) is a compactification of f and (X ′ ı′

↪→ X̄ ′, X̄ ′ f̄ ′−→ Y ′) its base change by g : Y → Y ′.
Let ḡ : X̄ ′ → X̄ be the resulting projection map. Assume that one of the following conditions holds:

a) The map f̄ is r-compact.

b) The map g is flat.
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Then the diagram

RrZ′f ′∗g′
∗ωf

α �� RrZ′f ′∗ωf ′

resZ′
��

g∗RrZf∗ωf

(A.5)

��

g∗ resZ

�� OZ′

commutes where α = ı′∗θf̄g in case a and α = θfg in case b.

Proof. Case a is dealt with as follows. Consider the diagram below.

g∗RrZf∗ωf

(A.5)

��

�� g∗Rrf̄∗ωf̄

(A.5)
��

g∗
∫
f̄

����������������

RrZ′f ′∗g′
∗ωf

ı′∗θf̄
g

��

�� Rrf̄ ′∗ḡ′
∗
ωf̄

θf̄
g

��

g#
∫

f̄ �� OY ′

RrZ′f ′∗ωf ′ �� Rrf̄ ′∗ωf̄ ′

∫
f̄ ′



��������������

The top subrectangle commutes by Proposition A.1.1, part a. The remaining subdiagrams commute
by the definitions of g#

∫
f̄ , θ

f̄
g , and the functoriality of the map RrZ′f ′∗g′

∗ → Rrf̄ ′∗ḡ′
∗.

Case b is proved in essentially the same way. First apply Lg∗ to the composite in (3.1) and use
Remark B.2.2 along with the map Θf

g (see (1.6) and Remark 1.3.2) to compare with the composite
analogous to (3.1) for the triple (Z ′, f ′, f̄ ′).

We are not interested in arbitrary Z. Our interest is in ‘good’ immersions, which we define in a
moment. Recall that a sequence t = (t1, . . . , tr) in a ring R is said to be Koszul regular if the Koszul
homology complex built from t resolves R/tR.

Definition 3.1.4. Let f, Z be as at the start of § 3.1.The closed immersion  : Z ↪→ X is said to
be good if it satisfies the following hypotheses (cf. also [HK90a, (4.3)]):

• There is an affine open covering U = {Uα = SpecAα} of Y , and for each index α there is an
affine open subscheme Vα = SpecRα of f−1(Uα) such that Z ∩ f−1(Uα) ⊂ Vα.

• The closed immersion  is given in Vα by a Koszul-regular Rα-sequence.

Note that since Z is proper and affine over Y , therefore h = f◦ : Z → Y is finite.

Lemma 3.1.5. Let f : X → Y be Cohen–Macaulay of relative dimension r, and  : Z ↪→ X a good
immersion with respect to f .

a) [GD64, Chapitre 0, 15.1.16] The map h = f◦ : Z → Y is flat.

b) If

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

is a cartesian square then ′ : Z ′ = g′−1(Z) ↪→ X ′ is a good immersion with respect to f ′.

Proof. Part a is proved in the indicated reference in [GD64] and also in [Mat86, p. 177, Corollary
to 22.5 and Theorem 22.6]. Part b follows from the discussion in [GD64, Chapitre 4, § 19.2], but the
proof is simple enough (in our situation) for us to give it again. Our definition of good immersion
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is such that we may (for proving part b) assume that Y = SpecA, Y ′ = SpecA′,  : Z ↪→ X factors
through an affine open set U = SpecR of X, and Z is defined by an ideal I of R generated by a
Koszul-regular R-sequence t = (t1, . . . , tr). Since R and B = R/I are flat over A, the extension of t
to R′ = R⊗AA′ is Koszul-regular (indeed the Koszul complex on t augmented by B on the right is
an exact complex of flat A modules, and hence retains its exactness on tensoring with A′ over A).
This proves that ′ : Z ′ ↪→ X ′ is a good immersion for f ′.

3.2 Two key propositions
For proving Theorem 2.3.3, parts a and b, the crucial ingredients are (a) local duality (Proposi-
tion 3.2.1 below) and (b) compatibility of local duality with base change (Proposition 3.2.2 below).
The proofs of these two propositions will be given later, after we show (in § 3.3) how a substantial
part of the main result, Theorem 2.3.3, is proved using these propositions.

For good immersions Z

↪→ X with respect to a separated Cohen–Macaulay map f : X → Y

we have a version of local duality. To fix ideas we will first describe it in the ‘affine situation’,
i.e. Y = SpecA, X = SpecR, Z = SpecB, and B = R/I, where I is generated by a Koszul-
regular R-sequence t1, . . . , tr. Let ωR/A = Γ(X,ωf ) and for any R-module N let N̂ denote the
completion of M with respect to the ideal I of R. For a finitely generated R̂-moduleM , set DI(M) =
HomA(Hr

Î
(M), A). Note that DI is a contravariant functor. Now set resI = Γ(Y, resZ) : Hr

I (ωR/A)→
A. By Remarks C.2.2 and C.4.2, resI ∈ DI(ω̂R/A). Our local duality statement is that the functor
DI is represented by the pair (ω̂R/A, resI). We can upgrade this to the general situation, where we no
longer assume that X, Y and Z are affine. More precisely, let  : Z → X be a good immersion with
respect to the Cohen–Macaulay map f . Let X̂ be the formal scheme obtained by completing X along
Z, and f̂ : X̂ → Y the resulting morphism. Let X̂c denote the category of coherent OX̂ -modules. For
any coherent sheaf F defined in an open neighborhood of Z in X, let F̂Z denote the completion of F
along Z. Since Z ↪→ X is a good immersion for f , we can define a functor RrZ f̂∗ : X̂c → Yqc in such
a way that RrZ f̂∗(F̂Z) = RrZf∗(F) for F in Xc. In greater detail suppose G ∈ X̂c. Let Uα = SpecA
be a member of the affine open covering U of Y required in the definition of good immersion (3.1.4).
Let Vα = SpecR ⊂ f−1(Uα) be as in Definition 3.1.4 and let I ⊂ R be the ideal corresponding to
the closed subscheme Z ∩ f−1(Uα) of Vα. If R̂ is the completion of R in the I-adic topology, one
checks that f̂−1(Uα) = Spf(R̂) and that G|f̂−1(Uα) is the sheaf corresponding to a finitely generated
R̂-module N (cf. [Har77, Theorem (9.7), p. 198]). The R̂-module Hr

Î
(N) is an A-module and one

checks that it localizes well with respect to affine open localizations of Uα = SpecA. Varying Uα
over the affine open cover U of Y , one checks that these modules glue and we get an OY -module
which we denote RrZ f̂∗G. Note that if F ∈ Xc then RrZ f̂∗(F̂Z) = RrZf∗(F). In affine terms this
corresponds to the equality Hr

I (N) = Hr
Î
(N̂ ) (see Remark C.2.2). Let DZ be the functor on X̂c

given by DZ = HomOY
(RrZ f̂∗(·),OY ). Making the identification RrZ f̂∗(ω̂f )Z = RrZf∗ωf , we have the

following local duality assertion (see § 5.2).

Proposition 3.2.1 (Local duality). The pair ((ω̂f )Z , resZ) represents DZ .

Next suppose

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

is a cartesian square (f as before, Cohen–Macaulay of relative dimension r and separated). Suppose
 : Z ↪→ X is a good immersion for f . Let ′ : Z ′ ↪→ X ′ and g′′ : Z ′ → Z be the corresponding base
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change maps. Note that by Lemma 3.1.5 ′ : Z ′ ↪→ X ′ is a good immersion for f ′. Define

g# resZ : RrZ′f ′∗g
′∗ωf −→ OY (3.4)

by the commutativity of the following diagram.

g∗RrZf∗ωf

g∗resZ ��












∼ �� RrZ′f ′∗g′

∗ωf

g#resZ

��
OY ′

The horizontal map is the canonical base change map defined in (A.5) in the appendix which is an
isomorphism (see Proposition B.1.3).

Our second key proposition is now given.

Proposition 3.2.2. The pair ((ĝ′∗ωf )Z′ , g# resZ) represents DZ′ .

3.3 Proof of Theorem 2.3.3, parts a and b

In this subsection we assume Propositions 3.2.1 and 3.2.2 whose proofs are given in §§ 5.2 and 6.2
respectively. We first make a few remarks whose main aim is to show that the comparison map θfg
is compatible with Zariski localization on either base.

Remark 3.3.1. Consider the following diagram of cartesian squares with f r-proper.

X ′′

f ′′
��

h′ �� X ′

f ′
��

g′ �� X

f

��
Y ′′

h
�� Y ′

g
�� Y

We can show that

θfgh = θf
′
h ◦h′∗θfg . (3.5)

The strategy is as follows. Let θ1 be the left side and θ2 be the right side. Then one checks (using
the definition of the various θ’s) that

∫
f ′′ ◦R

rf ′′∗ (θ1) =
∫
f ′′ ◦R

rf ′′∗ (θ2). One needs the commutativity
of the diagram

(gh)∗Rrf∗

��

h∗g∗Rrf∗

��
Rrf ′′∗(g′h′)

∗ h∗Rrf ′∗g′
∗



where all arrows arise from (A.5). One can prove this in the following (inelegant) way: the map
arising from (A.5) is compatible with Zariski localization of either base, and so we may assume Y ,
Y ′ and Y ′′ are affine. Now use the commutative diagram (B.1). The more elegant approach is of
course to prove that the diagram

Rrf∗g′∗h′∗

		����������
�� g∗Rrf ′∗h′∗

��
g∗h∗Rrf∗

commutes. This follows from [Lip03, pp. 112–113, Proposition (3.7.2)(iii)].
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Remark 3.3.2. Suppose

S′

f ′T

��

v′ ���
��

��
��

�
h′ �� S

v
����

��
��

��

fT

��

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

T ′

u′
����������

h
�� T

u
����������

(3.6)

is a commutative diagram with f locally r-compactifiable and such that the inner square, outer
square, and the four trapeziums squeezed between them are all cartesian. Note that if the inner
cartesian square is given, then the rest of the diagram is completely determined by the single map
u : T → Y . If f is r-proper then from Remark 3.3.1 we easily see that the following diagram
commutes

θfT

h ◦h′∗θfu = θf
′
u′ ◦v

′∗θfg . (3.7)

In fact both sides equal θfuh = θfgu′ . This theme recurs in different contexts in this paper (cf. also
§ 8.2, and Remark B.2.3 and B.2.4).

Remark 3.3.3. In view of Remark 2.3.4, if g : Y ′ → Y is an open immersion we can set ωf ′ = g′∗ωf
and θfg equal to the identity without affecting compatibilities. This coupled with Remark 3.3.2
means that for parts a and b of Theorem 2.3.3 the question is local on Y . Similarly, Remark 3.3.1
says that these questions are local on Y ′ also. We may sometimes implicitly make these reductions.
In all such instances, this remark underlies these reductions.

Consider the situation in Theorem 2.3.3. We are about to prove parts a and b of the Theorem
(assuming Propositions 3.2.1 and 3.2.2). Suppose first that we have a good immersion  : Z ↪→ X
for f (a strong assumption, and in general there is no guarantee that such an immersion exists).
Let Z ′ = g′−1(Z). Using Proposition 3.1.3 and the definition of g# resZ (cf. (3.4)) we have

g# resZ = resZ′ ◦RrZ′f ′∗(ı
′∗θf̄g ).

Since ( ̂g′∗ωf,Z′, g# resZ) and (ω̂f ′,Z′ , resZ′) represent the same functor (here it is being used that we
assume Propositions 3.2.1 and 3.2.2 are true), it follows that:

• with obvious notation θ̂f̄g,Z′, does not depend on the compactification f̄ indeed resZ , g# resZ ,
and resZ′ are all independent of f̄ , giving the conclusion;

• θ̂f̄g,Z′ is an isomorphism.

As a consequence, for every x′ ∈ Z ′, we have

a) θf̄g,x′ does not depend on f̄ ;

b) θf̄g,x′ is an isomorphism.

The difficulty is in finding enough good immersions in X. This is where the Cohen–Macaulay
property helps. In the flat topology on X we have a plentiful supply of good immersions, and then
faithful flat descent gives the rest. We bring the above ideas down to earth as follows.
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Let x ∈ X be a point closed in its fiber over Y . Let

• y = f(x), k = OY,y/my,
• Xk = X ×Y Spec k, x̄ ∈ Xk the closed point corresponding to x ∈ X,
• A = ÔY,y, T = SpecA,
• u : T → Y the natural map.

The map u : T → Y induces the diagram in Remark 3.3.2 as well as a ‘compactified’ version of
that diagram

S̄′

f̄ ′T

��

v̄′ ���
��

��
��

�
h̄′ �� S̄

v̄����
��

��
��

f̄T

��

X̄ ′

f̄ ′
��

ḡ′ �� X̄

f̄
��

Y ′
g

�� Y

T ′

u′
����������

h
�� T

u
����������

with f̄ ′, f̄ ′T , ḡ′, h̄′, v̄ and v̄′ being the compactifications of f ′, f ′T , g′, h′, v and v′ induced by the
compactification f̄ of f .

Let s ∈ S be the point corresponding to x̄ ∈ Xk. Since Xk is Cohen–Macaulay, we can find an
OXk,x̄-sequence t̄1 . . . , t̄r ∈ mx̄. There is an affine open neighborhood U = SpecR of s ∈ S such
that the closed subscheme of U ×T Spec k given by the vanishing of the t̄i is supported only on x̄.
According to [Mat86, p. 177, Corollary to Theorem 22.5], we may choose U to be such that we can
lift t̄1, . . . , t̄r to an R-sequence t1, . . . , tr. By shrinking the affine neighborhood U of s if necessary,
we may also assume that, if Z is the closed subscheme of U defined by the t’s, then Z has only one
connected component. We claim that the map Z ↪→ S̄ is also a closed immersion. This would follow
if Z is shown to be finite (and hence proper) over Y . Now T is the spectrum of a complete local ring
and the fiber of Z → T over the closed point of T has only one point (by choice of U). Since Z has
only one connected component, it follows that Z is finite over Y (cf. [GD61a, (6.2.5) and (6.2.6)]).
Clearly Z


↪→ S is a good immersion for fT . By Remark 3.3.2, especially (3.7), we have

θf̄T
h ◦h̄′∗θf̄u = θf̄

′
u′ ◦v̄′

∗
θf̄g . (3.8)

Now g′−1(x) = h′−1(s). For s′ ∈ h′−1(s), let x′ denote the corresponding point in g′−1(x). We
then have that the completion of v̄′∗θf̄g at s′ ∈ S′ is equal to the completion of θf̄g at x′ ∈ X ′.
Since u and u′ are flat, therefore θf̄u and θf̄

′
u′ are isomorphisms by the flat base change theorem

for the twisted inverse image functor (cf. [Lip99, p. 120, Corollary (4.3)] and [Ver69, pp. 394–395,
Theorem 2]). Moreover, by Remark 2.3.4, they are also independent of the compactification f̄ . Now,
from arguments we gave earlier in this proof, for every s′ ∈ h′−1(s), θf̄T

h,s′ is independent of f̄ and is

an isomorphism. Equation (3.8) together with these facts imply that θf̄g,x′ is independent of f̄ and
is an isomorphism for every x′ ∈ g′−1(x). Since x ∈ X was an arbitrary point closed in its fiber,
therefore (as x varies) such x′ form a collection that contains all points of X ′ which are closed in
their fibers with respect to f ′. Parts a and b of Theorem 2.3.3 are immediate.

Remark 3.3.4. The Cohen–Macaulay hypothesis has been used in finding a good immersion Z ↪→ S
over T . We will see later that the hypothesis is also used for getting the various local duality
properties of resZ , g# resZ′ , etc.
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4. The fundamental local isomorphism; adjunction

One of the technical devices we use in this paper is the compatibility of local and global duality. In
greater detail, if Z → Y is a proper map which factors as a closed immersion Z ↪→ X followed by
a proper map X → Y , then we wish to understand duality for Z (i.e., for Z → Y ) and (in essence)
all its thickenings in X in terms of duality for X → Y . For this paper the most important case is
that when Z ↪→ X is a regular immersion. Roughly speaking, § 4.1 discusses duality for a regular
immersion and § 4.2 brings in the other piece, namely, the map X → Y .

4.1 The fundamental local isomorphism
The fundamental local isomorphism (4.3) can be interpreted as giving an explicit description of
!OX for a closed regular immersion  : Z ↪→ X in terms of the top exterior power of the normal
bundle of Z in X. In this section we give a local description of (4.3) when X is affine and Z is given
globally by the vanishing of a Koszul-regular sequence. Let R be a ring and I an ideal of R generated
by a Koszul-regular R-sequence t = (t1, . . . , tr). Let B = R/I, and NB/R =

∧r
B HomB(I/I2, B) =

HomB(
∧r
B I/I

2, B). For t ∈ I, let t̄ denote its image in I/I2. Now,
∧r
B I/I

2 is a free B-module of
rank one with t̄1 ∧ · · · ∧ t̄r a generator. Denote by

1
(t1, . . . , tr)

∈ NB/R (4.1)

the dual generator (which sends t̄1 ∧ · · · ∧ t̄r to 1 ∈ B). Let K• = K•(t, R) denote the Koszul
cohomology complex on t. There is (from comments in the previous subsection), a complex of free
R-modules C•, concentrated in degrees −r to 0, such that

K• = Hom•
R(C•, R).

In view of the sign conventions for Hom•, the complex C• is not the Koszul homology complex
(concentrated in degrees −r to 0) on t, though it is canonically isomorphic to it, and as such
it resolves the R-module B. It is well known that K• resolves NB/R[−r], the map Kr = R →
NB/R being the one which sends 1 to 1/(t1, . . . , tr). In the category D+(ModR) we thus have two
isomorphisms,

B
∼−→ C•,

NB/R[−r] ∼−→ K•.

For M• ∈ D+(ModR) we have functorial isomorphisms

M• L⊗NB/R[−r] ∼−→M• ⊗K•
∼−→ Hom•

R(C•,M•)
∼−→ RHom•

R(B,M•).

(4.2)

The resulting isomorphism between the complexes M• L⊗RNB/R[−r] and RHom•
R(B,M•) (obtained

by composing the above isomorphisms together) is well known to be independent of the Koszul-
regular R-sequence generating I (even though the intermediate steps do depend on t). The above
is the local aspect of a more global isomorphism which we now describe. Let Z


↪→ X be a (regular)

closed immersion, i.e. the ideal I of OX giving the immersion  is locally generated by an OX -
sequence. Let N denote the top wedge product of the normal bundle of the immersion  : Z ↪→ X.
Then, using [Har66, p. 74, Proposition I.7.4], Hartshorne proves in [Har66, p. 180, Corollary III.7.3]
that in D+

qc(X) we have a functorial isomorphism, the fundamental local isomorphism

G• L⊗OX
∗N[−r] ∼−→ RHom•

OX
(∗OZ ,G•) (4.3)
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which, when restricted to the case considered above, gives (4.2). Our sign conventions are different
from Hartshorne’s but the proof given in [Har66] works in our situation also.

4.2 Adjunction

The principal result of this section is Proposition 4.2.1. To motivate it, consider the situation
described in the beginning of § 4 and let h and f be the maps Z → Y and X → Y . Assume Z ↪→ X
is a regular immersion. The fundamental local isomorphism (4.3) allows us to describe h! in terms
of f ! and (the top exterior power of) the normal bundle to Z in X. In broad terms, in view of the
local nature of f ! and the nature of the normal bundle, this description of h! does not depend on
the nature of X ‘away from Z’, but only on how it ‘looks’ near Z. However, it is not a priori clear
that the resulting trace h∗h! → 1D+

qc(Y ) depends only on the description of X ‘around Z’, although
it is reasonable to expect this. Roughly speaking, Proposition 4.2.1 justifies this expectation. In
§ 5 we make this rough philosophy more precise by taking (essentially) all possible thickenings of
Z in X to get local duality in the special case where X → Y is Cohen–Macaulay in a (Zariski)
neighborhood of Z and Z ↪→ X is a good immersion for X → Y .

Let  : Z ↪→ X be a closed immersion of schemes. We recall the explicit description of dual-
ity for the map . Let E• be a bounded below complex of quasi-coherent, injective OX -modules,
and J • the injective OZ -complex satisfying ∗J • = Hom•

OX
(∗OZ , E•). The adjoint properties of

Hom and ⊗ give, for any bounded below complex F•, a functorial isomorphism of OZ -modules,
Hom•

OZ
(F•,J •) ∼−→ Hom•

OX
(∗F•, E•). Since ∗J • is a complex of injective OX-modules, we have

that !E• � J •, and under this identification, the trace map ∗!E• → E• is the natural inclusion
∗J • = HomOX

(∗OZ , E•) ↪→ E•.
Now suppose  : Z ↪→ X is a regular immersion. For G• ∈ D+

qc(X), set †G• = L∗G• L⊗OZ
N[−r].

In view of the fundamental local isomorphism (4.3) and our description of duality for  we have the
adjunction isomorphism:

!
∼−→ †. (4.4)

If f : X → Y is a finite type separated map such that h = f◦ : Z → Y is proper, then we have
a map

τZ : Rh∗† −→ RZf∗ (4.5)

arising from isomorphism (4.3) and the fact that RHomOX
(∗OZ , ·) is a ‘subfunctor’ of RΓZ (and

the fact that Rh∗ = Rf∗◦∗). Note also that the isomorphism (4.4) gives us

h! ∼−→ †f !. (4.6)

We would like to explicate the map Rh∗j†f ! → 1D+
qc(Y ) arising from the trace map Th : Rh∗h! →

1D+
qc(Y ) and (4.6). To that end, let (ı, f̄) be a compactification of the (not necessarily proper) map f .

For G• ∈ D+
qc(Y ) define

T ′
h(G•) : Rh∗†f !G• −→ G•

by the composite

Rh∗†f !G• τZ−→ RZf∗f !G• ∼−→ RZ f̄∗f̄ !G• −→ Rf̄∗f̄ !G• Tf̄−→ G•.
We now come to the main point of this section.

Proposition 4.2.1.

a) T ′
h does not depend on the compactification (ı, f̄ ).
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b) The composite

Rh∗h! (4.6)−→ Rh∗j†f ! T ′
h−→ 1D+

qc(Y )

is the trace map Th.

Proof. Part a is proved in exactly the same way in which Proposition 3.1.1 is proved. Part b follows
from part a and the fact that (4.6) is an isomorphism, or alternatively from the identity Th =
Tf̄ ◦Rf̄∗(Tı). The functors can be composed only because we have implicitly made the identification
h! = (ı)!f̄ ! as in (1.10).

5. Local duality

5.1 A perfect pairing

For this subsection, we assume f : X → Y is a separated Cohen–Macaulay map of relative dimension
r. We also assume that we are given a good immersion  : Z ↪→ X for f . Set h = f◦ : Z → Y .

Now by Lemma 3.1.5 h : Z → Y is flat. Since h is finite, it then follows that h is Cohen–Macaulay
of relative dimension 0. This means H i(h!OY ) = 0 for i �= 0. This gives a canonical isomorphism
h!OY � Q(H0(h!OY )) (Q = QZ : K+

qc(Z)→ D+
qc(Z) is the ‘localization’ functor). We claim, on the

other hand, that there is a natural map

L∗ωf
L⊗OZ
N[−r]→ Q(∗ωf [r]⊗OZ

N[−r])
whose 0th cohomology is an isomorphism. This claim, in conjunction with (4.6) and the isomorphism
h!OY � Q(H0(h!OY )), allows us to make the identification

h!OY = Q(∗ωf [r]⊗OZ
N[−r]). (5.1)

In order to prove our claim, let F • → ωf be an OX -flat resolution of ωf (we may temporar-
ily have to leave the category of quasi-coherent modules). This induces a map ∗F •[r]⊗N[−r]→
∗ωf [r] ⊗ N[−r]. Since tensor product is right exact, the last map gives an isomorphism on
applying H0. Since N is locally free, we can make the identification

Q(∗F •[r]⊗OZ
N[−r]) = L∗ωf [r]

L⊗OZ
N[−r],

giving the claim.

Now set
◦
ωh = ∗ωf ⊗OZ

N (5.2)

and define ∫ ◦

h
: h∗

◦
ωh −→ OY (5.3)

to be the composite

h∗
◦
ωh

h∗θ−1
r,−r−→ h∗(ωf [r]⊗N[−r])

T ′
h−→ OY .

Here θr,−r is ‘multiplication by (−1)r’ (see the definition of the map θij in § 1.2). The map
∫ ◦
h is a

priori a map in D+
qc(Y ), but since the source and target are concentrated in degree 0,

∫ ◦
h is a map

in Yqc. In the definition of
∫ ◦
h we have implicitly used the equality Rh∗ = h∗ (h is an affine map).

The integral has another description. Taking the 0th cohomology of the map τZ(OY )◦h∗θ−1
r,−r we get

a map

rZ : h∗
◦
ωh → RrZf∗ωf . (5.4)
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(Cf. also (C.11).) Then clearly ∫ ◦

h
= resZ ◦rZ . (5.5)

Proposition 5.1.1. The pair (
◦
ωh,

∫ ◦
h ) defined by (5.2) and (5.3) is a dualizing pair for the map

h : Z → Y .

Proof. This is a consequence of Proposition 4.2.1 and the definitions of
◦
ωh and

∫ ◦
h .

The following is a version of local duality

Proposition 5.1.2. The pairing given by the composite

h∗∗ωf ⊗OY
h∗N −→ h∗(∗ωf ⊗Z N) = h∗

◦
ωh

∫ ◦
h−→ OZ

is a perfect pairing of the OY -modules h∗∗ωf and h∗N.
Proof. From the definition of a good immersion, we may assume without loss of generality that
Y = SpecA, X = SpecR, Z = SpecB and B = R/I, where I is generated by an R-sequence
t1, . . . , tr. Our intent (clearly!) is to work with rings and modules, and we use the following dictionary
◦
ωh ←→ ◦

ωB/A,
∫ ◦
h ←→

∫ ◦
B/A, ωf ←→ ωR/A and N ←→ NB/R = N . We have to show that the

following composite arrow

(B ⊗R ωR/A)⊗A N −→ ◦
ωB/A = (B ⊗R ωR/A)⊗B N

∫ ◦
B/A−→ A

gives a perfect pairing between the A-modules B ⊗R ωR/A and N .
Since B is flat and finite over A (i.e. B is a projective A-module), the composite (with e =

‘evaluation at 1’)

HomA(B,A)⊗A B −→ HomA(B,A)⊗B B = HomA(B,A) e−→ A (5.6)

is a perfect pairing of the A-modules HomA(B,A) and B. We will relate this pairing to the pairing
stated in the proposition to reach the desired conclusion. We have a B-isomorphism

ϕ : N ∼−→ B,

1/(t1, . . . , tr) �→ 1.

By the adjoint properties of Hom and ⊗, we see that theB-module functor HomA(·, A) is represented
by the pair (HomA(B,A), e). But it is also represented by (

◦
ωB/A,

∫ ◦
B/A) (for the pair (

◦
ωh,

∫ ◦
h ) is

dualizing). We therefore have an isomorphism

ψ̃ :
◦
ωB/A = (B ⊗R ωR/A)⊗B N ∼−→ HomA(B,A)

such that e◦ψ̃ =
∫ ◦
B/A. Let

ψ : B ⊗R ωR/A ∼−→ HomA(B,A)

be the B-isomorphism induced by ψ̃ and ϕ. Clearly ψ̃ = ψ ⊗B ϕ. We have a commutative diagram
as follows.

(B ⊗R ωR/A)⊗A N
�ψ⊗Aϕ

��

�� (B ⊗R ωR/A)⊗B N
ψ⊗Bϕ�

��

◦
ωB/A

ψ̃

��

∫ ◦
B/A �� A

HomA(B,A)⊗A B �� HomA(B,A)⊗B B HomA(B,A) e �� A

The bottom row is (5.6) which is a perfect pairing. The proposition follows.
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5.2 Proof of Proposition 3.2.1
Note that it is enough to prove Proposition 3.2.1 when Y = SpecA, X = SpecR, Z = SpecB, B =
R/I, where I is generated by a Koszul-regular R-sequence. This is from excision, the definition of a
good immersion, and the fact that the residue map localizes well on the base (see Proposition 3.1.3,
case b). We use the notations used in § 5.1. The proof we give is the standard proof given, for
example, in [Lip84, p. 68, Theorem (7.4)].

Let resI : Hr
I (ωR/A) → A be the A-map corresponding to the residue map resZ (in other

words resI = Γ(Y, resZ)). By Proposition 5.1.2 we have an isomorphism (of projective systems of
R-modules)

ωR/A/t
αωR/A

∼−→ HomA(Nα, A).

Taking projective limits, and using the isomorphism (C.12), we get

ω̂R/A
∼−→ HomA(Hr

I (R), A). (5.7)

By Remark C.2.2 (or Remark C.4.2) we have Hr
I (R) = Hr

Î
(R̂) and hence by the isomorphism (C.7)

we have, for any finitely generated R̂-module M ,

Hr
I (R)⊗

R̂
M = Hr

Î
(M),

whence a functorial isomorphism

HomR̂(M,HomA(Hr
I (R), A)) ∼−→ HomA(Hr

Î
(M), A).

According to the isomorphism (5.7) (see also Remark C.4.2) this translates to a functorial isomor-
phism

HomR̂(M, ω̂R/A) ∼−→ HomA(Hr
Î
(M), A).

Now applying Proposition C.4.1, we see that if M = ω̂R/A then the identity map on the left
corresponds to resI : Hr

I (ωR/A) → A, i.e. (ω̂R/A, resI) represents the functor HomA(Hr
Î
(M), A) of

finitely generated R̂-modules M . This completes the proof of Proposition 3.2.1.

6. Base change for residues

In this section we prove Proposition 3.2.2, thereby settling parts a and b of Theorem 2.3.3 and
hence also part a of Theorem 2.3.5. However, first we need some auxiliary constructions.

6.1 Finite maps and base change
Suppose f : X → Y is a finite Cohen–Macaulay map (or, what is the same thing, a finite flat map).
Suppose further that we have a base change diagram.

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

Lemma 6.1.1. The map θfg : g′∗ωf → ωf ′ is an isomorphism.

Proof. By Remark 3.3.3, without loss of generality, we may assume that Y = SpecA, X = SpecB,
Y ′ = SpecA′ and X ′ = SpecB′ (B′ = B ⊗A A′). In view of Remark 2.3.8, we may choose any
convenient dualizing pairs for f and f ′. We have very simple descriptions of (ωB/A,

∫
B/A) and

(ωB′/A′ ,
∫
B′/A′) in this case (the notations are self-explanatory). Since Hom and ⊗ are adjoint
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functors,

ωB/A = HomA(B,A),∫
B/A

: ωB/A → A (ϕ �→ ϕ(1)),

have the necessary dualizing property for the map f . Similarly ωB′/A′ can be identified with
HomA′(B′, A′) and

∫
B′/A′ with ‘evaluation at 1’. The assertion that θfg is an isomorphism reduces

to checking that the natural map

ωB/A ⊗A A′ = HomA(B,A)⊗A A′ → HomA′(B ⊗A A′, A⊗A A′) = ωB′/A′ (6.1)

is an isomorphism. This reduction is made by noting that
∫
B/A⊗AA′ maps to

∫
B′/A′ under this map

and hence (6.1) is (the global section of) θfg . To check that the map is an isomorphism, we only
have to note that B is finite and flat over A, and hence it is a projective A-module.

Remark 6.1.2. It is worth pointing out that, in this case (f finite), g∗f∗ = f ′∗g′
∗, and hence we have

an equality g#
∫
f = g∗

∫
f .

6.2 Proof of Proposition 3.2.2
By Remark 3.3.3 and the definition of good immersion, we may assume that Y = SpecA, Y ′ =
SpecA′,X = SpecR,X ′ = SpecR′ and Z is defined by an ideal I of R generated by a Koszul-regular
R-sequence t = (t1, . . . , tr). Note that since R and B = R/I are flat over A, the extension of t to
R′ is a Koszul-regular R′-sequence. Let I ′ = IR′ and B′ = R′/I ′. Let Z ′ = SpecB′. For a sequence
of positive integers α = (α1, . . . , αr), let Bα = R/tαR and B′

α = Bα ⊗A A′. Let Nα = NBα/R and
N ′
α = NB′

α/R
′ . Note that N ′

α = Nα ⊗A A′.
For typographical convenience set ω̄α = ωR/A ⊗R Bα and ω̄′

α = ωR′/A′ ⊗R′ B′
α. According to

Lemma 6.1.1 and (5.1) we have an isomorphism (corresponding to θhα
g where hα : SpecBα → Y is

the structural morphism)

(ω̄α ⊗Bα B
′
α)⊗B′

α
N ′
α = (ω̄α ⊗Bα Nα)⊗Bα B

′
α

∼−→ ω̄′
α ⊗B′

α
N ′
α. (6.2)

Since N ′
α is a free B′

α-module of rank 1, (6.2) induces an isomorphism

ω̄α ⊗Bα B
′
α

∼−→ ω̄′
α (6.3)

such that
(6.2) = (6.3)⊗B′

α
N ′
α. (6.4)

We have a commutative diagram

(ω̄α ⊗Bα B
′
α)⊗A′ N ′

α

�(6.3)

��

�� (ω̄α ⊗Bα B
′
α)⊗B′

α
N ′
α

(6.2)�
��

(ω̄α ⊗Bα Nα)⊗A A′

eα⊗1

��
ω̄′
α ⊗A′ N ′

α
�� ω̄′
α ⊗B′

α
N ′
α

e′α �� A′

where eα : ω̄α ⊗Bα Nα → A and e′α : ω̄′
α ⊗B′

α
N ′
α → A′ are the maps given by (5.3). By Proposi-

tion 5.1.2, the bottom row is a perfect pairing between the A′-modules ω̄′
α and N ′

α. It follows that
the composite

(ω̄α ⊗A A′)⊗A′ N ′
α −→ (ω̄α ⊗A A′)⊗B′

α
N ′
α

= (ω̄α ⊗Bα Nα)⊗A A′ (6.5)
eα⊗1−→ A′

is a perfect pairing between the A′-modules ω̄α ⊗A A′ and N ′
α.
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To reduce notational clutter, let ω = ωR/A and ω′ = ωR/A⊗AA′ (not to be confused with ωR′/A′ !)

and let (̂·) denote I-adic completion (which for R′ modules is the same as I ′ = IR′-adic completion).
If M (respectively N) is a finitely generated R (respectively R′) module, then we will make the
identifications Hr

I (M) = Hr
Î
(M̂ ) and Hr

I′(N) = Hr
Î′

(N̂) without comment (cf. Remarks C.2.2 and
C.4.2). As in the proof of Proposition 3.2.1 in § 5.2, the perfect pairing induced by (6.5) gives,
via (C.12), an isomorphism of R̂′-modules

ω̂′ ∼−→ HomA′(Hr
I′(R

′), A′). (6.6)

Moreover, if res∗ : Hr
I′(ω

′)→ A′ is the composite Hr
I′(ω

′) � Hr
I′(R

′)⊗
R̂′ ω̂

′ → A′ where the first iso-
morphism is (C.7) and the second map is the contraction induced by (6.6), then (ω̂′, res∗) represents
the functor HomA′(Hr

Î′
(M), A′) of finitely generated R̂′-modules M . The proof of Proposition 3.2.2

will be complete once we show that the following diagram

Hr
I (ω)⊗A A′

resI ⊗1

��

∼
(A.5)

�� Hr
I′(ω

′)

res∗
��

A′ A′

(6.7)

commutes. According to Proposition C.4.1, part b, we have a commutative diagram as follows.

lim−→
α

(ω ⊗R Nα)⊗A A′

�(C.11)

��

lim−→
α

(ω′ ⊗R′ N ′
α)

(C.11)�
��

Hr
I (ω)⊗A A′ ∼

(A.5)
�� Hr

I′(ω
′)

(6.8)

We check, from the definition of res∗, that (6.8) implies the commutativity of (6.7). This concludes
the proof of Proposition 3.2.2.

Remark 6.2.1. At this point we have proved completely parts a and b of Theorem 2.3.3 and hence also
part a of Theorem 2.3.5 (see § 3.3). Consequently, the assertion in Remark 3.3.2 remains true even
if f is not proper (or even separated), but under the added hypothesis that f is Cohen–Macaulay.
This is seen by locally compactifying f in an r-proper (and possibly non-Cohen–Macaulay) way.

We prove two more results about the map θfg . The first result, that is to say Proposition 6.2.2, is
a routine extension of Proposition 3.1.3 which we use a few times in this paper. The second result
(Proposition 6.2.3) is a way of saying that the map (6.3) is Γ(X ′, θfg )⊗R′ B′

α. It is used in the proof
of part c of Theorem 2.3.3.

For the rest of the section, let

Z ′

′
��

gZ �� Z



��
X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

(6.9)

be a commutative diagram of cartesian squares with f a separated Cohen–Macaulay map of relative
dimension r and  : Z ↪→ X a closed immersion such that Z is proper over Y .

Proposition 6.2.2. Suppose that one of the following conditions is satisfied:

a) the map f is r-compactifiable;
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b) the map g is flat;

c) the map  is a good immersion for f .

Then the diagram

RrZ′f ′∗g′
∗ωf

θf
g �� RrZ′f ′∗ωf ′

resZ′
��

g∗RrZf∗ωf

(A.5)

��

g∗ resZ

�� OZ′

commutes.

Proof. Conditons a and b have already been dealt with in Proposition 3.1.3. Condition c will involve
a number of base extensions of Y and therefore, before moving on to condition c, we lay down some
conventions and terminology which will help us keep track of the changing nature of the data
(f, g, Z). All triples (p, q,W ) which occur in the proof will be such that p : P → B is a separated
Cohen–Macaulay map of relative dimension r, q : B′ → B is a map of schemes and W is a closed
subscheme of P which is proper over B. We say that a triple (p, q,W ) has property (R) if the
conclusion of the proposition holds for (p, q,W ), i.e. if q∗ resW ◦(A.5) = resW ′ ◦RrW ′p′∗(θ

p
q ) where

W ′ = W ×B B′ and p′ is the projection P ×B B′ → B′. Note that if (p|U, q,W ) has property (R)
in some open neighborhood U of W in P then so does (p, q,W ). We say two triples (p, q,W ) and
(p′, q̃,W ′) are composable if q̃ hasB′ as its target (say q̃ : B′′ → B′), p′ is the projection P×BB′ → B′

and W ′ = W ×B B′. In such a case the composite is defined as (p, q,W )◦(p′, q̃,W ′) = (p, qq̃,W ).
Now suppose that W ↪→ P is a good immersion and suppose further that the composite

(p, q,W )◦(p′, q̃,W ′) is defined. Let p′′, q′ and q̃′ be respectively the projections P ×B B′′ → B′′,
P ×B B′ → P , P ×B B′′ = (P ×B B′) ×B′ B′′ → P ×B B′ and let W ′′ = W ×B B′′. Let
ρq : q∗Rrp∗ → Rrp′∗q′

∗, ρq̃ : q̃∗Rrp′∗ → Rrp′′∗q̃′
∗

and ρqq̃ : (qq̃)∗Rrp∗ → Rrp′′∗(q′q̃′)∗ be the maps
arising from (A.5). We check using the generalized fraction description of (A.5) in Proposition C.3.1
that

ρqq̃ = ρq̃◦q̃∗ρq. (6.10)
Moreover from the functoriality of ρq̃ we get the relation

Rrp′′∗(q̃′
∗
θqp)◦ρq̃ = ρq̃◦q̃∗Rrp′∗(θ

p
q). (6.11)

Using (6.10) and (6.11) and the relation θp
′
q̃ ◦q̃′

∗
θpq = θpqq̃ (see (3.5)) we obtain the following two facts.

A) If (p, q,W ) and (p′, q̃,W ′) have property (R) then so does the composite (p, q,W )◦(p′q̃,W ′).
B) If (p′, q̃,W ′) and (p, q,W )◦(p′, q̃,W ′) have property (R) then

q̃∗(q∗ resW ◦ρq) = q̃∗(resW ′ ◦Rrp′∗(θ
p
q)).

In other words (p, q,W ) has (R) after applying q̃∗.

Now suppose condition c is met by (f, g, Z). Then g∗RrZf∗ → RrZ′f ′∗g′
∗ is an isomorphism

(Proposition B.1.3) and hence by the definition of g# resZ (see (3.4)), proving the proposition is
equivalent to showing

g# resZ = resZ′ ◦RrZ′f ′∗(θ
f
g ). (6.12)

Suppose first that Y is the spectrum of a complete local ring A. Then by [GD61a, (6.2.5) and
(6.2.6)], Z is the disjoint union of closed subschemes, Z =

∐n
k=1Zk, such that each Zk has a

unique closed point zk. Setting Z ′
k = Zk ×Y Y ′ we have RrZf∗ = ⊕nk=1R

r
Zk
f∗, RrZ′f ′∗ = ⊕nk=1R

r
Z′

k
f ′∗,

resZ = ⊕nk=1 resZk
and resZ′ = ⊕nk=1 resZ′

k
. It is therefore enough to show that each (f, g, Zk) has

property (R). In other words it is enough to assume that Z has exactly one closed point z. We can
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always find an r-compactifiable open neighborhood of z in X, and this neighborhood necessarily
contains Z. By condition a (f |U, g, Z) has (R). It follows that (f, g, Z) has (R) when Y is the
spectrum of a complete local ring.

Since
∐
y∈Y Y

′×Y Spec ÔY,y → Y ′ is faithfully flat (the first scheme may not be Noetherian), in
order to prove (6.12) it is enough to show that for an arbitrary y ∈ Y

u′∗(g# resZ) = u′∗(resZ′ ◦RrZ′f ′∗(θ
f
g )), (6.13)

where u′ is the map Y ′ ×Y Spec ÔY,y → Y ′ (the notation u′ is justified shortly). To that end let
T = Spec ÔY,y and let u : T → Y be the natural flat base extension and consider the resulting base
change diagram (3.6). Note that the map u′ in (3.6) agrees with our present usage. Let ZT ↪→ S
and Z ′

T ↪→ S′ be the good immersions induced by Z ↪→ X. Since u is flat therefore by condition b
the triple (f, u, Z) has property (R), and since T is the spectrum of a complete local ring the
triple (fT , h, ZT ) also has (R). It follows from fact A that the composite (f, u, Z)◦(fT , h, ZT ) has
property (R). Now (f, g, Z)◦(f ′, u′, Z ′) = (f, u, Z)◦(fT , h, ZT ) and (f ′, u′, Z ′) has (R) (since u′ is
flat). We now appeal to fact B to conclude that (6.13) is true.

If  is a good immersion, then arguing as we did for (6.2), we get an isomorphism

′∗g′∗ωf ⊗OZ′ N′ = g∗Z(∗ωf ⊗OZ
N) ∼−→ ′∗ωf ′ ⊗OZ′ N′

arising from (5.1) and Lemma 6.1.1. Since N′ is an invertible OZ′-module, this induces an isomor-
phism

′∗g′∗ωf
∼−→ ′∗ωf ′ .

It is reasonable to expect this isomorphism to be ′∗θfg . This is indeed so. We state this assertion in
the following equivalent form, which is convenient for applications in § 7.

Proposition 6.2.3. Let h be the composite f◦ and h′ the composite f ′◦′. Suppose  is a good
immersion for f . Then the following diagram commutes

h′∗(′
∗g′∗ωf ⊗OZ′ N′)

h′∗(′∗θf
g⊗1)

��

h′∗(g∗Z
∗ωf ⊗OZ′ N′) g∗h∗(∗ωf ⊗OZ

N)
g∗
∫ ◦
h

��
h′∗(′

∗ωf ′ ⊗OZ′ N′)
∫ ◦

h′ �� OY ′

where
∫ ◦
h and

∫ ◦
h′ are as in (5.3).

Proof. Consider the following diagram.

g∗h∗(∗ωf ⊗OZ
N) (5.4) �� g∗RrZf∗ωf

(A.5)
��

g∗ resZ �� OY ′

h′∗(′
∗g′∗ωf ⊗OZ′ N′)

θf
g

��

(5.4) �� RrZ′f ′∗g′
∗ωf

θf
g

��
h′∗(′

∗ωf ′⊗OZ′ )
(5.4) �� RrZ′f ′∗ωf ′

resZ′ �� OY ′

The top left rectangle commutes by Proposition C.4.1, part b. The bottom left rectangle clearly
commutes. The rectangle on the right commutes by Proposition 6.2.2. According to (5.5), the top
row composes to g∗

∫ ◦
h and the bottom row composes to

∫ ◦
h′ . This completes the proof.

Remark 6.2.4. We expect Proposition 6.2.2 to be true without the conditions a, b or c (provided
the basic conditions that f is separated Cohen–Macaulay and Z is proper over Y are satisfied), but
we do not know a proof.
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7. The smooth case

We now prove part c of Theorem 2.3.3. This will complete the proof of Theorems 2.3.3 and 2.3.5.
We first give a quick review of the proof of the Verdier isomorphism (2.1).

7.1 Verdier again

Suppose f : X → Y is separated and Cohen–Macaulay of relative dimension r, and  : Z ↪→ X is
a good immersion for f , such that h = f◦ is an isomorphism. (This implies that f is smooth in a
neighborhood of Z.) If ϕ is the natural map OY ∼−→ h∗OZ , then ϕ is an isomorphism and clearly
(OZ , ϕ−1) is a dualizing pair for h. This means that the map∫ ◦

h
: h∗(∗ωf ⊗OZ

N)→ OY

is an isomorphism, and this induces (via h−1∗ ) an isomorphism

∗ωf ⊗OZ
N ∼−→ OZ . (7.1)

Now suppose f is separated and smooth, and P = X×Y X with p1 and p2 the two projection maps
P → X and δ : X ↪→ P the diagonal map. Then δ is a good immersion for p1 and (7.1) immediately
gives us an isomorphism

uf : δ∗ωp1 ⊗OX
Nδ ∼−→ OX .

We have already shown that θff : p∗2ωf → ωp1 is an isomorphism. Plugging this into the isomorphism
uf above, and using the fact that δ∗p∗2 is the identity map on Xqc, we get an isomorphism

vf : ωf ⊗OX
Nδ ∼−→ OX .

Using the fact that N−1
δ = Ωr

f , we get an isomorphism

ωf
∼−→ Ωr

f (7.2)

such that vf corresponds to the standard contraction Ωr
f ⊗OX

Nδ −→ OX . The isomorphism (7.2)
is, up to a universal sign depending only on r, Verdier’s isomorphism. In Verdier’s proof [Ver69,
p. 397, Theorem 3] the steps involved are essentially identical to the steps we took, and Verdier
obtains an isomorphism

OX ∼−→ f !OY ⊗OX
Nδ[−r]. (7.3)

From here to concluding that f !OY is isomorphic to Ωr
f [r] is easy, but the exact isomorphism is not

clear (to the author, at any rate). Part of the problem is the choice of the isomorphisms

Nδ[−r]⊗OX
Ωr
f [r]

∼−→ OX ,
Ωr
f [r]⊗OX

Nδ[−r] ∼−→ OX .
Suppose we fix these via the conventions in § 1.2 (i.e. via θr,−r) and by using the standard contraction
Ωr
f⊗Nδ → OX . Even then we have choices. Do we tensor both sides of (7.3) on the right by Ωr

f [r], and
then use the contraction Nδ[−r]⊗Ωr

f [r]→ OX above, or do we pick the isomorphism such that (7.3)
is compatible with (the inverse of) the above contraction Ωr

f [r]⊗Nδ[−r]→ OX? These, incidentally,
produce different answers. The choices made do not affect the result of part c of Theorem 2.3.3. We
made our choice (7.2) with an eye on work we hope to return to in another paper on residues and
traces.
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7.2 Base change for smooth maps
Consider the situation in part c of Theorem 2.3.3. Let P = X ×Y X and P ′ = X ′ ×Y ′ X ′. We then
have a commutative diagram

P ′

p′1

��

g′′ ���
��

��
��

�
p′2 �� X ′

g′����
��

��
��

f ′

��

P

p1
��

p2 �� X

f
��

X
f

�� Y

X ′

g′
����������

f ′
�� Y ′

g
����������

in which the outer square, the inner square, and the four trapeziums squeezed between them are all
cartesian. According to Remark 6.2.1, the conclusions of Remark 3.3.2 apply in this case. Therefore
the diagram

p′2
∗g′∗ωf

p′2
∗θf

g �� p′2
∗ωf ′

θf ′
f ′

�� ωp′1

g′′∗p2
∗ωf

g′′∗θf
f

�� g′′∗ωp1
θ

p1
g′

�� ωp′1

(7.4)

commutes. Let δ : X → P and δ′ : X ′ → P ′ be the respective diagonal maps. Note that we have an
amalgamation of cartesian diagrams as follows.

X ′

δ′
��

g′ �� X

δ
��

P ′

p′1
��

g′′ �� P

p1

��
X ′

g′
�� X

Let N = Nδ and N ′ = N ′
δ. Proposition 6.2.3 gives us a commutative diagram

δ′∗(g′′∗ωp1)⊗N ′

viaθ
p1
g′

��

g′∗(δ∗ωp1 ⊗N )

� g′∗uf

��
δ′∗(ωp′1)⊗N ′ ∼

uf ′
�� OX′

(7.5)

where uf and uf ′ are the maps in § 7.1. Applying δ′∗ to diagram (7.4) and using the equality
δ′∗g′′∗ = g′∗δ∗, we get a commutative diagram as follows.

g′∗ωf
θf
g �� ωf ′

δ′∗θf ′
f ′

�� δ′∗ωp′1

g′∗ωf
g′∗δ∗θf

f

�� g′∗δ∗ωp1 δ′∗g′′∗ωp1

δ′∗θp1
g′

��
(7.6)
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Consider the following diagram

g′∗ωf ⊗N ′ �� ωf ′ ⊗N ′ �� δ′∗ω′
p1 ⊗N ′ uf ′

�� OX′

g′∗ωf ⊗N ′ �� g′∗δ∗ωp1 ⊗N ′ δ′∗g′′∗ωp1 ⊗N ′

��

g′∗(ωf ⊗N ) �� g′∗(δ∗ωp1 ⊗N )
g′∗uf

�� OX′

(7.7)

The top left rectangle commutes because of (7.6). The bottom left rectangle clearly commutes. The
remaining subdiagram commutes because of (7.5). It follows that (7.7) commutes. This gives
the commutativity of

g′∗ωf ⊗N ′

viaθf
g

��

g′∗(ωf ⊗N )

� g′∗vf

��
ωf ′ ⊗N ′ ∼

vf ′
�� OX′

where vf and vf ′ are as in § 7.1. Part c of Theorem 2.3.3 is immediate once we note that the
identifications g′∗N = N ′ and g′∗Ωr

f = Ωr
f ′ are compatible.

8. Explicit version of θfg

This section is concerned with Theorem 2.3.6. In § 8.1 the set-up is explained and the main ingre-
dients (i.e. ϕ, ϕ′ and ψfg ) required in the statement of the theorem are defined. The remainder of
the section is taken up in proving the theorem.

8.1 Dualizing sheaves and Ext sheaves

SupposeX
ı
↪→ P is a closed immersion of schemes. Let ı̄ be the morphism of ringed spaces (X,OX )→

(P, ı∗OX), and Mod(ı∗OX) the category of ı∗OX -modules. Then we have functors ı̄∗ : Mod(OX)→
Mod(ı∗OX) and ı̄∗ : Mod(ı∗OX) → Mod(OX ) which are adjoint, and ı̄∗ is exact (see [Har66,

pp. 164–165]). Recall, and it is an elementary exercise in RHom,
L⊗ adjointness to show this, that

we may make the following identification:

ı! = ı̄∗RHom•
OP

(ı∗OX , ·). (8.1)

Note that ı̄ is flat and hence ı̄∗ = Lı̄∗. With the identification (8.1), the trace map for ı (see (1.5))
can be identified with

Tı : ı̄∗ı! = RHom•
OP

(ı∗OX , ·) e−→ RHom•
OP

(OP , ·) = 1D+
qc(P ), (8.2)

where the arrow e is ‘evaluation at 1’, or, what is the same thing, the map induced by the natural
projection OP → ı∗OX on the first argument of the bifunctor RHom•.

Suppose

X

f
��

� � ı �� P

p
����

��
��

�

Y

(∆)

is a commutative diagram with ı a closed immersion, f a Cohen–Macaulay map of relative dimension
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r and p a smooth map of relative dimension n = r + d. Write

ω̃p = Ωn
p

and

ω̃f (= ω̃∆
f ) = ı̄∗ ExtdOP

(ı∗OX , ω̃p).
Suppose, for the next couple of lines, that p is separated. Since f ! = ı!p! (see (1.10)), we have an
isomorphism ωf [r]

∼−→ ı!ω̃p[n]. This isomorphism is compatible with open immersions into X, and
hence we may drop the assumption that p is separated to obtain this isomorphism, which we rewrite
as

ωf [r]
∼−→ ı̄∗RHom•

OP
(ı∗OX , ω̃p[n]).

It follows that ı!ω̃p[n] has cohomology only in the −rth degree and hence, in D+
qc(X), we have an

isomorphism

ϕ̃ : ω̃f [r] = H−r (̄ı∗RHom•
OP

(ı∗OX , ω̃p[n]))[r]

= H−r(ı!ω̃p[n])[r]
∼−→ ı!ω̃p[n].

(8.3)

such that H−r(ϕ̃) is the identity map on ω̃f (see (8.1) for the second identification). This gives a
natural isomorphism

ϕ : ωf
∼−→ ω̃f , (8.4)

such that the diagram

ωf [r]

ϕ[r]

��

(1.10)

�������������

ω̃f [r]
ϕ̃ �� ı!ω̃p[n] = ı!p!OY

(8.5)

commutes whenever p is separated (so that (1.10) is defined). Next, suppose g : Y ′ → Y is a map
of schemes and

P ′

p′

���
��

��
��

��
��

��
��

q �� P

p

����
��
��
��
��
��
��
�

X ′
� �

ı′
����������

f ′
��

g′ �� X
��

ı
����������

f

��
Y ′

g
�� Y

is the resulting base change diagram. Set

ω̃p′ = Ωn
f ′

and

ω̃f ′ = ı̄′∗ ExtdOP ′ (ı
′
∗OX′ , ω̃p′).

As before, there are natural isomorphisms

ϕ̃′ : ω̃f ′ [r] −→ ı′!ω̃p′[n] (8.6)

and

ϕ′ : ωf ′
∼−→ ω̃f ′ (8.7)
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such that

ϕ̃′◦ϕ′[r] = (1.10) (8.8)

when p is separated.

We will describe now an explicit isomorphism

ψfg : g′∗ω̃f
∼−→ ω̃f ′ , (8.9)

which, after identifying ωf and ωf ′ with ω̃f and ω̃f ′ via ϕ and ϕ′ respectively, we will show
is θfg . (We remind the reader that this is the essential content of Theorem 2.3.6.) The map ψfg is
best described locally. It will be clear that the various local isomorphisms glue. Therefore, assume
(temporarily) that p : P → Y is quasi-projective. If x ∈ X is a point closed in its fiber f−1f(x),
then it is well known that the projective dimension of OX,x over OP,ı(x) is d; see, for example, the
proof of Lemma 1 in [Lip79, pp. 39–40] where this is worked out for r = 2 (no changes are required
for the general case). Since X is quasi-projective, one has a resolution of ı∗OX by coherent locally
free OP -modules

0 −→ F−d −→ · · · −→ F−1 −→ F0 π−→ ı∗OX ,
where F0 = OP and π is the natural surjection. Since all modules in the above augmented complex
are flat over Y , therefore F ′• := q∗F• q∗π−→ ı′∗OX′ is a resolution of ı′∗OX′ by coherent locally free
OP ′-modules, with F ′0 = OP ′ . Let

Q• = Hom•
OP

(F•, ω̃p),
Q′• = Hom•

OP ′ (F ′•, ω̃p′).

Using the fact that ω̃p′ = q∗ω̃p, we have a natural map q∗Q → Q′• for each k, and since F−k is
locally free, this map is an isomorphism. We therefore have an isomorphism of complexes

q∗Q• ∼−→ Q′•.

Taking the dth cohomology of both sides, we get the isomorphism ψfg . This isomorphism is inde-
pendent of the resolution F• of ı∗OX , and is compatible with Zariski localizations of X, and hence
globalizes. In other words, the map is defined even if P is not quasi-projective over Y .

Theorem 2.3.6 asks us to prove that the diagram

g′∗ωf

θf
g

��

g′∗ϕ �� g′∗ω̃f

ψf
g

��
ωf ′

ϕ′
�� ω̃f ′

commutes. The rest of § 8 is devoted to proving this.

8.2 Transitivity for the map ψfg

The title of this subsection refers to the relations (8.10) and (8.11). The former is an analog of (3.5)
and the latter an analog of (3.7). The notation ω̃∆

f and ψ∆
g is on occasion preferable to ω̃f and ψfg ,

especially if we wish to emphasize the dependence on the commutative triangle (∆). To allow a
more flexible use of this, for any map γ : Z → Y let (∆γ) denote the base change of the triangle (∆)
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by γ. In the situation of the theorem, suppose we have another map g̃ : Y ′′ → Y , and let

X ′′

ı′′
��

g̃′ �� X ′

ı′
��

g′ �� X

ı

��
P ′′

p′′
��

q̃ �� P ′

p′
��

q �� P

p

��
Y ′′

g̃
�� Y ′

g
�� Y

be the resulting commutative diagram. Let f ′′ = p′′◦ı′′. Set ω̃p′′ = Ωn
p′′ , ω̃f ′′ = ω̃

∆gg̃

f ′′ , ψfgg̃ = ψ∆
gg̃ and

ψf
′
g̃ = ψ

∆g

g̃ . Then we check that

ψfgg̃ = ψf
′
g̃ ◦g̃∗ψfg . (8.10)

In greater detail, assume without loss of generality that p : P → Y is quasi-projective, and let F•,
Q•, F ′•, Q′• etc. be as in § 8.1. Setting F ′′• = q̃∗F ′• = (qq̃)∗F• and Q′′• = Hom•

OP
(F ′′•, ω̃p′′),

the following diagram is checked to commute; the downward arrow on the right arising from the
canonical isomorphism q∗Q• → Q′•, and the one on the left being the one analogous to the following.

(qq̃)∗Q•

��

q̃∗q∗Q•

��
Q′′• q̃∗Q′•



Equation (8.10) follows on taking the dth cohomology.

Next suppose that in addition to g : Y ′ → Y , we have another base extension map u : T → Y .
Consider the resulting diagram of base changes (3.6). Define ω̃fT

:= ω̃∆u
fT

, ω̃f ′T := ω̃
∆u′
f ′T

, ψfu := ψ∆
u ,

ψf
′
u′ := ψ

∆g

u′ and ψfT

h := ψ∆u
h . Then, by (8.10) we get

ψfT

h ◦h′∗ψfu = ψf
′
u′ ◦v

′∗ψfg . (8.11)

8.3 Reduction of the problem

Since the statement of Theorem 2.3.6 is local on P , for the rest of § 8 we will assume without
loss of generality that P is quasi-projective, so that ı∗OX has a resolution of length r by locally
free OP -modules. If an intermediate result is local and does not require the hypothesis that P is
quasi-projective (e.g. (8.17)) we will point this out.

8.4 The trace map Tı

Note that the natural map of complexes (the identity map in degree 0), OP [0] = F0[0] → F•,
is compatible with the natural surjection OP −→ ı∗OX . In other words, in Db

qc(P ) we have a
commutative diagram (in which we avoid writing the localization functor QP for convenience)

OP [0]

��

OP

��
F• ∼ �� ı∗OX
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the horizontal arrow arising from the resolution F• → ı∗OX . It follows that if e : RHomOP
(ı∗OP ,

ω̃p)→ RHomOP
(OP , ω̃p) = ω̃p is ‘evaluation at 1’, then the diagram

Q•

ẽ
��

∼ �� RHomOP
(ı∗OX , ω̃p)
e

��
Q0[0] ω̃p

(8.12)

commutes, where Q• ẽ−→ Q0[0] is the natural projection to the 0th degree. We also have a natural
surjection Qd → coker(Qd−1 → Qd) ∼−→ ı∗ω̃f , and this gives a map of complexes

γ : Q• → ı∗ω̃f [−d],
which is a quasi-isomorphism since ExtkOP

(ı∗OX , ω̃p) = 0 for k �= d. Note that by the definition of ϕ̃
(see (8.3)), the diagram

Q•

�
��

∼
QP (γ)

�� ı∗ω̃f [−d]
� ı∗ϕ̃[−n]

��
RHom•

OP
(ı∗OX , ω̃p) ı∗ı!ω̃p

(8.13)

commutes (the equality at the bottom being the identification in (8.1)). From (8.12), (8.13) and the
description of the trace Tı in (8.2), we see that

Tı◦ı∗ϕ̃[−n] = ẽ◦QP (γ)−1. (8.14)

If ẽ′ : Q′• → Q′0[0] = ω̃p′ and γ′ : Q′• → ı′∗ω̃f ′ [−d] are the maps analogous to ẽ and γ (for the
diagram ∆g) then we have

Tı′◦ı′∗ϕ̃′[−n] = ẽ′◦QP ′(γ′)−1. (8.15)

8.5 The flat base change case
Suppose g is flat. By definition of ψfg , the following diagram commutes in D+

qc(P ).

q∗ω̃p q∗Q•q∗ẽ



�
��

∼
q∗γ

�� q∗ı∗ω̃f [−d] ı′∗g′
∗ω̃f [−d]

ı′∗ψ
f
g [−d]

��
ω̃p′ Q′•

ẽ′


 ∼

γ′
�� ı′∗ω̃f ′ [−d]

(8.16)

Recall that we have a unique map (in fact an isomorphism) Θı
q : q∗ı! ∼−→ ı′!g′∗ such that Tı′◦ı′∗Θ

q
ı =

q∗Ti, where we are identifying ı′∗g′
∗ with q∗ı∗ (see (1.6)). The identities (8.14) and (8.15) together

with (8.16) give

Θı
q(ω̃p) = ϕ̃′[−n]◦ψfg [−d]◦g′∗ϕ̃[−n]−1. (8.17)

Now Remark B.2.3, together with the concluding sentences of Remark B.2.4, apply to the following
commutative diagram.

X ′

ı′
��

g′ �� X

ı

��
P ′

p′
��

q �� P

p

��
Y ′

g
�� Y
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Diagram (B.3), together with the fact that Θp
g(OY [−n]) is the identity map on ω̃p′, gives us the

following commutative diagram.

ı′!q∗ω̃p ı′!ω̃p′

g′∗ı!ω̃p

Θı
q

��

g′∗ωf [−d]
(1.10)




Θf

g

�� ωf ′ [−d]
(1.10)

��

If we use the relation (8.17) together with (8.5) and (8.8) we obtain, from the above commutative
diagram, Theorem 2.3.6 when g is flat.

Remark 8.5.1. The relation (8.17) remains true without the quasi-projective hypothesis since the
question is local on P .

8.6 Non-flat base change

We no longer assume that g is flat. We are about to complete the proof of Theorem 2.3.6 in this
subsection. We assume, without loss of generality, that p is n-compactifiable. This assumption is
made so that we may apply Proposition 6.2.2 to the map p. We will identify ωf with ω̃f (respectively
ωf ′ with ω̃f ′) via ϕ (respectively ϕ′). We have to show that ψfg = θfg .

Suppose Z ↪→ X is a closed immersion which is good for f (this does not imply that the resulting
immersion of Z into P is good for p). Let resfZ : RrZf∗ω̃f → OY and respZ : RnZp∗ω̃p → OY denote the
respective residues. If Z ′ = g′−1(Z), then in a similar manner we have residue maps resf

′
Z′ and resp

′
Z′ .

Let p̄ : P̄ → Y be a compactification of p (not necessarily an n-compactification). Let ı̄ : X̄ ↪→ P̄
be the scheme theoretic closure of X ↪→ P̄ and let f̄ : X̄ → Y be the composite p̄◦̄ı. Identifying f̄ !

with ı̄!p̄! via (1.10) we have the trace map Tı̄ : ı̄∗f̄ ! → p̄!. Similarly identifying ω̃f [−d] with ı!ω̃p via
ϕ̃[−n], which incidentally corresponds to (1.10) by (8.5), we have a map Tı(ω̃p) : ı∗ω̃f [−d] → ω̃p.
Note that ω̃p = p!OY [−n] and ω̃f [−d] = f !OY [−n]. We have a commutative diagram as follows.

RZf∗ω̃f [−d]
�

��

�� Rf̄∗f̄ !OY [−n]

�
��

Tf̄ (OY [−n])

��������������

RZp∗ı∗ω̃f [−d]
Tı

��

�� Rp̄∗(̄ı∗f̄ !OY [−n])

Tı̄

��

OY [−n]

RZp∗ω̃p �� Rp̄∗p̄!OY [−n]
Tp̄(OY [−n])

��������������

The top horizontal arrow followed by the map Tf̄ (OY [−n]) is the same as the one obtained by
applying the translation functor (·)[−n] to the composite (3.1). The bottom horizontal arrow
followed by the map Tp̄(OY [−n]) is again (3.1)[−n], this time applied to the map p. Taking the
nth cohomology we get from the definition of residue (3.2) and from the identity (1.4), a commuta-
tive diagram

RnZf∗(ω̃f [−d])
�

��

RrZf∗ω̃f
resf

Z �� OY

RnZp∗(ı∗ω̃f [−d]) Tı

�� RnZp∗ω̃p
resp

Z

�� OY
(8.18)

and a similar commutative diagram for the diagram ∆g. The equality on the top left corner is (1.3).
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Consider now the following diagram.

RnZ′f ′∗(ω̃f ′ [−d]) ∼ �� RnZ′p′∗(ı′∗ω̃f ′ [−d])
Tı′ �� RnZ′p′∗ω̃p′

resp′
Z′

������������

RnZ′f ′∗(g′
∗ω̃f [−d])

ψf
g [−d]

��

∼ �� RnZ′p′∗(q∗ı∗ω̃f [−d])
ψf

g [−d]
��

Tı �� RnZ′p′∗q∗ω̃p OY ′

g∗RnZf∗(ω̃f [−d])
�

��

∼ �� g∗RnZp∗(ı∗ω̃f [−d])
�

��

Tı

�� g∗RnZp∗ω̃p

��

g∗ resp
Z

������������

The triangle on the right commutes by (6.2.2) and this is where we use our hypothesis that P
has an n-compactification over Y . Other subrectangles clearly commute. We thus get, using the
commutativity of (8.18) (for the diagram ∆ as well as the diagram ∆g) that

RrZ′f ′∗g′
∗ω̃f

ψf
g �� RrZ′f ′∗ω̃f ′

resZ′
��

g∗RrZf∗ω̃f

(A.5)

��

g∗ resZ

�� OY ′

commutes. Since the above diagram also commutes with θfg substituted for ψfg (see Proposition 6.2.2,
case c), and since the arrow on the left column is an isomorphism (see Proposition B.1.3) we get
by local duality that the completion of ψfg along Z ′ is equal to the completion of θfg along Z ′. In
particular, for any point x′ ∈ Z ′, θ̂fg,x′ = ψ̂fg,x′ where (̂·) denotes completion with respect to the
maximal ideal (of variable local rings).

We run into an old problem (see the proof of parts a and b Theorem 2.3.3 in § 3.3), namely,
we may not have any good immersion for f in the Zariski topology, and we need plenty of them
for the above strategy to work. We get around it exactly as before. Pick a point x ∈ X which is
closed in the fiber f−1f(x), set T equal to the spectrum of the completion of the local ring OY,f(x),
and u : T → Y the resulting map. Now use the notations of § 8.2 (and make the identifications
ωfT

= ω̃fT
, ωf ′T = ω̃f ′T ). As in § 3.3, we can find a good immersion Z ↪→ S for fT such that Z is

the spectrum of a complete local ring whose only closed point corresponds to the point x ∈ X. In
greater detail, let k be the residue field of OY,f(x), and x̄ ∈ X ×Y Spec k = S ×T Spec k the point
corresponding to x̄. By what we have just proved, θ̂fT

h,s′ = ψ̂fT

h,s′ for every s′ ∈ h′−1(s). Since u and

u′ are flat, we have θfu = ψfu and θf
′
T
u′ = ψ

f ′T
u′ . We also have the identities

θfT

h ◦h′∗θfu = θf
′
u′ ◦v

′∗θfg , ψfT

h ◦h′∗ψfu = ψf
′
u′ ◦v

′∗ψfg

from Remark 3.3.2 and Equation (8.11). We conclude (with θ = v′∗θfg and ψ = v′∗ψfg ) that θ̂s′ = ψ̂s′

for every s′ ∈ h′−1(s). This is another way of saying that

θ̂fg,x′ = ψ̂fg,x′ (8.19)

for every x′ ∈ g′−1(x). Varying x over points of X which are closed in their fiber over Y , we see
that (8.19) holds for every x′ ∈ X ′ which is closed in its fiber over Y ′. This proves Theorem 2.3.6.
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Appendix A. The base change map for higher direct images

This appendix discusses briefly the definitions and first properties of base change of higher direct
images with supports in a closed subset Z ↪→ X for a separated quasi-compact map f : X → Y
of schemes. We do this along the lines of [GD61b, (1.4.15)] (where the support is Z = X), and
therefore we do not give elaborate proofs. In fact we use [GD61b] to establish that RiZf∗ commutes
with flat base change (Proposition B.2.1). A general reference for all the appendices is [Gro68].
One motivating reason for these appendices is to compare two versions of the base change map for
direct image with supports. These are (a) the map (A.5) and (b) isomorphism (C.10). The first has
certain advantages largely summarized in Proposition A.1.1 whereas the second plays a crucial role
in proving the compatibility of residues with base change (Proposition 3.2.2). The comparison is
achieved in Proposition C.3.1.

A.1 Base change and direct image with supports

Since much of the paper rests on the base change map for direct image with supports, we give the
definition and first properties. Consider a cartesian square

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

with f separated and quasi-compact. Let Z ↪→ X be a closed subset, and Z ′ = g′−1(Z). For every
non-negative integer i we have a map

RiZf∗g
′
∗ −→ g∗RiZ′f ′∗ (A.1)

defined as the composite

RiZf∗g
′
∗ → RiZ′(f◦g′)∗ = RiZ′(g◦f ′)∗ → g∗RiZ′f ′∗,

where the two arrows arise from standard spectral sequence arguments. Taking Z = X, we get, as
a special case, a map Rif∗g′∗ → g∗Rif ′∗.

We leave it to the reader to check, from the definitions, the following facts (all unlabeled arrows
are either canonical or arise from (A.1) (occasionally with Z = X)).

i) For each i, the diagram

RiZf∗g
′∗

��

�� Rif∗g′∗

��
g∗RiZ′f ′∗ �� g∗Rif ′∗

commutes.
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ii) Let U = X \Z, U ′ = X ′ \Z ′. Let ı : U → X and ı′ : U ′ → X ′ be the resulting open immersions,
g′′ : U ′ → U the map induced by g′. For each i, we have connecting homomorphisms

Ri−1(fı)∗ı∗ → RiZf∗, Ri−1(f ′ı′)∗ı′
∗ → RiZ′f ′∗

arising from the respective excision exact sequences. In greater detail, for F ∈ Xqc we have a
short exact sequence of complexes

0→ f∗◦ΓZI
• → f∗I• → (fı)∗ı∗I• → 0 (A.2)

where I• is an injective (or even flasque) resolution of F , giving the map

Ri−1(fı)∗ı∗F −→ RiZf∗F . (A.3)

A similar description applies for the second map. One checks that the diagram

Ri−1(fı)∗ı∗g′∗ �� RiZf∗g
′∗

��

Ri−1(fı)∗g′′∗ı′
∗

��
g∗Ri−1(f ′ı′)∗ı′∗ �� g∗RiZ′f ′∗

commutes.

Recall that for a map of schemes h : W ′ →W , we have a natural map 1Wqc → h∗h∗, making h∗ the
left adjoint of h∗. Therefore the composite map

RiZf∗ −→ RiZf∗g
′
∗g

′∗ −→ g∗RiZ′f ′∗g
′∗ (A.4)

(with the first arrow arising from 1Xqc → g′∗g′
∗) induces the base change map

g∗RiZf∗ −→ RiZ′f ′∗g
′∗ (A.5)

(compare with [GD61b, (1.4.15.4)]). As in [GD61b, (1.4.15)], the map (A.5) is compatible with
Zariski localizations into Y and Y ′.

The various results above give the following proposition.

Proposition A.1.1. With the above notations the following diagrams commute (with unlabeled
arrows being either canonical or arising from (A.5)):

a)

g∗RiZf∗

��

�� g∗Rif∗

��
RiZ′f ′∗g′

∗ �� Rif ′∗g′
∗

b)

g∗Ri−1(fı)∗ı∗

��

(A.3) �� g∗RiZf∗

��
Ri−1(f ′ı′)∗ı′

∗g′∗
(A.3)

�� RiZ′f ′∗g∗

Moreover, all these diagrams behave well with respect to Zariski localizations into Y or Y ′.
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Appendix B. Isomorphism theorems for the base change map

This appendix recalls statements (and proofs) concerning conditions under which (A.5) is an iso-
morphism. Most of these can be deduced easily from discussions in [GD64, § (1.4), especially
(1.4.15) and (1.4.16)]. Our approach is minimalistic, we only prove the results needed in this paper
and (reluctantly) eschew the temptation to give the most general statement we could think of. We
use the same notations (f , f ′, g, g′, Z, Z ′ etc.) and hypotheses as we did in Appendix A.

B.1 Highest direct image
The result that is most critical for the definition of θfg (and perhaps the best known in the non-flat
base change situation) is Proposition B.1.2. We supply a proof because we do not assume f is
proper. This relaxation is important in the proof of Proposition B.1.3, without which we cannot
even state results concerning base change for residues along good immersions (Proposition 3.2.2).

Remark B.1.1. Our convention for the map from the Čech to the derived functor theory is this (with
notations as in the proposition above): Let C = C•(U,F) be the sheaf Čech complex associated to
(U,F), I•, and ϕ : C → I• the homotopy unique map lifting the identity map on F (recall, C is a
resolution of F). Then the downward arrow on the left of diagram (B.1) is H i(Γ(X,ϕ)). It is with
this convention that the diagram (B.1) commutes.

Proposition B.1.2. If Rkf∗ = 0 = Rkf ′∗ for k > r, then the base change map

g∗Rrf∗ −→ Rrf ′∗g
′∗

is an isomorphism.

Proof. Since the base change map (A.5) is compatible with open immersions into Y and Y ′, we
may assume that Y = SpecA and Y ′ = SpecA′. According to the discussion in the proof of [GD64,
(1.4.15)] (especially towards the end), if U is a finite affine open cover of X, F a quasi-coherent
OX -module, F ′ = g′∗F , U′ = g′−1(U) (the notation being obvious), then the diagram

H i(U,F)⊗A A′

�
��

�� H i(U′,F ′)

�
��

H i(X,F) ⊗A A′ �� H i(X ′,F ′)

(B.1)

commutes, where the following hold.

• The downward arrows are the canonical maps (in this case isomorphisms, since U and U′

are affine covers on separated schemes) comparing Čech cohomology to the derived functor
cohomology (see Remark B.1.1).

• The top horizontal arrow is the natural map

H i(C•(U,F)) ⊗A A′ −→ H i(C•(U,F) ⊗A A′).

We are using the fact that C•(U′,F ′) = C•(U,F)⊗A A′.
• The bottom horizontal arrow is (the global sections of) our base change map (A.5).

So we are reduced to showing that

Hr(U,F)⊗A A′ −→ Hr(U′,F ′) (B.2)

is an isomorphism. Next, if M is an A-module, FM the OX -module F ⊗ f∗M̃ , we have, using
C•(U,FM ) = C•(U,F) ⊗AM , a map (functorial in M) ψM : Hr(U,F) ⊗AM → Hr(U,FM ) which
specializes to (B.2) when M = A′. Now ψ is a map of right exact functors on the category of
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A-modules, and it is an isomorphism on free A-modules. Therefore it is an isomorphism on all A-
modules. We are using the fact that tensor products and Čech cohomology commute with arbitrary
direct limits (to see that it is an isomorphism for free A-modules of arbitrary rank).

Proposition B.1.3. Suppose f : X → Y is Cohen–Macaulay of relative dimension r, and ı : Z ↪→ X
a good immersion for f (see Definition 3.1.4). Then

g∗RrZf∗ −→ RrZ′f ′∗g
′∗

is an isomorphism.

Proof. Again, we may assume Y = SpecA and Y ′ = SpecA′. In fact, by the definition of good
immersion, we may choose A in such a way that Z has an affine open neighborhood SpecR such
that Z is given by the vanishing of a Koszul-regular R-sequence t = (t1, . . . , tr). By excision and
the nature of the proposition we wish to prove, we may assume that X = SpecR. If Ui = SpecRti ,
then U = {Ui} is an affine open cover of X∗ = X \ Z. Hence Hk(X∗, ·) = 0 for k > r − 1.
The same argument shows that Hk(X∗ ⊗A A′, ·) = 0 for k > r − 1. By the previous proposition
g∗Rr−1(fı)∗ı∗ −→ Rr−1(f ′ı′)∗ı′∗g′∗ is an isomorphism. Moreover, Rkf∗ = Rkf ′∗ = 0 for k � 1. If
r > 0 then by Proposition A.1.1 we have a commutative diagram

g∗Rr−1f∗

��

�� g∗Rr−1(fı)∗ı∗

��

�� g∗RrZf∗

��

�� 0

Rr−1f ′∗g′
∗ �� Rr−1(f ′ı′)∗g′′∗ı∗ �� RrZ′f ′∗g′

∗ �� 0

with exact rows (by the right exactness g∗). The left and the middle downward arrows are isomor-
phisms and hence by the 3-Lemma we are done (if r > 1 we do not even need the 3-Lemma, for
then Rr−1f∗ = Rr−1f ′∗ = 0). We leave the case r = 0 to the reader.

B.2 Flat base change

The results of [GD61b, (1.4.15)] extend obviously to the map (A.5) for flat g. We supply a short
proof for the record (and for completeness).

Proposition B.2.1. With the notations of the last subsection, if g is flat, then the map g∗RiZ →
RiZ′f ′∗g′

∗ is an isomorphism for every i.

Proof. We have two long exact sequences (arising from (A.2)), one for (f, Z) and another for (f ′, Z ′),
and the two are related by the commutative diagram

. . . �� g∗Rk−1f∗

��

�� g∗Rk−1(fı)∗ı∗

��

�� g∗RkZf∗

��

�� g∗Rkf∗

��

�� . . .

. . . �� Rk−1f ′∗g′
∗ �� Rk−1(f ′ı′)∗g′′∗ı∗ �� RkZ′f ′∗g′

∗ �� Rkf ′∗g′
∗ �� . . .

Note that the first row is exact because g is flat. The diagram is commutative by Proposition A.1.1.
By [GD61b, (1.4.15)], the downward arrows not involving Z and Z ′ are isomorphisms. The conclusion
follows.

Remark B.2.2. One implication of the above proposition is this: if g is flat and F is flasque, then
g′∗F is f∗◦ΓZ′-acyclic. Therefore (by considering injective resolutions of bounded below complexes
and using g∗ = Lg∗, g′∗ = Lg′∗) we get an isomorphism

Lg∗RZf∗
∼−→ RZ′f ′∗Lg

′∗.
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This can also be described (as a map and without assuming g is flat) as the one induced by the
adjoint pair (Lg∗, Rg∗) and the composite map

RZf∗ → RZf∗◦Rg′∗Lg
′∗ ∼−→ RZ′(fg′)∗Lg′

∗ = RZ′(gf ′)∗Lg′
∗ ∼−→ Rg∗RZ′f ′∗Lg

′∗

(the first map coming from the adjoint pair (Lg′∗, Rg′∗)). As in Proposition A.1.1, part a, the diagram

Lg∗RZf∗

��

�� RZ′f ′∗Lg′
∗

��
Lg∗Rf∗ �� Rf ′∗Lg′

∗

commutes.

Remark B.2.3. With g flat as before, if

W ′

h′
��

g′′ �� W

h
��

X ′
g′

�� X

is a second cartesian square, then we check that the diagram

R(f ′h′)∗g′′∗

�
��

∼ �� g∗R(fh)∗
∼ �� g∗(Rf∗◦Rh∗)

Rf ′∗◦Rh′∗g′′
∗ ∼ �� Rf ′∗◦g′

∗Rh′∗
∼ �� g∗(Rf∗◦Rh∗)

commutes. Details can be found in the proof of [Lip03, p. 112, Proposition (3.7.2)(ii)], especially
the diagram (3.7.2.2) on p. 115 in the proof. If f and h are proper, then we see, using the above
diagram, that

h′!g′∗f !
h′!Θf

g �� h′!f ′!g∗

g′′∗h!f !

Θh
g′

��

g′′∗(fh)!
(1.10)




Θfh

g

�� (f ′h′)!g∗

(1.10)

��

(B.3)

commutes.

Remark B.2.4. Suppose we have a commutative diagram

S′

f ′T

��

v′ ���
��

��
��

�
h′ �� S

v
����

��
��

��

fT

��

X ′

f ′
��

g′ �� X

f

��
Y ′

g
�� Y

T ′

u′
����������

h
�� T

u
����������

with the two squares and the four trapeziums squeezed between them cartesian and with the only
assumption of f being that it is proper. However, assume that g and u are flat. Remark B.2.3 above
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gives us the relation

ΘfT
h ◦h′∗Θf

u = Θf ′
u′◦v

′∗Θf
g . (B.4)

Note that this and the previous remark complete the proof of the assertions made in Remark 1.3.2.
In particular, this means that for a general separated finite type map f and a flat map g, and f̄

a compactification of f , then Θf̄
g |X is independent of the compactification f̄ (see diagram (1.11))

of f . Hence Θf
g is well defined, and one sees that the diagram (B.3) continues to commute and the

equation (B.4) continues to hold even if we drop the properness hypotheses on the various maps for
which we imposed the properness condition.

Appendix C. Generalized fractions; Koszul and Čech complexes

This appendix begins with a collection of well-known results concerning the relationship between
local cohomology, Koszul complexes and Čech complexes. The aim is to make explicit the base
change map. As before, we recount only as much as we need. Generalized fractions provide a
convenient framework for making matters explicit.

C.1 Čech complexes and local cohomology
Let R be a Noetherian ring, M an R-module I ⊂ R an ideal generated by t = (t1, . . . , tr), X =
SpecR, Z = SpecR/I, U = X \Z, Ui = SpecRti , i = 1, . . . , r, and U = {Ui}, so U is an affine open
cover of U . We have a composite map

Mt1...tr = Cr−1(U, M̃ ) −→ Hr−1(U, M̃ ) ∼−→ Hr−1(U, M̃ ) −→ Hr
Z(X, M̃ ), (C.1)

where the map Cr−1(U, M̃)→ Hr−1(U, M̃ ) arises from the fact that Ck(U, M̃ ) vanishes for k > r−1,
and hence is surjective. Since X is affine, the connecting map Hr−1(U, M̃ ) → Hr

Z(X, M̃ ) is an
isomorphism if r > 1 and surjective when r = 1. In any case, the map (C.1) is a surjective map,
and hence elements of Hr

Z(X, M̃ ) can be described as images of ‘fractions’ in Mt1...tr . The image of
m/tα1

1 . . . tαr
r ∈Mt1...tr in Hr

Z(X, M̃ ) is denoted by the generalized fraction[
m

tα1
1 , . . . , tαr

r

]
.

(In [Lip84], this is denoted m/tα.) We refer to [Lip84, p. 60, (7.2)] for the calculus of generalized
fractions, especially the ‘change of parameters’ formula (7.2)(b). While [Lip84] deals with varieties
over a perfect field, the change of parameters formula remains valid in the present generality, with
exactly the same proof as in [Lip84].

Next, for a sequence of positive integers α = (α1, . . . , αr), let tα denote the sequence (tα1
1 , . . . , tαr

r )
and let Bα = R/tαR. For an R-module M , we define (as is standard in commutative algebra)

ΓI(M) := lim−→
α

HomR(Bα,M) =
⋃
α

(0 :
M
tα) ⊂M.

Let H i(tα,M) = H i(K•(tα,M)). The last two maps in the series of isomorphisms in (4.2) give

H i(tα,M) ∼−→ ExtiR(Bα,M) (C.2)

giving the well-known isomorphism

lim−→
α

H i(tα,M) ∼−→ H i
I(M). (C.3)

Let K•
t = lim−→

α

K•(tα, R) and K•
t (M) = lim−→

α

K•(tα,M). Set

H i
t(M) = H i(K•

t (M)).
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Now K•(tα,M) = K•(tα, R) ⊗R M . Since tensor product commutes with direct limits, we have
K•
t ⊗RM = K•

t (M). Since cohomology commutes with taking direct limits, the isomorphism (C.3)
becomes

H i
t(M) ∼−→ H i

I(M). (C.4)

The complex K•
t (M) is zero in degrees greater than r. Hence we have a surjective map Mt1...tr =

Kr
t (M)→ Hr

t (M). Following this with the isomorphism (C.4) we get a surjective map

Mt1...tr −→ Hr
I (M) = Hr

Z(X, M̃ ). (C.5)

Recall that, for i � 1, Ki
t(M) = Ci−1(U, M̃ ). If δ and d are the differentials of K•

t (M) and C•(U, M̃),
then we check that for p � 1, δp = dp−1. It follows that we have a surjective map (equality if r > 1!)

ϕ : Hr−1(U, M̃ )→ Hr
t (M).

We check that the following diagram commutes (the sign on the downward arrow on the left was
unfortunately missed in [Lip84, p. 61, (7.2.1)]; see also [LS92, p. 115, (3.4)] where the same error is
perpetuated).

Hr−1(U, M̃ )

(−1)rϕ

��

∼ �� Hr−1(U, M̃ ) �� Hr
Z(X, M̃ )

Hr
t (M) ∼ �� Hr

I (M)

(C.6)

This means that the image of m/tα1
1 · · · tαr

r under (C.5) is

(−1)r
[

m
tα1
1 , . . . , tαr

r

]
.

The reader is urged to experiment with r = 1. We point out that in our convention if 0 → A• →
B• → C• → 0 is a short exact sequence of complexes of abelian groups, then the connecting map
H i(C•) → H i+1(A•) sends [γ] to [dBβ], where (a) β ∈ Bi is a pre-image of γ ∈ Ci and (b) dBβ
is identified with an (i + 1)-cocycle in A•, since the image of dBβ in Ci+1 is 0. This convention
(without signs) is dictated by the proof of [Lip84, Lemma (8.6), pp. 79–81], a crucial ingredient in
the proof of the residue theorem for projective spaces [Lip84, Proposition (8.5)].

Remark C.1.1. Let ϕα1 : M → Hr
I (M) and ϕα2 : M/tαM → Hr

I (M) be the composite maps

M = Kr(tα,M)→ Kr
t (M)

(C.5)−→ Hr
I (M)

M/tαM = Hr(tα,M)→ Hr
t (M) −→

(C.4)
Hr
I (M)

(the first arrows in each row being the canonical maps to the direct limit over α). Then in view of
diagram (C.6) we have

ϕα1 (m) = (−1)r
[
m
tα

]
= ϕα2 (m+ tαM).

C.2 Koszul complexes and local cohomology
We retain the notations of § C.1. We recall and explicate the well-known isomorphism

Hr
I (R)⊗RM ∼−→ Hr

I (M). (C.7)

This isomorphism is crucial to local duality. For each m ∈ M , let fm : R → M be the R-map
r �→ rm, and ϕm : Hr

I (R) → Hr
I (M) the R-map induced by fm. The form ψ(θ,m) := ϕm(θ) is

R-bilinear in θ ∈ Hr
I (R) and m ∈ M . This defines (C.7). The map (C.7) is an isomorphism since

it is a functorial map in M which is an isomorphism when M = R and since the two functors
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Hr
I (·) and Hr

I (R) ⊗ (·) are right exact. The same process applied to the functor Hr
t (·) gives us an

isomorphism

Hr
t (R)⊗RM ∼−→ Hr

t (M). (C.8)

The functoriality of the map (C.4) gives the commutativity of the following diagram.

Hr
t (R)⊗RM
(C.4) �

��

(C.8) �� Hr
t (M)

(C.4)�
��

Hr
I (R)⊗RM

(C.7)
�� Hr

I (M)

(C.9)

Note that the map (C.8) is the natural map Hr(K•
t ) ⊗R M → Hr(K•

t ⊗R M), we are using the
relation K•

t (M) = K•
t ⊗RM .

Remark C.2.1. In view of the commutative diagram (C.9), the map (C.7) is explicitly described by[
s
tα

]
⊗m �→

[
sm
tα

]
.

If R → R′ is an R-algebra, with R′ Noetherian, t′ = (t′1, . . . , t′r) the image of t in R′ (so that
IR′ is generated by t′), and M ′ = M ⊗R R′, then we clearly have

K•
t (M)⊗R R′ = K•

t′(M
′),

giving an isomorphism (since r is the highest degree of K•
t (M) and K•

t′(M
′))

Hr
t (M)⊗R R′ ∼−→ Hr

t′(M
′),

and this gives an isomorphism (via (C.4))

Hr
I (M)⊗R R′ ∼−→ Hr

IR′(M ′) (C.10)

given by [
m

tα1
1 , . . . , tαr

r

]
⊗ s �→

[
m⊗ s

t′α1
1 , . . . , t′αr

r

]
.

Using the formulae comparing generalized fractions with different sets of generators of I in § 7 of
[Lip84], we see that (C.10) does not depend on the generators t of I. We can, as we did for (C.7),
give an a priori interpretation of the map (C.10) (without using Koszul complexes). In greater
detail, for each r′ ∈ R′ we have a map M → M ′ given by m �→ m ⊗ r′. This induces a composite
map φr′ : Hr

I (M) → Hr
I (M

′) → Hr
IR′(M ′). It can be checked that the map (C.10) is given by

θ⊗r′ �→ φr′(θ) for θ ∈ Hr
I (M) and r′ ∈ R′. The crucial task is to show that for an R′-module N , the

identity Hr
t (N) = Hr

t′(N) corresponds to the map Hr
I (N)→ Hr

IR′(N) under (C.5). We give a proof
of this in a special case of interest to us, namely, the case where R is a Cohen–Macaulay algebra
over a Noetherian ring A and R′ = R⊗AA′ for a Noetherian A-algebra A′. (See Proposition C.3.1.)

Remark C.2.2. If R̂ is the completion of R with respect to I, then the natural map Hr
I (M) →

Hr
I (M)⊗R R̂ is an isomorphism. Using (C.10) this gives us the well-known identification Hr

Î
(M̂) =

Hr
I (M) for every finitely generated R-module M .
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C.3 Explicit version
Let R, t, Z etc. be as above. For the rest of this appendix (including § C.4), let us suppose we have
a diagram of Noetherian rings

R �� R′

A

��

�� A′

��

with R′ = R ⊗A A′ (and the arrows compatible with this tensor product), and A −→ R a Cohen–
Macaulay map of relative dimension r, i.e. the corresponding map of schemes f : X = SpecR →
SpecA = Y is Cohen–Macaulay of relative dimension r. Suppose further that Z ↪→ X is a good
immersion for f (cf. 3.1.4) and the image of t in R′ is t′ = (t′1, . . . , t′r). Set M ′ = M ⊗R R′. Recall
that in this situation (A.5) is an isomorphism by Proposition B.1.3.

Proposition C.3.1. The isomorphism

Hr
I (M)⊗R R′ (A.5)−→ Hr

IR′(M ′)

is given by [
m

tα1
1 , . . . , tαr

r

]
⊗ s �→

[
m⊗ s

t′α1
1 , . . . , t′αr

r

]
,

where m ∈ M , s ∈ R′ and (α1, . . . , αr) a sequence of positive integers. In other words, the base
change isomorphism (A.5) is locally a special case of the isomorphism (C.10), when f is separated
Cohen–Macaulay and Z is a good immersion.

Proof. This follows by putting together Proposition A.1.1, part b and diagram (B.1) (for i = r and
i = r − 1, respectively) and using the fact that the map (C.1) is surjective.

C.4 Normal bundles and local cohomology
With the situation as before, and α as usual a sequence of positive integers, let Nα = NBα/R =∧r
Bα

HomBα(Iα/I2
α, Bα), Iα = tαR. Let B′

α = R′/t′αR′ = Bα ⊗R R′ and let N ′
α = NB′

α
/R′. Note

that N ′
α = Nα ⊗R R′ = Nα ⊗A A′.

Now, for α � α′ (i.e. αi � α′
i for i = 1, . . . , r) we have a map Nα → Nα′ given by

1
(tα1

1 , . . . , tαr
r )
�→ tβ1

1 · · · tβr
r

(tα
′
1

1 , . . . , t
α′

r
r )

,

where β = α′ − α. This makes {Nα} into an inductive system. We have a commutative diagram as
follows.

M ⊗R Nα
∼ �� M [r]⊗R Nα[−r]

(4.2)

∼ �� RHomR(Bα,M [r])

��
M ⊗R Nα

θ−1
r,−r �� M [r]⊗R Nα[−r] (4.5) �� RΓI(M [r])

Consider the bottom row. Taking the 0th cohomology, applying lim−→α
and using formulae (C.2) and

(C.3) we get an isomorphism

lim−→
α

(M ⊗R Nα) ∼−→ Hr
I (M) = Hr

Î
(M̂). (C.11)

Setting M = R we get

lim−→
α

Nα
∼−→ Hr

I (R) = Hr
Î
(R̂). (C.12)
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Note that in view of Remark C.1.1 and the sign implicit in θr,−r, the composite map M ⊗R Nα →
lim−→α

(M ⊗R Nα)→ Hr
I (M) is (using the notation of (4.1))

m⊗ 1
(tα1

1 , . . . , tαr
r )
�→

[
m

tα1
1 , . . . , tαr

r

]
. (C.13)

Finally, note that we have

(M ⊗R Nα)⊗R R′ = M ′ ⊗R′ N ′
α,

where, as before, M ′ = M ⊗R R′.

Proposition C.4.1. The following diagrams commute.

a)

M ⊗ lim−→
α

Nα

(C.12)

��

lim−→
α

(M ⊗Nα)

(C.11)

��
M ⊗Hr

I (R)
(C.7)

�� Hr
I (M)

b)

lim−→
α

(M ⊗R Nα)⊗R R′

(C.11)

��

lim−→
α

(M ′ ⊗R′ N ′
α)

(C.11)

��
Hr
I (M)⊗R R′

(A.5)
�� Hr

IR′(M ′)

Proof. Both parts follow from the explicit descriptions of the maps involved using generalized
fractions (Proposition C.3.1, Remark C.2.1, (C.13)).

Remark C.4.2. SupposeM is a finitely generated R-module, and (̂·) denotes completion with respect
to the I-adic topology. We have R/tαR =: Bα = R̂/tαR̂, Iα/I2

α = Îα/Î
2
α, and M⊗RNα = M̂⊗R̂Nα,

and these identifications are compatible with the underlying inductive systems indexed by the α.
On taking direct limits, one checks that the resulting identification

Hr
I (M) = Hr

Î
(M̂)

agrees with the one in Remark C.2.2 (use generalized fractions!).

References
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HK90a R. Hübl and E. Kunz, Integration of differential forms on schemes, J. reine angew. Math. 410 (1990),
53–83.
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HS93 R. Hübl and P. Sastry, Regular differential forms and relative duality, Amer. J. Math. 115 (1993),
749–787.
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