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Abstract

We introduce coarse flow spaces for relatively hyperbolic groups and use them to verify
a regularity condition for the action of relatively hyperbolic groups on their boundaries.
As an application the Farrell–Jones conjecture for relatively hyperbolic groups can be
reduced to the peripheral subgroups (up to index-2 overgroups in the L-theory case).

Introduction

Farrell and Jones [FJ86] used the geodesic flow on closed Riemannian manifolds of negative
sectional curvature to prove that the Whitehead group of the fundamental group of such
manifolds vanishes. This method has been extremely fruitful and has been generalized in
many ways.

Among the developments following [FJ86] was the formulation of what is now known as the
Farrell–Jones conjecture [FJ93]. This conjecture predicts that the K- and L-theory of group
rings R[G] is determined by group homology and the K- and L-theory of group rings of virtually
cyclic subgroups. If the conjecture holds for a group G, then this often yields vanishing results
or computational results for Whitehead groups and the manifolds structure set appearing in
surgery theory. In particular, the Farrell–Jones conjecture has implications for the classification
of higher-dimensional non-simply connected manifolds. We will review the precise formulation of
the conjecture in § 4. More information about the Farrell–Jones conjecture and its applications
can be found for example in [BLR08c, Lue10, LR05].

In many cases it is fruitful to replace the family of virtually cyclic subgroups VCyc with a
bigger family of subgroups F . There is then a formulation of the Farrell–Jones conjecture relative
to F . This version of the conjecture is particularly useful whenever the groups in the family F
are already known to satisfy the original Farrell–Jones conjecture.

In work with Lück and Reich the geodesic flow method from [FJ86] has been successfully
implemented in [BL12a, BLR08a, BLR08b] to prove the Farrell–Jones conjecture for hyperbolic
groups. More generally, the results from [BL12a, BLR08b] state that the Farrell–Jones conjecture
for a group G holds relative to a family F whenever there exists an action of G on a finite-
dimenional contractible ANR satisfying a regularity condition relative to the family F . Here,
ANR stands for absolute neighborhood retract. We will review this regularity condition shortly
and refer to actions satisfying it relative to F as finitely F-amenable actions. In this language
the main result of [BLR08a] implies that for hyperbolic groups the action on the boundary is
finitely VCyc-amenable. In this paper we prove a similar result for relatively hyperbolic groups.
For definitions of relatively hyperbolic groups see [Far98, Gro87, Gro93, Szc98]. We will use
Bowditch’s point of view [Bow12], recalled in § 2.
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Theorem. Let G be a countable group that is relatively hyperbolic to subgroups P1, . . . , Pn.
Let P be the family of subgroups of G that are either virtually cyclic or subconjugated to one
of the Pi. Then the action of G on its boundary ∆ is finitely P-amenable.

This result appears as Theorem 3.1 in § 3.
The boundary ∆ is usually neither contractible nor an ANR. For hyperbolic groups Bestvina

and Mess proved that the union of the Rips complex with the boundary is a contractible compact
ANR [BM91]. Similarly, for relatively hyperbolic groups there is a relative Rips complex [Dah03,
MY] and in the appendix we extend the Bestvina–Mess result to the relatively hyperbolic case.
This is closely related to results of Dahmani [Dah03]. Using [BL12a, BLR08b] we will obtain the
following application to the Farrell–Jones conjecture.

Corollary. Let G be a countable group that is relatively hyperbolic to subgroups P1, . . . , Pn.
If P1, . . . , Pn satisfy the Farrell–Jones conjecture then G satisfies the Farrell–Jones conjecture.

This corollary is more carefully formulated as Corollary 4.6. Such results are typical for
relatively hyperbolic groups. For example if a group G is relatively hyperbolic to groups of finite
asymptotic dimension, then G is of finite asymptotic dimension [Osi05].

For groups that are relatively hyperbolic to groups that satisfy the Farrell–Jones conjecture
and are in addition residually finite Antoĺın et al. [ACG15] give an alternative proof of the above
corollary using Dehn fillings.

A regularity condition
Let X be a G-space and F be a family of subgroups of G. An open subset U ⊆ X is said to be
an F-subset if there is F ∈ F such that gU = U for g ∈ F and gU ∩U = ∅ if g 6∈ F . A cover U of
open subsets of X is said to be G-invariant if gU ∈ U for all g ∈ G, U ∈ U . A G-invariant cover
U of X is said to be an F-cover if the members of U are all F-subsets. The order of a collection
U of subsets of X is less than or equal to N if each x ∈ X is contained in at most N+1-members
of U . If U is a cover, then we will often call the order of U the dimension of U .

Definition 0.1. Let G be a group and F be a family of subgroups. An action of G on a space
X is said to be N -F-amenable if for any finite subset S of G there exists an open F-cover U of
G×X (equipped with the diagonal G-action) with the following properties:

(a) the dimension of U is at most N ;

(b) for all x ∈ X there is U ∈ U with S × {x} ⊆ U .

An action that is N -F-amenable for some N is said to be finitely F-amenable.

In [BLR08b] such cover were called wide.

Remark 0.2. Suppose that the action G y X is N -F-amenable. Then all finitely generated
subgroups H of G that fix a point x ∈ X belong to F . Indeed, if S is symmetric, contains e,
generates H and satisfies S × {x} ⊆ U then (e, x) ∈ sU for all s ∈ S and therefore U ∩ sU 6= ∅

for all s ∈ S.

Remark 0.3. Suppose that the action G y X is such that there exists an F-cover V for X of
dimension N . Then the action is N -F-amenable. Indeed, if we set U := {G×V | V ∈ V} then U
is an F-cover for G ×X of dimension N and G × {x} ⊆ U = G × V ∈ V whenever x ∈ V ∈ V.
Such a cover V exists for example for any cellular action on an N -dimensional CW -complex
whenever all isotropy groups of the action belong to F .
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Remark 0.4. Suppose that X is compact and metrizable. Then given an N -F-amenable action

of a countable group G on X there is a sequence of G-equivariant maps fn : G×X → Kn with

the following properties. The space Kn is an N -dimensional simplicial complex with a simplicial

G-action. The isotropy groups for this action belong to F . The maps fn are contracting in the

G-direction: for any g ∈ G we have supx∈X ‖fn(e, x)−fn(g, x)‖1 → 0 as n→∞. The maps fn can

be constructed using a partition of unity subordinated to the covers U appearing in the definition

of N -F-amenability, compare [BLR08b, §§ 4 and 5]. The maps fn(e,−) : X →Kn are then almost

G-equivariant in the following sense: for any g ∈ G we have supx∈X ‖gfn(e, x)− fn(e, gx)‖1 → 0

as n → ∞. The action of G on X is amenable [Oza06a] if there is such an almost equivariant

sequence of maps to the space of probability measures on G. The isotropy groups for the action

on the space of probability measures are the finite subgroups of G. Thus N -F-amenability can

be thought of as both stronger and weaker than amenability: stronger since a finite-dimensional

target is required; weaker since the target may have larger isotropy groups.

Ozawa [Oza06b] investigated amenable actions for relatively hyperbolic groups. In particular,

his results imply that if G is relatively hyperbolic to amenable groups, then the action of G on

the boundary is amenable.

Flow spaces

If G is the fundamental group of a negatively curved manifold M , then the geodesic flow is a

flow on the unit sphere bundle SM of the tangent bundle of M . We will say that SM together

with the geodesic flow is the geodesic flow space for G. Let G now be a hyperbolic group.

Mineyev [Min05] constructed an analog of the geodesic flow space and this flow space FS and its

dynamic properties are key ingredients to the proof of finite VCyc-amenability for the action of

G on its boundary in [BLR08a]. The proof has naturally two parts. In the first part the so-called

long and thin covers of FS are constructed. In the second part the dynamic of the flow is used

to construct maps G × ∂G → FS under which the long and thin covers of FS pull back to the

necessary covers of G× ∂G.

The key property of the long and thin covers Uα is that they are long in the direction of the

flow: for each x ∈ FS there is U ∈ Uα such that x stays in U for time t ∈ [−α, α]. Typically

the members of U are very thin transverse to the flow. Thus the name long and thin covers. These

covers are a variation of the long and thin cell structures appearing in [FJ86]. The construction

of these long and thin covers in [BLR08a] is quite involved but works for very general flow spaces.

Moreover, assumptions on the order of finite subgroups of G and the structure of periodic orbits

were later shown to be not necessary by Mole and Rüping [MR13] and by Kasprowski and

Rüping [KR15]. Sauer [Sau09] used packing methods to prove in a measure theoretic context

results that are similar to long and thin covers. Later he pointed out that such packing methods

should also be applicable to the construction of long and thin covers of flow spaces. This led

to a much simpler construction for the long and thin covers from [BLR08a] by Kasprowski and

Rüping [KR15].

Coarse flow spaces

An observation of the present paper is that the construction of long and thin covers using the

packing method works in a more general context than flow spaces. This can be used to give

an alternative argument for the finitely VCyc-amenability of the actions of hyperbolic groups

on their boundaries that avoids Mineyev’s flow space. Moreover, this alternative argument
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generalizes to relatively hyperbolic groups.1 In this and the next subsection we outline this
argument for hyperbolic groups. The case of relatively hyperbolic groups is treated in detail in
the main text of this paper.

Let G be a hyperbolic group. We will replace Mineyev’s flow space with a more easily defined
coarse flow space. Let Γ be a Cayley graph for G. Assume that Γ is δ-hyperbolic. Let G := G∪∂G
and Z := G

2
.

Definition 0.5. The coarse flow space CF for G is the subspace of G× Z consisting of triples
(g, ξ−, ξ+) such that there exists a geodesic in Γ from ξ− to ξ+ that passes g within distance δ.

There is no actual flow on this coarse flow space, but there are natural analoga of the orbits
of the flow on FS . These analoga are the subsets Gξ−,ξ+ := {g ∈ G | (g, ξ−, ξ+) ∈ CF} ⊆ G. Since
Γ is hyperbolic each Gξ−,ξ+ is contained in a uniformly bounded neighborhood of a geodesic.
Consequently, the Gξ−,ξ+ satisfy a uniform doubling property: there is D such that for any R
and any subset S of a 2R-ball in Gξ−,ξ+ the following holds: if S is R-separated, i.e. dG(s, s′) > R
for all s 6= s′ ∈ S, then the cardinality of S is at most D. This observation is the main ingredient
for the following version of long and thin covers for CF . Let dG be a left-invariant word metric
on G.

Proposition 0.6. There is N such that for any α > 0 there exists an VCyc-coverW of CF such
that the following holds:

(a) for any (g, ξ−, ξ+) ∈ CF there is W ∈ W such that Bα(g)× {(ξ−, ξ+)} ∩ CF ⊆W ;

(b) the dimension of W is at most N .

In Theorem 1.1 we prove a version of this result in a more general situation that will also be
applicable to the coarse flow spaces for relatively hyperbolic groups introduced in Definition 3.4.
An important assumption is again a uniform doubling property. As an application of Theorem 1.1
we obtain a version of Proposition 0.6 for relatively hyperbolic groups in Proposition 3.7. In a
different direction a corollary to Theorem 1.1 is that all actions of finitely generated virtually
nilpotent groups on finite dimensional normal separable spaces with isotropy in F are finitely
F-amenable, see Corollary 1.10. This generalizes a result for free actions of nilpotent groups by
Szabó et al. [SWZ14].

Sketch of proof of Proposition 0.6 if dim ∂G = 0. Since dimG
2

= 0 there is a basis of the

topology of G
2

consisting of sets that are open and closed. Choose a covering of CF by sets

of the form {gi} × Vi ∩CF , i ∈ N where Vi is open and closed in G
2
. Then define inductively Ui

by U0 := V0 and

Ui := Vi

∖⋃
j

Uj

where the union is over all j with j < i and dG(gi, gj) 6 α. Since the Vi are closed and open,
the Ui are still open. The open sets Wi := B2α(gi)× Ui ∩ CF form then the desired cover W of
CF . This cover is α-long in the direction of G, more or less by construction. To compute the
dimension of W one checks that if Wi1 ∩ · · · ∩WiN 6= ∅, then the gi form an α-separated set in
a ball of radius 2α in one of the Gξ−,ξ+ and therefore dimW 6 D − 1.

1 It is plausible that the argument from [BLR08a] can also be extended to relatively hyperbolic groups. A step in
this direction is [Mol13].
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In this sketch we ignored the action of G on CF . To amend this one has to choose the Vi
sufficiently small in order to avoid intersections gWi∩Wi for to many g. Moreover, in the definition

of Ui and Wi the group action has to be taken into account. In order to extend the argument to

the case dim ∂G > 0 an induction over subspaces of CF of lower dimension can be used. 2

Pulling back long and thin covers from CF to G× ∂G

Let CF be the coarse flow space for the hyperbolic group G. For W ⊆ CF and τ > 0 we define

ι−τW ⊆ G × ∂G to consist of all pairs (g, ξ) with the following property. If v ∈ G belongs to a

geodesic from g to ξ and satisfies dG(g, v) = τ , then (v, g, ξ) ∈W .

One way to think about ι−τW is as follows. First define ι : G×∂G→ CF by ι(g, ξ) = (g, g, ξ).

Next apply a partially defined multi-valued geodesic flow φτ on CF : this flow takes (g, g, ξ) to

the set of all (g, v, ξ) where v ∈ G belongs to a geodesic between g and ξ and is of distance τ

from g. Then ι−τW is the pull-back of W under the composition φτ ◦ ι.
This construction allows us to use the long thin covers of CF from Proposition 0.6 to prove

that the action of G on ∂G is finitely VCyc-amenable: if W is a VCyc-cover of CF then the

same holds for ι−τW := {ι−τW | W ∈ W}. By construction dim ι−τW 6 dimW. Finally, if W
is a long cover of CF (as in Proposition 0.6(a)) then for sufficiently large τ the cover ι−τW of

G × ∂G is wide in the G-direction (as in Definition 0.1(b)). This last fact can be thought of as

a consequence of dynamic properties of φτ and uses the hyperbolicity of Γ.

For relatively hyperbolic groups this step is carried out in detail in § 3. The main additional

difficulty appearing is discussed in the next subsection.

Relatively hyperbolic groups

The precise definitions for relatively hyperbolic groups that we use will be given in § 2 and

mostly follows Bowditch [Bow12]. Let G be relatively hyperbolic to the peripheral subgroups

P1, . . . , Pn. By definition G acts on a hyperbolic graph Γ. Unlike the Cayley graph for hyperbolic

groups Γ will contain vertices of infinite valency and the isotropy groups of these vertices will

be conjugated to the Pi. We write V for the set of vertices of Γ and V∞ for the set of vertices of

Γ of infinite valency. The boundary of G is defined by Bowditch as the union of ∆ := ∂Γ ∪ V∞;

this is a compact space.

The key additional property of the graph Γ used here is fineness, as introduced by

Bowditch [Bow12]. Under a mild additional assumption this property can be used to define

a proper metric on the set of edges of Γ, see [MY]. In particular, it is possible to measure angles

in Γ. Here an angle is a pair of edges that share a vertex. In order to allow for peripheral subgroups

that are not necessarily finitely generated it is better to avoid the additional assumption. To this

end we take a slightly different point of view and consider G-invariant G-cofinite subsets Θ of

the set of all angles. Such a subset will be called a size for angles. Each size for angles Θ is then

locally finite in the following sense: for each edge e there are only finitely many edges e′ such

that (e, e′) ∈ Θ. Fineness of Γ implies that the set of all angles appearing in any non-degenerate

geodesic triangle is such a size for angles.

For any size for angles Θ we define a coarse flow space CF (Θ). Its definition is similar to the

hyperbolic case in Definition 0.5, where we replace G with vertices of finite valency and only use

geodesics along which all angles are Θ-small. The argument outlined in the hyperbolic case above

can then be used to produce wide covers of a certain subspace of G×∆, see Proposition 3.2. In

order to prove that the action of G on ∆ is finitely P-amenable, we need to extend these wide

covers to all of G×∆. This is done by an explicit construction in Proposition 3.17.
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1. Long thin covers of subspaces of V × Z

Throughout this section we fix:

– a group G;

– a family F of subgroups of G;

– a discrete countable proper metric space V with a proper isometric G-action, where the
metric of V will be denoted by dV (we allow distances for dV to be ∞);

– a separable metrizable space Z with an action of G by homeomorphisms;

– a closed G-invariant subspace X of V × Z (we will always use the diagonal action of G on
V × Z).

An example for X is the coarse flow space for hyperbolic groups from Definition 0.5. Let
α > 0. We write Bα(v) := {w ∈ V | dV (v, w) 6 α} for the closed α-ball around v. A subset
S ⊆ V is said to be α-separated if dV (s, s′) > α for any two distinct elements of S. We will say
that a subset V0 of V has the (D,R)-doubling property if for any α > R the following holds:
if S ⊆ V0 is α-separated and contained in a ball of radius 2α, then the cardinality of S is at
most D.

For v ∈ V we set Zv := {z ∈ Z | (v, z) ∈ X}. This is a closed subset of Z. For z ∈ Z we set
Vz := {v ∈ V | (v, z) ∈ X} ⊆ V . Then

X =
⋃
v∈V
{v} × Zv =

⋃
z∈Z

Vz × {z}.

The following is the most abstract result about long thin covers in this paper.

Theorem 1.1. Assume that X satisfies the following assumptions:

(A) X is finite dimensional;

(B) there are D > 0, R > 0 such that for all z ∈ Z the subspace Vz of V has the (D,R)-doubling
property;

(C) for each (v, z) ∈ X the isotropy group Gz := {g ∈ G | gz = z} belongs to F .

Then X admits long thin covers as follows: there is a number N depending only on the
dimension of X and the doubling constant D, such that for any α > 0 there is an F-cover W of
X such that:

(a) dimW 6 N ;

(b) for any (v, z) ∈ X there is W ∈ W such that Bα(v)× {z} ∩X ⊆W .

The proof of Theorem 1.1 will proceed by induction on the dimension of subspaces of X.
The following proposition is the induction step. Since we can take Y = X to start the induction
it implies Theorem 1.1.

Proposition 1.2. Retain the assumptions of Theorem 1.1. Let Y ⊆ X be a non-empty G-
invariant closed subspace. Assume that dimY = n. For any α > 0 there is a G-invariant collection
W of F-subsets of X and a G-invariant closed subspace Y ′ ⊆ Y such that:

(a) dimY ′ < dimY ;

(b) the order of W is at most D − 1;

(c) for any (v, z) ∈ Y \Y ′ there is W ∈ W such that Bα(v)× {z} ∩X ⊆W .
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Lemma 1.3. Retain the assumptions of Proposition 1.2. Let (v, z) ∈ Y , α > 0 and U0 be a
neighborhood of z in Z. Then U0 contains a smaller open neighborhood U of z in Z such that:

(a) {g ∈ G | dV (gv, v) 6 α,U ∩ gU 6= ∅} ⊆ Gz = {g ∈ G | gz = z};
(b) for all w ∈ V we have dimYw ∩ ∂U < dimY , where Yw := {z ∈ Zw | (w, z) ∈ Y } and ∂U

denotes the boundary of U in Z.

Proof. We have Y =
⋃
w∈V {w} × Yw. Since dimY = n and V is discrete each Yw satisfies

dimYw 6 n. Since Y is closed, Yw ⊆ Z is closed for each w ∈ V . The countable sum theorem
in dimension theory [Pea75, Theorem 2.5, p. 125] asserts that in a normal space the dimension
of the countable union of closed subspaces is the supremum of the dimension of the subspace.
Since V is countable this implies that the dimension of YV :=

⋃
w∈V Yw is at most n.

Since every subspace Z ′ of Z is separable and metrizable, its (covering) dimension equals its
(small) inductive dimension: dimZ ′ = indZ ′ [Pea75, Corollary 5.10, p. 184]. This means that
for any z ∈ Z ′ there are arbitrary small neighborhoods whose boundary in Z ′ has dimension less
than dimZ ′.

Since dV is proper and the action of G on V is proper, {g | dV (gv, v) 6 α} is finite. Since
Z is Hausdorff there is an open neighborhood U ′ of z in Z that is contained in U0 and satisfies
gU ′ ∩ U ′ = ∅ for all g ∈ G\Gz with dV (gv, v) 6 α. Applying the facts from the preceding
paragraph to YV , we obtain an open neighborhood U ′′ of z in YV that is contained in U ′ and
satisfies dim ∂YV U ′′ < dimY , where ∂YV denotes the boundary in YV . Using Lemma B.1 we can
extend U ′′ to an open subset U of Z that is contained in U ′ and satisfies U ∩ YV = U ′′, and
∂U ∩ YV = ∂YV U ′′, where ∂ denotes the boundary in Z.

Let w ∈ V . Since Yw is closed in YV we have dimYw ∩ ∂U 6 dimYV ∩ ∂U = dim ∂YV U ′′ <
dimY . Thus U satisfies part (b). Since U ⊆ U ′, U also satisfies part (a). 2

Lemma 1.4. Retain the assumptions of Theorem 1.1. Let α > R be given. Then there exists
an open G-invariant neighborhood X th of X in V × Z such that for all z ∈ Z, the subspace
V th
z := {v ∈ V | (v, z) ∈ X th} of V has the following property: if S ⊆ V th

z is α-separated and
contained in a ball of radius 2α, then the cardinality of S is at most D.

Proof. Since the action of G on V is proper, we can pick metrics dv, v ∈ V on Z that are
compatible with the G-action, i.e. such that we have dv(z, z

′) = dgv(gz, gz
′) for all v ∈ V , g ∈ G,

z, z′ ∈ Z.
Let (v, z) ∈ X (i.e. z ∈ Zv). For w ∈ V with z 6∈ Zw, let ε(v, w, z) := dv(z, Zw)/3. The Zw are

closed since X is closed. Thus ε(v, w, z) > 0. Let ε(v, z) := min ε(v, w, z), where the minimum is
taken over all w ∈ V with dV (v, w) 6 4α and z 6∈ Zw. Since dV is proper the minimum exists
and is positive. Let B(v, w, z) be the open ball of radius ε(v, z) around z with respect to the
metric dw. Set B(v, z) :=

⋂
dV (v,w)64αB(v, w, z). Since dV is proper B(v, z) is open. Moreover,

by construction,

(1.5) dv(z, Zw) > 2ε(v, z) whenever z ∈ Zv\Zw and dV (v, w) 6 4α,

(1.6) dv(z
′, z) < ε(w, z) whenever z ∈ Zw, z′ ∈ B(w, z) and dV (v, w) 6 4α.

Define Zth
v :=

⋃
z∈Zv B(v, z) and X th :=

⋃
v∈V {v} × Zth

v . By construction X th is an open
neighborhood of X in V × Z. The compatibility of the metrics dv with the G-action guarantees
that X th is G-invariant.

Let S ⊆ V be an α-separated subset of some 2α-ball in V . Assume that the cardinality of S
exceeds D. Since all Vz have the D-doubling property we have

⋂
w∈S Zw = ∅. We need to show
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that
⋂
w∈S Z

th
w = ∅ as well. Assume by contradiction that z′ ∈ ⋂w∈S Z

th
w . Then we find for each

w ∈ S, a point zw ∈ Zw with z′ ∈ B(w, zw). Choose v ∈ S such that ε(w, zw) 6 ε(v, zv) for all
w ∈ S. Note that dV (w, v) 6 4α for all w ∈ S. Now (1.6) implies that for all w ∈ S

dv(zv, Zw) 6 dv(zv, zw) 6 dv(zv, z
′) + dv(z

′, zw)

6 ε(v, zv) + ε(w, zw) 6 2ε(v, zv).

On the other hand (1.5) implies dv(zv, Zw) > 2ε(v, zv) if zv 6∈ Zw. Therefore zv ∈ Zw for all
w ∈ S. This contradicts

⋂
w∈S Zw = ∅. 2

Proof of Proposition 1.2. Throughout this proof closure and boundary will always be taken with
respect to Z. Let α > R. Let X th be as in Lemma 1.4. Since Y is separable we can use Lemma 1.3
and find sequences vi ∈ V , Fi ∈ F , Ui ⊆ Z open, such that

(1.7) {g ∈ G | dV (gvi, vi) 6 4α,Ui ∩ gUi 6= ∅} ⊆ Fi,
(1.8) for all w ∈ V we have dimYw ∩ ∂Ui < dimY ,

(1.9) Y ⊆ ⋃i{vi} × Ui ⊆ X th .

Now we define inductively U ′i by U ′0 := U0 and

U ′i := Ui

∖⋃
h,j

hU ′j

where the union is over all pairs (h, j) with h ∈ G, j < i, and dV (vi, hvj) 6 α. Since dV is proper
and the action of G on V is proper, this is a finite set of pairs and U ′i is open. An easy induction
shows that ∂U ′i ⊆

⋃
j6i,g∈G g∂Uj . Thus with Y ′′ := Y ∩ V ×⋃i,g g∂Ui we have

Y ∩ {v} × g∂U ′i ⊆ Y ′′

for all v ∈ V , i ∈ N, g ∈ G. For i ∈ N let

Wi := B2α(vi)× U ′i ∩X

and set W := {gFiWi | g ∈ G, i ∈ N}.
Clearly, W consists of open subsets of X and is G-invariant. Consider gFiWi ∈ W. If

γ ∈ gFig
−1, then γgFiWi = gFiWi. If γ /∈ gFig

−1, then γgFiWi ∩ gFiWi = ∅. Indeed, if
(v, z) ∈ γgFiWi ∩ gFiWi, then there are a, b ∈ Fi with dV (v, γgavi), dV (v, gbvi) 6 2α and
z ∈ γgaUi ∩ gbUi. Then (1.7) implies b−1g−1γga ∈ Fi and therefore γ ∈ gFig

−1. Thus each
gFiWi is an F-subset.

We now prove dimY ′′ < dimY . For v ∈ V , i ∈ N and g ∈ G we have Y ∩ {v} × g∂Ui =
g(Y ∩ {g−1v} × ∂Ui) ∼= Yg−1v ∩ ∂Ui. By (1.8) all these spaces are of dimension less than dimY .
Since they are all closed in Y the countable sum theorem [Pea75, Theorem 2.5, p. 125] implies
that their union, Y ′′, is also of dimension less than dimY .

Next we prove that W is of order less than or equal to D − 1, i.e. that it satisfies part (b).
Let (v, z) ∈ X. Suppose that (v, z) ∈ gFiWi. Then there is a ∈ Fi such that dV (v, gavi) 6 2α
and z ∈ gaU ′i . As X th is G-invariant, (1.9) implies (gavi, z) ∈ {gavi} × {gaU ′i} ⊆ X th . Thus
gavi ∈ V th

z . If also (v, z) ∈ hFjWj then there is b ∈ Fj with dV (v, hbvj) 6 2α, z ∈ hbU ′j and

hbvj ∈ V th
z .

If i = j then gFiWi∩hFiWi 6= ∅ and since gFiWi is a F-subset we then have gFiWi = hFjWj .
If i 6= j, then γU ′i ∩ U ′j = ∅ for all γ ∈ G with dV (γvi, vj) 6 α. Since b−1h−1gaU ′i ∩ U ′j 6= ∅, this

implies dV (b−1h−1gavi, vj) = dV (gavi, hbvj) > α.
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All together, we have shown that if (v, z) is contained in N distinct members in W, then

there is an α-separated set in B2α(v) ∩ V th
z of cardinality N . Lemma 1.4 implies now that N is

bounded by the doubling constant D appearing in the assumptions of Theorem 1.1. This implies

that the order of W is at most D − 1.
Next we claim that for any (v, z) ∈ Y \Y ′′ there is W ∈ W with Bα(v)× {z} ∩X ⊆ W . Let

(v, z) ∈ Y \Y ′′. By (1.9) there is i ∈ N with (v, z) ∈ {vi} × Ui. So v = vi. If z ∈ U ′i , then

Bα(v)× {z} ∩X ⊆ B2α(vi)× U ′i ∩X ⊆ FiWi.

If z 6∈ U ′i , then z ∈ hU ′j for some j < i and h ∈ G with dV (vi, hvj) 6 α. We observed earlier
Y ∩ {v} × h∂U ′j ⊆ Y ′′. Thus we have z ∈ hU ′j . Since dV (v, hvj) = dV (vi, hvj) 6 α we have then

Bα(v)× {z} ∩X ⊆ B2α(hvj)× hU ′j ∩X ⊆ hFjWj .

This proves our claim.

Now observe that if Bα(v) × {z} ∩X ⊆ W , then, since W is open, Bα(v) × {z′} ∩X ⊆ W

for all z′ in a neighborhood of z. Since W is G-invariant, this implies that there is an open

G-invariant neighborhood N of Y \Y ′′ such that all (v, z) ∈ N satisfy part (c).

Now Y ′ := Y \N is G-invariant and closed. Moreover, since Y ′ ⊆ Y ′′, we have dimY ′ 6
dimY ′′ < dimY and part (a) holds. 2

Corollary 1.10. Let G be a finitely generated virtually nilpotent group. Then any action of

G on a finite-dimensional separable metrizable space Z is finitely F-amenable where F consists

of all subgroups of G that fix a point in Z.

Proof. This follows from Theorem 1.1 where we take V = G with a word metric and X = G×Z.

Assumption (A) of Theorem 1.1 is satisfied since Z is finite dimensional. Finitely generated

virtually nilpotent groups are of polynomial growth [Bas72]. This implies that G has a doubling

property. Thus assumption (B) of Theorem 1.1 is satisfied. Assumption (C) of Theorem 1.1 holds

by choice of F . 2

2. Relative hyperbolic groups

Throughout this section Γ will be a fine and hyperbolic graph in the sense of Bowditch [Bow12]

and G will be a countable group equipped with a cocompact simplicial action on Γ. In particular,

Γ is uniformly fine: for any α there is Nα such that for any edge e there are at most Nα circuits

of length less than or equal to α containing e. (A circuit is an embedded loop in Γ.) The isotropy

groups of edges for the action of G on Γ are assumed to be finite. Let P1, . . . , Pn be representatives

of the conjugacy classes of the isotropy groups of the vertices of Γ of infinite valency. We will

then say that G is relatively hyperbolic to P1, . . . , Pn.2

We denote by ∆ the union of the Gromov boundary ∂Γ of Γ with the set V∞ of vertices

of Γ with infinite valency. By V we denote the set of all vertices of Γ and by E the set of all

edges of Γ. We write ∆+ := ∂Γ∪V . In other words, ∆+ is the union of ∆ with the set of all vertices

of Γ of finite valency. We think of edges as subsets of V with two elements; in particular, edges

are not oriented.

2 Bowditch [Bow12, Definition 2] assumes in addition that P1, . . . , Pn are finitely generated, but this restriction
will not be necessary here.
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We will use the term geodesic for finite geodesics, geodesic rays and bi-infinite geodesics. If
c is a geodesic and ξ, ξ′ ∈ ∆+ are both contained in c or endpoints of c then we write c|[ξ,ξ′] for
the restriction of c to a geodesic between ξ and ξ′.

Hyperbolicity of a graph is usually formulated in terms of geodesic triangles whose sides are
finite geodesics. But it then follows that all geodesic triangles, including geodesic triangles with
one or more corners at the boundary are uniformly slim [GM08, Lemma 2.11].3 We can therefore
fix a constant δ > 0 such that in all geodesic triangles each side is contained in the union of the
δ-neighborhood of the other two. It will be convenient to assume that δ is an integer. We will
refer to δ as a hyperbolicity constant for Γ.

Angles
An unordered pair (e, e′) of edges in Γ that have a vertex v in common is called an angle at v.
If e = e′, then we say that the angle (e, e′) is trivial. The group G acts on the set of angles; this
action will usually be not cofinite. A G-invariant, G-cofinite subset Θ of the set of all angles, that
contains all trivial angles will be called a size for angles. Members of Θ will be called Θ-small.
Angles that are not contained in Θ will be called Θ-large. If c is a geodesic in Γ then c determines
a non-trivial angle at every internal vertex v of c; this angle will be called the angle of c at v and
sometimes be denoted by �vc. If all these angles are Θ-small, then we will say that c is Θ-small.
In particular, geodesics of length 1 are always Θ-small, as they contain no internal vertices. If Θ
and Θ′ are two sizes for angles then we define Θ+Θ′ to consist of all angles (e, e′′) for which there
is an edge e′ with (e, e′) ∈ Θ and (e′, e′′) ∈ Θ′. As a consequence of the following Lemma 2.1,
Θ + Θ′ is again a size for angles.

Lemma 2.1. If Θ is a size for angles then each edge e is contained in only finitely many angles
of Θ, i.e. Θe := {e′ ∈ E | (e, e′) ∈ Θ} is finite. Conversely, a G-invariant set of angles Θ with the
property that Θe is finite for any edge e is a size for angles.

Proof. If the action of G on Θ is cofinite, the same holds for the action of the isotropy group Ge
of e on Θe. Since Ge is finite, so then is Θe.

Conversely, since the action of G on E is cofinite, there are finitely many edges e1, . . . , en
such that each orbit for the action of G on the set of all angles contains an angle of the form
(e, ei). Thus, if Θei is finite for i = 1, . . . , n, then the action of G on Θ is cofinite. 2

Corollary 2.2. Let Θ be a size for angles and α > 0. Let v be a vertex and e be an edge
incident to v. Consider the set V ′ of all vertices v′ for which there exists a Θ-small geodesic from
v to v′ of length at most α whose initial edge e′ satisfies (e, e′) ∈ Θ. Then the cardinality of V ′

is bounded by a number depending only on Θ and α.

Proof. This is an immediate consequence of the first statement in Lemma 2.1 and the cofiniteness
of the action of G on the set of edges. 2

Definition 2.3. We define Θ(3) as the set of all angles (e, e′) such that there exists a geodesic
triangle (possibly with some corners in ∂Γ) with sides c, c′ and c′′ such that c and c′ determine
the angle (e, e′) at the corner v ∈ V , and such that c′′ does not meet v.

Lemma 2.4. The set Θ(3) is a size for angles.

3 In this reference the proof is left as an exercise; for completeness a solution to this exercise is included in
Appendix C.
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Proof. Clearly, G acts on Θ(3), and Θ(3) contains all trivial angles. To show that Θ(3) is cofinite
it suffices to show, by Lemma 2.1, that for all e there are only finitely many e′ with (e, e′) ∈ Θ(3).
We will use hyperbolicity of Γ to show for each e′ with (e, e′) ∈ Θ(3) there is a circuit of uniformly
bounded length in Γ that contains both e and e′. Since Γ is fine there are only finitely many
such circuits.

To construct the circuit let c, c′ and c′′ be sides of a geodesic triangle such that c and c′

determine the angle (e, e′) at the corner v ∈ V , and such that c′′ does not meet v. Now pick
w ∈ c as follows. Recall that we picked the hyperbolicity constant δ to be an integer. If the length
of c is greater than or equal to 3δ, then let w ∈ c with dΓ(v, w) = 3δ. Otherwise, let w be the
endpoint of c (not v). Similarly, pick w′ ∈ c′. Hyperbolicity implies that there is a path of length
less than or equal to 10δ between w and w′ that misses v. Indeed, if dΓ(w, c′) 6 δ then we can
connect w first to c′ and then to w′ along c′. If dΓ(w′, c) 6 δ then we can connect w′ first to c and
then to w along c. Otherwise, by hyperbolicity, we have dΓ(w, c′′) 6 δ and dΓ(w′, c′′) 6 δ, and
we can first connect w and w′ to c′′, and then connect along c′′. Altogether we have constructed
a loop of length at most 16δ that meets v exactly once in the angle (e, e′). The loop may not be
embedded, but we can shorten it to produce a circuit containing the angle (e, e′). 2

Remark 2.5. By cutting geodesic n-gons in Γ into geodesic triangles one obtains a version of
Lemma 2.4 for geodesic n-gons.

For n > 3 let (n− 2)Θ(3) be the n− 2-fold sum of Θ(3). Suppose that the geodesics c1, . . . , cn
are the sides of an n-gon in Γ (possibly with some corners in ∂Γ). Let (e, e′) be the angle in
Γ determined by the corner v ∈ V of the n-gon between c1 and c2. If v /∈ c3 ∪ · · · ∪ cn then
(e, e′) ∈ (n− 2)Θ(3).

Similarly, if v is an internal vertex of ci that does not belong to any of the cj , j 6= i, then
�vci ∈ (n− 1)Θ(3).

Lemma 2.6. Let c and c′ be two geodesics from v ∈ V to ξ ∈ ∆+, ξ 6= v. Let e and e′ be the
initial edges of c and c′. Then (e, e′) is Θ(3)-small.

Proof. If e 6= e′ then we can subdivide c or c′ and obtain a geodesic triangle for which (e, e′) will
be the angle at v and for which v does not belong to all three sides. Thus (e, e′) ∈ Θ(3). 2

Lemma 2.7. Let c and c′ be two geodesics between ξ− and ξ+ ∈ ∆+. Let v ∈ c and v′ ∈ c′ be
such that no geodesic between v and v′ is contained in c ∪ c′. Then there exists a 2Θ(3)-small
geodesic ĉ between v and v′.

Proof. Choose a geodesic ĉ from v to v′, that first travels along c, then along a geodesic c1 that
meets c and c′ only in its endpoints and finally along c′. We set c0 := c∩ ĉ and c2 := c′ ∩ ĉ. Then
c0 is disjoint from c′, and c2 is disjoint from c, since otherwise there is a geodesic from v to v′

that is contained in c∪ c′. Now c1 splits the bi-gone formed by c and c′ in two geodesic triangles.
For any internal vertex w of ĉ we can use one of these two triangles and apply Remark 2.5 to
conclude that �w ĉ is 2Θ(3)-small. 2

Existence of geodesics
The following (presumably well-known) fact is implicitly used in [Bow12], but not explicitly
stated.

Lemma 2.8. For ξ 6= ξ′ ∈ ∆+, there exists a geodesic between ξ and ξ′.

Proof. We will use angles to extend the proofs in the locally finite case from [BH99, Lemmas 3.1,
3.2, p. 428].

755

https://doi.org/10.1112/S0010437X16008216 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008216


A. Bartels

First, we consider the case ξ′ = v ∈ V . If also ξ ∈ V , then the existence of a geodesic between
ξ and v is obvious. Let c be a geodesic ray from some vertex w to ξ. For n ∈ N pick finite
geodesics cn from v to c(n). It will be convenient to assume that cn∩ c is a finite geodesic, i.e. cn
does not leave c after meeting c. We claim, that, as in the locally finite case, a subsequence of
cn converges pointwise to a geodesic ray c′. This ray is then a ray from v to ξ. Let en be the
initial edge of cn. Then we can use the geodesic triangle whose sides are cn, cm and c[c(n),c(m)]

to deduce that (en, em) is Θ(3)-small. It follows that the en range only over a finite set and we
can pick a subsequence I ⊆ N with e = en, n ∈ I constant. Inductively we can now produce a
subsequence of the cn that converges pointwise as claimed.

Next, we consider the case ξ, ξ′ ∈ ∂Γ. Let c and c′ be geodesic rays to ξ and ξ′. By the first
case we can assume c(0) = c′(0). We can also assume c ∩ c′ = c(0). Let cn be a finite geodesic
from c(n) to c′(n). We claim that, as in the locally finite case, there is a vertex p that belongs
to infinitely many of the cn. Since ξ 6= ξ′ there is n0 ∈ N with dΓ(c(n0), c′) > δ. Hyperbolicity
implies then dΓ(c(n0), cn) 6 δ for n > n0. We can therefore for n > n0 pick geodesics c̃n starting
in c(n0) and ending in wn ∈ cn of length less than or equal to δ. We can assume c̃n ∩ cn = wn.
Let w′n be the last vertex on c̃n that is also on c. Since dΓ(w′n, c(n0)) 6 δ and w′n ∈ c there is a
subsequence I ⊆ N with w′ = w′n, n ∈ I constant. Consider for n ∈ I now the geodesic triangles
whose sides are c|[w′,c(n)], cn|[c(n),wn] and c̃n|[w′,wn]. Using Remark 2.5 it follows that c̃n|[w′,wn] is

2Θ(3)-small. It also follows that the initial edge en of c̃n|[w′,wn] forms a Θ(3)-small angle with an
edge e of c incident to w′. Now Corollary 2.2 implies that the wn range only over a finite set.
Thus after passing to a further subsequence we can assume that there is a vertex p contained in
all cn, n ∈ I. Now the argument used in the first case allows us to pass to a further subsequence
and to assume that cn|[p,c(n)], n ∈ I converges pointwise to a geodesic ray from p to ξ and that
cn|[p,c′(n)], n ∈ I converges pointwise to a geodesic ray from p to ξ′. These two rays now combine
to a bi-infinite geodesic between ξ and ξ′. 2

The observer topology
Bowditch [Bow12, § 8] defined a topology on ∆; this topology is sometimes called the observer
topology. This topology naturally is also defined on ∆+ = ∂Γ ∪ V . We recall a basis for the
observer topology. For ξ ∈ ∆+ and a finite subset V0 ⊆ V let M(ξ, V0) consist of all ξ′ ∈ ∆+

for which all geodesics between ξ and ξ′ miss V0\{ξ}. The M(ξ, V0) form an open basis for the
observer topology. An important fact [Bow12, p. 51] is that the ∀ in the definition of M(ξ, V0)
can be replaced with ∃ without changing the topology: the sets M ′(ξ, V0), defined to consist
of all ξ′ for which there exists a geodesic between ξ and ξ′ missing V0\{ξ}, also form an open
neighborhood basis for the observer topology. The M(v, V0) with v ∈ V and V0 ⊂ V finite are a
countable basis for the observer topology, see the discussion preceding [Bow12, Lemma 8.4]. The
observer topology is compact and in particular Hausdorff [Bow12, Lemmas 8.4, 8.6]. A convenient
procedure to produce convergent subsequences in ∆+ is reviewed in Lemma 2.9. The M(v, V0)
with v ∈ V observer topology has a countable basis, As a compact space with a countable basis
for the topology ∆+ is metrizable.

Lemma 2.9. Let (ξn)n∈N be a sequence in ∆+. Let v ∈ V . For each n, let cn be a geodesic from
v to ξn. Then there exists a subsequence I ⊆ N such that ξn → ξ ∈ ∆+ and moreover the cn,
n ∈ I converge as follows:

(a) if ξ ∈ ∂Γ, then the cn, n ∈ I converge pointwise to a geodesic ray from v to ξ;

(b) if ξ ∈ V , then ξ ∈ cn for all n ∈ I and each edge e incident to ξ is the initial edge for the
restriction cn|[ξ,ξn] for at most finitely many n ∈ I.
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Proof. For each k let cn(k) be the kth vertex along cn (starting from v = cn(0)). If dΓ(v, ξn) < k,
then we set cn(k) := ξn.

If Vk := {cn(k) | n ∈ N} is finite for all k then (using a diagonal subsequence) we can pick
a subsequence I ⊆ N such that c(k) := cn(k), n ∈ I is eventually constant. If dΓ(v, c(k)) → ∞
with k →∞, k ∈ N, then the cn, n ∈ I converge pointwise to a geodesic ray c whose endpoint ξ
is also a limit for the ξn. In particular, part (a) holds. If dΓ(v, c(k)) 6→∞, then for all sufficiently
large n ∈ I, k ∈ N, ξn = cn(k) = c(k) = ξ ∈ V must be constant. In this case both ξn and cn,
n ∈ I are eventually constant and part (b) holds.

If not all Vk are finite, then there is k0 such that Vk is finite for all k < k0 and Vk0 is infinite.
Then we find a subsequence I ⊆ N such that ci(k) is constant in i for k < k0 and ci(k0) 6= cj(k0)
for i 6= j ∈ I. Then ξi → ξ := ci(k0 − 1) ∈ V for i ∈ I, i →∞ and again part (b) holds. 2

Addendum 2.10. Suppose that in Lemma 2.9 in addition v is a vertex of finite valency and that
the cn are all Θ-small for some size for angles Θ. Assume also the ξn eventually leave every ball
of finite radius in Γ. Then ξ ∈ ∂Γ and, for a subsequence, the cn converge pointwise to a geodesic
ray from v to ξ.

Proof. Corollary 2.2 implies that the Vk appearing in the proof of Lemma 2.9 are all finite. Since
the ξn leave eventually every ball of finite radius in Γ we have dΓ(v, c(k)) →∞ with k →∞ in
the proof of Lemma 2.9 and the result follows. 2

Large angles
If the angle of a geodesic at some vertex v is large, then this often forces further geodesics to pass
through v. In the next few lemmas we collect some results of this kind. Results of this form are
very common in connection with relatively hyperbolic groups, see for example [MY, Lemma 3].

Lemma 2.11. Let c be a geodesic between ξ− and ξ+. Assume that v is an internal vertex of c and
that �vc is Θ(3)-large. Then any other geodesic c′ between ξ− and ξ+ will also pass through v.

Proof. Consider the geodesic triangle whose sides are c′, c|[v,ξ−] and c|[v,ξ+]. By definition of Θ(3)

we have v ∈ c′. 2

Lemma 2.12. Let ξ, ξ1 and ξ2 ∈ ∆+. Let c1 be a geodesic between ξ and ξ1 and c be a geodesic
between ξ1 and ξ2. Let Θ0 be a size for angles. Let v /∈ c be an internal vertex of c1 such that the
angle �vc1 is Θ0 + 2Θ(3)-large. Then any geodesic c2 between ξ2 and ξ contains v as an internal
vertex and �vc2 is Θ0-large.

Proof. For the first claim, we subdivide c1 at v and obtain a 4-gon whose corners are v, ξ, ξ1

and ξ2. Since v /∈ c, we must have v ∈ c2 for otherwise the angle of c1 at v would need to be
2Θ(3)-small, see Remark 2.5. Let e1, e′1, e2 and e′2 be edges incident to v such that e1 points
towards ξ1 along c1, e′1 points towards ξ along c1, e2 points towards ξ2 along c2, and e′2 points
towards ξ along c2. Thus (e1, e

′
1) = �vc1 and (e2, e

′
2) = �vc2. Lemma 2.6 implies that (e′1, e

′
2) is

Θ(3)-small. Since v /∈ c, we can use the geodesic triangle whose sides are c, c1|[v,ξ1] and c2|[v,ξ2]

to see that (e1, e2) is also Θ(3)-small. Since (e1, e
′
1) is Θ0 + 2Θ(3)-large, this implies that (e2, e

′
2)

is Θ0-large. 2

Lemma 2.13. Let Θ0 be a size for angles. Let ξ, ξ1 and ξ2 ∈ ∆+. Let c be a geodesic between
ξ1 and ξ2, c1 be a geodesic between ξ1 and ξ, c2 be a geodesic between ξ2 and ξ. Suppose that
v is an internal vertex of c, c1 and c2 and that �vc is 2Θ0 + 3Θ(3)-large. Then �vc1 or �vc2 is
Θ0-large.
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Proof. Let e, e′, e1, e
′
1, e2, e

′
2 be edges incident to v such that e points towards ξ1 along c, e′

points towards ξ2 along c, e1 points towards ξ1 along c1, e′1 points towards ξ along c1, e2 points
towards ξ2 along c2, and e′2 points towards ξ along c2. Thus (e, e′) = �vc, (e1, e

′
1) = �vc1, and

(e2, e
′
2) = �vc2. Lemma 2.6 implies that (e′1, e

′
2), (e, e1) and (e′, e2) are Θ(3)-small. By assumption

(e, e′) is 2Θ0 + 3Θ(3)-large. Thus not both (e1, e
′
1) and (e2, e

′
2) can be Θ0-small. 2

Lemma 2.14. Let Θ0 be a size for angles. Then there exists a size X for angles such that the
following holds. Assume there is a Θ0-small geodesic c between ξ1 and ξ2. Let ξ ∈ ∆+\{ξ1, ξ2},
and c1 be a geodesic from ξ1 to ξ. Let v ∈ V be an internal vertex of c1 for which �vc1 is X-large
and v 6= ξ2. Then any geodesic c2 between ξ2 and ξ will also pass through v. Moreover, for any
size for angles Θ we have the following:

(a) if �vc1 is Θ-small, then �vc2 is Θ +X-small;

(b) if �vc1 is Θ +X-large, then �vc2 is Θ-large.

Proof. For the first statement we can take X := Θ0 + 2Θ(3). Lemma 2.12 implies v ∈ c ∪ c2. If
v 6∈ c2 then Lemma 2.12 implies that v is an internal vertex of c and that �vc is Θ0 large. But
c is assumed to be Θ0-small and thus v ∈ c2.

For the second statement we can take X := Θ0 +3Θ(3). Let e1, e
′
1, e2, e

′
2 be the edges incident

to v, such that e1 points towards ξ1 along c1, e′1 points towards ξ along c1, e2 points towards ξ2

along c2, and e′2 points towards ξ along c2. In particular �vc1 = (e1, e
′
1) and �vc2 = (e2, e

′
2). In

order to prove parts (a) and (b) it will suffice to show that (e′1, e
′
2) is Θ(3)-small and that (e1, e2)

is Θ0 + 2Θ(3)-small. The first statement follows from Lemma 2.6. For the second statement we
need to distinguish the cases v /∈ c and v ∈ c, i.e. to distinguish whether only c1 and c2 intersect
in v, or whether all three geodesics intersect in v. If v /∈ c we can use the geodesic triangle whose
sides are c, c1|[v,ξ1] and c2|[v,ξ2] to deduce that (e1, e2) is Θ(3)-small. If v ∈ c, then let e and e′

be the edges on c incident to v, such that e points towards ξ1 along c, and e′ points towards ξ2

along c. Lemma 2.6 implies that the angles (e, e1) and (e′, e2) are Θ(3)-small. Since c is Θ0-small
the angle (e, e′) is Θ0-small. Thus (e1, e2) is indeed Θ0 + 2Θ(3)-small. 2

Lemma 2.15. Let ξ ∈ ∆+ and v ∈ V where ξ 6= v. Then there exist neighborhoods U of v and
U ′ of ξ in ∆+ such that any geodesic starting in U and ending in U ′ will meet v.

Proof. Assume the lemma fails. Then there are ξn, xn ∈ ∆+ with ξn → ξ and xn → v for which
there are geodesics bn from ξn to xn in Γ that do not meet v. Let c be a geodesic from ξ to v, an
be geodesics from v to xn and cn be geodesics from ξn to ξ. Since xn → v, the initial edges of the
an form an infinite set. Lemma 2.1 and Remark 2.5 imply that not all angles at v determined
by c and an can be 2Θ(3)-small. On the other hand we can consider the geodesic 4-gon with
sides c, an, bn and cn. Since the angle at v determined by c and an is eventually not 2Θ(3)-small,
eventually v ∈ bn ∪ cn. Since ξn → ξ, we can arrange that the cn eventually miss v. This implies
that eventually v ∈ bn, contradicting our assumption. 2

Isotropy groups
Lemma 2.16. Let ξ ∈ ∆+, v ∈ V where v 6= ξ. There is a neighborhood U of ξ ∈ ∆+ such that
only finitely many edges in Γ appear as the initial edge of a geodesic from v to some ξ′ ∈ U .

Proof. Assume the lemma fails. Then there are ξn ∈ ∆+, geodesics cn from v to ξn such that
ξn → ξ and the initial edges of the cn are pairwise different. Since the initial edges of the cn are
all different it follows that ξn → v. But v 6= ξ. 2
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Lemma 2.17. Let ξ− 6= ξ+ ∈ ∆+. Then the intersection of the isotropy groups Gξ− ∩ Gξ+ is
virtually cyclic.

Proof. If ξ− ∈ V , then, by Lemma 2.16 there are only finitely many edges that are incident to
ξ− and are part of a geodesic from ξ− to ξ+. The group Gξ− ∩Gξ+ acts on this finite set. Since
the action of G on the set of all edges is proper, this implies that Gξ− ∩Gξ+ is finite. The same
argument applies if ξ+ ∈ V .

It remains to treat the case ξ−, ξ+ ∈ ∂Γ. Let L be the subgraph of Γ spanned by all geodesics
from ξ− to ξ+. By hyperbolicity L is contained in a bounded neighborhood of a fixed geodesic
c between ξ− and ξ+. By [Bow12, Lemma 8.2] the intersection of L with any bounded ball in Γ
around a vertex v from L contains only finitely many vertices, in particular, L is locally finite.

Since the action of G on edges is proper, the action of Gξ− ∩ Gξ+ on L is proper as well.
Fix a vertex v0 ∈ c. Now, if the group Gξ− ∩ Gξ+ is infinite, then it contains elements g, with
dΓ(v0, gv0) arbitrarily large. If dΓ(v0, gv0) � 0, then, since L is contained in a δ-neighborhood
of the geodesic c, it follows that either dΓ(v0, g

2v0) ∼ 0 or dΓ(v0, g
2v0) ∼ 2dΓ(v0, gv0). In both

cases, again since L is contained in a bounded neighborhood of c, we get a good understanding
of the action of g on L. In the first case g will act, up to bounded error, as reflection with respect
to a point of c. In particular, g will exchange ξ− and ξ+. This excludes the first case. In the
second cases g acts, up to bounded error, like a translation along c. It follows that g±nv0 → ξ±,
and, in particular, that the action on L of the cyclic group C generated by g is cocompact.
Moreover, since L is contained in a bounded neighborhood of L and since bounded balls in L
are finite and since the action of G on the edges of L is proper, it follows that C has finite index
in Gξ− ∩Gξ+ . 2

Remark 2.18. Suppose that the group Gξ− ∩Gξ+ appearing in Lemma 2.17 is infinite virtually
cyclic. Then, since Gξ− ∩ Gξ+ fixes the two ends of L, this group is virtually cyclic of type I,
i.e. admits a surjection to an infinite cyclic group.

Sequences of bounded distance
Lemma 2.19. Let (vn)n∈N be a sequence in V that converges in ∆+ to ξ ∈ ∂Γ. If (v′n)n∈N is
another sequence in V such that dΓ(vn, v

′
n) is bounded, then v′n also converges to ξ.

Proof. Assume the lemma fails. As ∆+ is compact there is then a convergent subsequence (v′n)n∈I
with limn∈I v

′
n =: ξ′ 6= ξ. If ξ′ ∈ ∂Γ, then we can use Lemma 2.9 to produce geodesic rays c to ξ

and c′ to ξ′ such that, after passing to a further subsequence, we can assume vi ∈ c and v′i ∈ c′
for all i ∈ I. Then, by hyperbolicity, c and c′ are asymptotic and ξ = ξ′.

It remains to contradict ξ′ ∈ V . If ξ′ ∈ V , then Lemma 2.15 allows us to assume, after passing
to a further subsequence, that for all i ∈ I any geodesic between vi and v′i passes through ξ′. But
then dΓ(ξ′, vi) is bounded and this contradicts ξ ∈ ∂Γ. 2

Addendum 2.20. Retain the assumptions of Lemma 2.19, but assume ξ = v ∈ V . Assume in
addition that there is d > 0 and a size for angles Θ such that there are Θ-small geodesics cn of
length less than or equal to d between vn and v′n. Assume also that the v′n do not converge to v.
Then there is a subsequence I ⊆ N such that both vn and v′n are constant for n ∈ I.

Proof. We can argue as in the proof of Lemma 2.19 and assume that ξ′ = limn v
′
n exists in

∆+ with ξ′ 6= v. Using Lemma 2.15 as in the last paragraph of proof of Lemma 2.19, we can
assume that the cn, n ∈ I all pass through v. Lemma 2.16 allows us, after passing to a further
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subsequence, to assume that the initial edge of the restriction cn|[v,v′n] does not depend on n ∈ I.
Since the cn are Θ-small, it follows from Lemma 2.1 that the initial edges of the cn|[v,vn], n ∈ I,
can only vary over a finite set of edges. But now, as vn → v, we must have vn = v for all
sufficiently large n ∈ I. Since the cn are Θ-small and of bounded length, Corollary 2.2 implies
that the v′n, n ∈ I also vary only over a finite set. 2

Coarse convexity
Lemma 2.21. Let ξ ∈∆+ and U be a neighborhood of ξ ∈∆+. Then there exists a neighborhood
U ′ of ξ with the following property. If v−, v+ ∈ U ′ and v belongs to a geodesic between v− and
v+ then v ∈ U .

Proof. Assume the lemma fails. Then we find sequence of vertices (v−)n, (v+)n, vn such that
(v−)n → ξ, (v+)n → ξ, vn /∈ U and vn belongs to a geodesic cn between (v−)n and (v+)n. If
ξ ∈ V , then we apply Lemma 2.15 to cn|[vn,(v−)n] and to cn|[vn,(v+)n]. Lemma 2.15 implies that
both restrictions eventually contain ξ, which can only happen if vn = ξ. Since this contradicts
vn /∈ U we have ξ ∈ ∂Γ. Hyperbolicity implies that there are v′n such that v′n belongs to a geodesic
from (v−)n to ξ or to a geodesic from (v+)n to ξ and such that dΓ(vn, v

′
n) is uniformly bounded.

The first property ensures v′n → ξ since (v−)n → ξ and (v+)n → ξ. The second property allows
us to apply Lemma 2.19 and deduce that also vn → ξ. This contradicts again vn /∈ U . 2

3. The coarse Θ-flow space for relatively hyperbolic groups

Throughout this section we use the notations and assumptions from § 2. In particular, G is a
group with a simplicial cocompact action on a fine and hyperbolic graph Γ. The stabilizers of
edges under this action are finite. We fix again a hyperbolicity constant δ > 0 for Γ. We will use
the family P consisting of all subgroups H 6 G that are virtually cyclic or fix a vertex v ∈ V .
The space ∆ is the union ∂Γ∪V∞ and equipped with the observer topology. We also fix a proper
left invariant metric dG on G.

Theorem 3.1. The action of G on ∆ is finitely P-amenable.

Proof. This is a consequence of Propositions 3.2 and 3.17. 2

Covering G×Θ0 ∂Γ
It will be convenient to replace Γ with its first barycentric subdivision Γ′. The set of vertices in
the barycentric subdivision corresponding to the edges of the original graph will be denoted VE .
Thus the set of vertices of Γ′ is the disjoint union V ∪ VE , where V is the set of vertices of Γ.
The vertices in VE are all of valence 2. We will give edges in Γ′ the length 1/2. Then the path
length metric of Γ and Γ′ coincide. We will in this subsection use δ′ := δ+ 1. This has the effect
that we can use vertices from VE when we apply hyperbolicity: for any geodesic triangle and
any vertex v from VE on one side of the triangle there is a vertex w from VE on one of the two
other sides with dΓ(v, w) 6 δ′. Moreover, Γ′ is still fine and the considerations from § 2 and the
appendix all apply to Γ′ as well. In particular, we can define ∆′ and ∆′+. Since all vertices in VE
are of valence 2 we have ∆′ = ∆ and ∆′+ = ∆+ ∪ VE . Of course, ∂Γ = ∂Γ′. For v ∈ V there is a
canonical bijection between angles at v with respect to Γ and angles with respect to Γ′. In this
subsection sizes for angles will only be considered at vertices from V . (Since there is only one
non-trivial angle at any vertex v ∈ VE , angles at v ∈ VE are not very interesting.)
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We fix a base point v0 ∈ VE . For a size for angles Θ we write G ×Θ ∂Γ for the subset of
G× ∂Γ consisting of all pairs (g, ξ) ∈ G× ∂Γ for which there exists a Θ-small geodesic from gv0

to ξ. The main result of this subsection produces partial covers of G×∆.

Proposition 3.2. There is a number N such that for any α > 0 and any size for angles Θ0

there exists a G-invariant collection U of VCyc-subsets of G×∆ such that:

(a) the order of U is at most N ;

(b) for every (g, ξ) ∈ G×Θ0 ∂Γ there is U ∈ U with Bα(g)× {ξ} ⊆ U .

To prove Proposition 3.2 we will construct a coarse flow space and use the long and thin
covers from Theorem 1.1. For a size for angles Θ, we define the metric dΘ on VE as follows. For
v, v′ ∈ VE we set

dΘ(v, v′) := min
n∑
i=1

dΓ(wi−1, wi)

where the minimum is taken over all finite sequences v = w0, w1, . . . , wn = v′ of vertices from VE
such that there are Θ-small geodesics between wi−1 and wi for all i. If there is no such sequence,
then dΘ(v, v′) =∞. If there exists a Θ-small geodesic between v and v′, then dΘ(v, v′) = dΓ(v, v′),
but in general dΘ(v, v′) > dΓ(v, v′).

Lemma 3.3. The metric dΘ on VE is proper.

Proof. If dΘ(v, v′) 6 n, then there is a finite sequence v = w0, w1, . . . , wn = v′ in VE with
dΘ(wi−1, wi) 6 1 for all i. Therefore, it suffices to check that balls of radius 1 are finite. This is
a consequence of Lemma 2.1. 2

Definition 3.4. Set Z := (∆′+)2. Let Θ be a size for angles. The coarse Θ-flow space CF (Θ) for
Γ is the subset of VE × Z consisting of all triples (v, ξ−, ξ+) for which there exist v′ ∈ VE and a
Θ-small geodesic c between ξ− and ξ+ such that v′ ∈ c and dΘ(v, v′) 6 δ′. Moreover, we require
ξ−, ξ+ ∈ VE ∪ ∂Γ.

Example 3.5. Suppose that Γ is a locally finite tree. The flow space FS from [BL12b] for Γ
consists of all generalized (parametrized) geodesics c : R → Γ. If we use δ′ = 0 and all angles
for Θ, then there is a natural embedding CF (Θ) → FS that sends (v, ξ−, ξ+) to the generalized
geodesic c : R → Γ with c(−∞) = ξ−, c(0) = v and c(+∞) = ξ+.

Lemma 3.6. Let Θ be a size for angles with 2Θ(3) ⊆ Θ. Then we have the following:

(a) CF (Θ) ⊆ VE × Z is closed;

(b) dim CF (Θ) 6 dimZ <∞;

(c) for (ξ−, ξ+) ∈ Z, Vξ−,ξ+ := {v ∈ VE | (v, ξ−, ξ+) ∈ CF (Θ)} has the (D,R)-doubling property
with respect to dΘ, where D and R are independent of (ξ−, ξ+) and Θ;

(d) for (v, ξ−, ξ+) the isotropy group Gξ−,ξ+ = {g ∈ G | gξ− = ξ−, gξ+ = ξ+} is virtually cyclic.

Proof. (a) It suffices to show that Zv := {(ξ−, ξ+) | (v, ξ−, ξ+) ∈ CF (Θ)} is closed for each v ∈ VE .
Let ((ξ−)n, (ξ+)n) ∈ Zv with ((ξ−)n, (ξ+)n) → (ξ−, ξ+) in Z. We need to show (ξ−, ξ+) ∈ Zv. Since
((ξ−)n, (ξ+)n) ∈ Zv there are Θ-small geodesics cn from (ξ−)n to (ξ+)n and vertices vn ∈ cn ∩VE
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with dΘ(vn, v) 6 δ′. As dΘ is proper by Lemma 3.3 we can pass to a subsequence and assume that
vn = w is constant. Moreover, we can apply Lemma 2.9 to the cn|[w,(ξ−)n] and assume that either
the cn|[w,(ξ−)n] converge pointwise to a geodesic ray from w to ξ− ∈ ∂Γ, or that ξ− ∈ cn|[w,(ξ−)n]

for all n. In the second case, it also follows that eventually (ξ−)n = ξ−, as otherwise (ξ−)n → ξ−
would imply that the �ξ−cn are eventually Θ-large by Lemma 2.1. Therefore, ξ− ∈ VE ∪ ∂Γ and
the cn|[w,(ξ−)n] converge pointwise to a geodesic c− from w to ξ−. Similar, ξ+ ∈ VE ∪ ∂Γ and we
can assume that the cn|[w,(ξ+)n] converge pointwise to a geodesic c+ from w to ξ+. Now c− and
c+ combine to a geodesic between ξ− and ξ+ that passes through w. Thus (ξ−, ξ+) ∈ Zv.

(b) Theorem A.1 asserts that ∆′+ is finite dimensional. Since VE is discrete and CF (Θ) is
closed in VE × Z it follows that dim CF (Θ) 6 dimZ = 2 dim ∆′+ <∞.

(c) If Vξ−,ξ+ is non-empty, then there is a Θ-small geodesic c between ξ− and ξ+. By
hyperbolicity, any vertex v′ ∈ VE on any other Θ-small geodesic c′ from ξ− to ξ+ will be within
distance δ′ of some vertex v ∈ VE ∩ c. If c∪ c′ does not contain a geodesic between v and v′, then
Lemma 2.7 provides us with a Θ-small geodesic between v and v′. If c ∪ c′ contains a geodesic
c′′ between v and v′, then we can assume that c′′ changes only once from c to c′, at some vertex
w ∈ V . Then c′′ may fail to be Θ-small only at this vertex w. In this case we may assume that
v is incident to w. Let now ṽ ∈ VE be the unique vertex incident to w on c′\c′′. Then c′|[v′,ṽ]

is a Θ-small geodesic of length at most δ′ and thus dΘ(v′, ṽ) 6 δ′. We can apply Lemma 2.6 to
the bi-gone spanned by c|[w,ξ±] and c′|[w,ξ±] to deduce that the angle at w spanned by the edges

(w, ṽ) and (w, v) is Θ(3)-small. Thus dΘ(v, ṽ) = 1 and dΘ(v, v′) 6 δ′ + 1.
Thus any v ∈ Vξ−,ξ+ will be within distance 2δ′ + 1 of a vertex from VE ∩ c with respect to

dΘ. Therefore, any α-separated subset S in a 2α-ball in Vξ−,ξ+ can be mapped injectively to an
α − 4δ′ − 2-separated subset S′ of an 2α + 2δ′ + 1-ball in VE ∩ c. For sufficiently large α (for
example, α > R := 24δ′ + 12) any such set S′ contains at most five elements, since VE ∩ c is
isometric to a subset of Z.

(d) If ξ− ∈ VE or ξ+ ∈ VE , then Gξ−,ξ+ is finite since the action of G on VE is proper. If
ξ−, ξ+ ∈ ∂Γ, then, by definition of CF (Θ), ξ− 6= ξ+. Lemma 2.17 implies that then Gξ−,ξ+ is
virtually cyclic. 2

Proposition 3.7. There is a number N ′ such that for any α′ > 0 and any size for angles Θ
containing 2Θ(3) there exists a VCyc-cover W of CF (Θ) such that:

(a) dimW 6 N ′;

(b) for any (v, ξ−, ξ+) ∈ CF (Θ) there is W ∈ W such that BΘ
α′(v)× {(ξ−, ξ+)} ∩ CF (Θ) ⊆ W .

Here BΘ
α′(v) is the α′-ball in VE with respect to dΘ.

Proof. Let Θ be a size for angles. Lemmas 3.3 and 3.6 allow us to apply Theorem 1.1. We obtain
a number N ′ such that for any α′ > 0 there exists a VCyc-coverW of CF (Θ) satisfying parts (a)
and (b).

The number N ′ only depends on dim CF (Θ) and the doubling constant. For these numbers
Lemma 3.6 provides bounds that do not depend on Θ. Therefore N ′ does not depend on Θ. 2

Lemma 3.8. Let α > 0 and Θ0 be a size for angles. Then there is a size for angles Θ containing
Θ0 + 2Θ(3) with the following property. If c is a Θ0-small geodesic from gv0 to ξ ∈ ∂Γ and g′ ∈ G
with dG(g, g′) 6 α, then we have the following:

(a) any geodesic c′ from g′v0 to ξ is Θ-small;

(b) any geodesic c′′ starting on c and ending on a geodesic c′ from g′v0 to ξ is Θ-small.
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Proof. Pick Θ1 such that for any h ∈ Bα(e) there exists a Θ1-small geodesic from hv0 to v0.
Thus, if g′ ∈ G with dG(g, g′) 6 α then there is a Θ1-small geodesic between gv0 and g′v0. Let
X be the size for angles from Lemma 2.14. In particular, for any size for angles Y , and any
geodesic triangle in Γ where the first side is Θ0-small and the second side is Y -small, the third
side will be Y +X-small. Then part (a) holds whenever Θ1 +X ⊆ Θ and part (b) holds whenever
Θ1 + 2X ⊆ Θ. 2

Definition 3.9. Let W ⊆ CF (Θ) and τ ∈ N. We define

ι−τW ⊆ G×Θ ∂Γ

as the subspace consisting of pairs (g, ξ) ∈G×Θ∂Γ with the following property. For every Θ-small
geodesic c from gv0 to ξ we have (vc, gv0, ξ) ∈ W , where vc is the unique vertex in VE ∩ c with
dΓ(gv0, vc) = τ .

Lemma 3.10. If W is open in CF (Θ), then ι−τW is open in G×Θ ∂Γ.

Proof. Let (g, ξ) ∈ ι−τW . Assume that (g, ξ) does not belong to the interior of ι−τW in G×Θ∂Γ.
Then there are ξn ∈ ∂Γ with ξn → ξ and Θ-small geodesics cn from gv0 to ξn such that for the
vertices vn ∈ VE ∩ cn with dΓ(gv0, vn) = τ we have (vn, gv0, ξn) 6∈ W . Using Lemma 2.9(a) and
passing to a subsequence we may assume that the cn converge pointwise to a Θ-small geodesic
c from gv0 to ξ. Then eventually vn = vc is constant and belongs to c. Since (g, ξ) ∈ W , it
follows that (vc, gv0, ξ) ∈ W . Since W is open, eventually (vn, gv0, ξn) ∈ W , contradicting our
assumption. 2

Proof of Proposition 3.2. Let Θ0 and α > 0 be given. Let Θ be the size for angles
from Lemma 3.8. Since Bα(e) ⊆ G is finite, we can find a number α′ > 0 such that
dΓ(gv0, ghv0) + 2δ′ 6 α′ for all g ∈ G and h ∈ Bα(e). Let W be the cover of CF (Θ) from
Proposition 3.7. For τ ∈ N let ι−τW := {ι−τW | W ∈ W}. By Lemma 3.10, the members
of ι−τW are open subsets of G ×Θ ∂Γ. Since ι−τ is a G-equivariant operation and W is
G-invariant and consist of VCyc-subset, the same is true for ι−τW. The order of W is bounded
by Proposition 3.7(a). Since ι−τ commutes with intersection, the order of ι−τW is bounded by
the order of W.

We claim that there exists τ ∈ N such that ι−τW is α-wide in the G-direction, i.e. we claim
that there is τ such that

(3.11) for any (g, ξ) ∈ G×Θ0 ∂Γ there is W ∈ W with Bα(g)× {ξ} ⊆ ι−τW .

Suppose there is no such τ . Then there is a sequence of pairs (gτ , ξτ )τ∈N in G ×Θ0 ∂Γ such
that

(3.12) for all W ∈ W and all τ ∈ N we have Bα(gτ )× {ξτ} 6⊆ ι−τW .

By definition of G×Θ0 ∂Γ there are Θ0-small geodesics cτ from gτv0 to ξτ in Γ. Let vτ be the
unique vertex on cτ with dΓ(gτv0, vτ ) = τ . Since the action of G on V is cofinite, and since the
ι−τW are G-invariant we may, after passing to a subsequence (gτ , ξτ )τ∈T , assume that vτ = v is
constant. Using the compactness of ∆′+, we may, after passing to a further subsequence, assume
that ξ− := lim gτv0 and ξ+ := lim ξτ exist in ∆′+. Addendum 2.10 implies ξ−, ξ+ ∈ ∂Γ and allows
us to assume that the restrictions cτ |[v,gτv0] and cτ |[v,ξτ ] converge pointwise to geodesic rays c−
from v to ξ− and c+ from v to ξ+. In particular, c− can be combined with c+ to obtain a geodesic
c between ξ− and ξ+. This geodesic c is Θ0-small, since the cτ are Θ0-small.
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By Proposition 3.7(b) there is W ∈ W such that BΘ
α′(v)× {(ξ−, ξ+)} ∩ CF (Θ) ⊆W . Let V ′

be the set of v′ ∈ BΘ
α′(v) with dΘ(v′, w) 6 δ′ for some w ∈ c. Then (v′, ξ−, ξ+) ∈ CF (Θ) for all

v′ ∈ V ′. Since dΘ is proper by Lemma 3.3, the set V ′ is finite. Therefore we find neighborhoods
U− of ξ− and U+ of ξ+, such that V ′ × U− × U+ ∩ CF (Θ) ⊆ W . Elements of Bα(gτ ) can be
written as gτh with h ∈ Bα(e). For each h, limτ gτhv0 = limτ gτv0 = ξ− by Lemma 2.19. Since
Bα(e) is finite we find τ0 such that gτ0hv0 ∈ U− for all h ∈ Bα(e). Moreover, we can arrange for
τ0 to satisfy τ0 > α′, ξτ0 ∈ U+, and cτ0 ∩Bα′(v) = c ∩Bα′(v). We claim that

(3.13) Bα(gτ0)× {ξτ0} ⊆ ι−τ0W .

Let h ∈ Bα(e). By Lemma 3.8(a) there is a Θ-small geodesic c′ from gτ0hv0 to ξτ0 . Let
v′ ∈ VE ∩ c′ be the vertex with dΓ(gτ0hv0, v

′) = τ0. We need to show that (v′, gτ0hv0, ξτ0) belongs
to W . To this end it suffices to show v′ ∈ V ′, where V ′ is as defined earlier. Now we use
hyperbolicity to find w ∈ VE ∩ cτ0 with dΓ(w, v′) 6 δ′. Lemma 3.8(b) implies that there is a
Θ-small geodesic between w and v′. Therefore dΘ(w, v′) 6 δ′. Since dΓ(gτ0v0, gτ0hv0) 6 α′ − 2δ′

and dΓ(w, v′) 6 δ′ we have dΓ(gτ0hv0, v
′)−(α′−δ′) 6 dΓ(gτ0v0, w) 6 dΓ(gτ0hv0, v

′)+(α′−δ′). Since
dΓ(gτ0v0, v) = dΓ(gτ0hv0, v

′) = τ0 we have dΓ(v, w) 6 α′−δ′. Now cτ0∩Bα′(v) = c∩Bα′(v) implies
w ∈ c. Since c is Θ0-small and therefore Θ-small, and since v, w ∈ c, we have dΘ(w, v) 6 α′ − δ′.
Therefore dΘ(v′, v) 6 α′ and v′ ∈ BΘ

α′(v). Altogether we have shown v′ ∈ V ′ and therefore (3.13).
This contradicts (3.12) and finishes the proof of (3.11).

It remains to extend ι−τW to a G-invariant collection of VCyc-subset of G×∆ of the same
order. Since ∆ is metrizable, there is a G-invariant metric on G×∆. Thus the needed extension
exists by Lemma B.2. 2

Covering G×∆\G×Θ ∂Γ
Definition 3.14. Let v ∈ V and let Θ be a size for angles in Γ. Define

V+(v,Θ) ⊆ G×∆

as the set of all (g, ξ) with the following properties:

(a) all geodesics from gv0 to v are Θ-small;

(b) if ξ 6= v, then there is a geodesic c in Γ from gv0 to ξ such that �vc is Θ-large. (In particular,
we require v ∈ c.)

Let V (v,Θ) be the interior of V+(v,Θ).

Lemma 3.15. Assume that Θ is a size for angles containing Θ(3).

(a) For v ∈ V we have V+(v,Θ) ∩G× V∞ ⊆ V (v,Θ).

(b) For v 6= v′ ∈ V we have V (v,Θ) ∩ V (v′,Θ) = ∅.

(c) If gV (v,Θ) ∩ V (v,Θ) 6= ∅ with g ∈ G, v ∈ V , then gv = v and gV (v,Θ) = V (v,Θ).

Proof. (a) Let (g, w) ∈ V+(v,Θ) with w ∈ V∞. Let c be a geodesic from gv0 to w. We proceed by
contradiction and assume that (g, w) does not belong to the interior of V+(v,Θ). Then there is
a sequence ξn in ∆ with ξn → w and (g, ξn) /∈ V+(v,Θ). Let cn be a geodesic from gv0 to ξn. By
Lemma 2.15 the cn will eventually pass through w. In this case we can change cn and arrange for
cn|[gv0,w] = c. If w 6= v then these cn prove that eventually (g, ξn) ∈ V+(v,Θ) which contradicts
our assumption. If w = v, then it remains to show that �vcn will eventually be Θ-large. In this
case the initial edges of the restriction cn|[v,ξn] will form an infinite set since ξn → v. This implies,
by Lemma 2.1, that �vcn at v will eventually be Θ-large.
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(b) Assume there is (g, ξ) ∈ V (v,Θ) ∩ V (v′,Θ). Let c and c′ be geodesics from gv0 to ξ such
that �vc is Θ-large (if v 6= ξ) and �v′c′ is Θ-large (if v′ 6= ξ). Since Θ(3) ⊆ Θ, Lemma 2.11 implies
v ∈ c′ and v′ ∈ c. Assume v 6= ξ. Without loss of generality, we may assume that v is closer to
gv0 than v′. Then v is an internal vertex of c|[gv0,v′]. Since �vc is Θ-large, c|[gv0,v′] is not Θ-small.
This contradicts (gv0, ξ) ∈ V (v′,Θ).

(c) Clearly, gV (v,Θ) = V (gv,Θ). Thus part (b) shows that gV (v,Θ) ∩ V (v,Θ) 6= ∅ implies
gv = v. 2

Lemma 3.16. Let Θ be a size for angles. Let v ∈ V , g ∈ G, ξ ∈ ∆. Assume that any geodesic
from gv0 to v is Θ-small. Assume that there is a geodesic c from gv0 to ξ that passes through v
and satisfies one of the following two conditions:

(a) �vc is Θ + 2Θ(3)-large;

(b) �vc is Θ-large and there is an interior vertex w of c with dΓ(gv0, v) < dΓ(gv0, w) such that
�wc is 2Θ(3)-large.

Then (g, ξ) ∈ V (v,Θ).

Proof. If condition (a) holds, then set A := {v}; if condition (b) holds, then set A := {w}. Recall
that M ′(ξ, A) consists of all ξ′ for which there exists a geodesic between ξ and ξ′ that misses
A\{ξ}. Since M ′(ξ, A) is part of a neighborhood basis for the observer topology, it suffices to
show that (g, ξ′) ∈ V+(v,Θ) for all ξ′ ∈M ′(ξ, A). Let ξ′ ∈M ′(ξ, A). Let c′′ be a geodesic between
ξ and ξ′ that misses A. Let c′ be a geodesic between gv0 and ξ′. We apply Lemma 2.12 to the
geodesic triangle with sides c, c′ and c′′.

If condition (a) holds, then Lemma 2.12 implies that c′ passes through v and that �vc′ is
Θ-large. Thus in this case (g, ξ′) ∈ V+(v,Θ).

If condition (b) holds, then Lemma 2.12 implies w ∈ c′. Then we can replace c′ and assume
c′|[gv0,w] = c|[gv0,w]. In particular �vc′ = �vc is Θ-large. Thus in this case (g, ξ′) ∈ V+(v,Θ) as
well. 2

Proposition 3.17. Let α > 0. There is a size for angles Θ and a G-invariant collection V of
P-subsets of G×∆ such that the following hold.

(a) The order of V is at most 2.

(b) For every (g, ξ) ∈ G×∆ at least one of the following two statements holds:

– there is V ∈ V such that Bα(g)× {ξ} ⊆ V ;

– ξ ∈ ∂Γ and there is a Θ-small geodesic from gv0 to ξ.

Proof. Since Γ is fine there are only finitely many geodesics between any two vertices. In
particular, we can pick a size for angles Θ0 such that for all h, h′, h′′ ∈ Bα(e) any geodesic
starting at hv0 and ending in some vertex on another geodesic between vertices h′v0 and h′′v0 is
Θ0-small. Let X be the size for angles appearing in Lemma 2.14. After increasing X, if necessary,
we may assume Θ0 + 2Θ(3) ⊆ X. Let V1 := {V (v, 2X) | v ∈ V }, V2 := {V (v, 5X) | v ∈ V } and
V3 := {V (v, 6X) | v ∈ V }. All three collections are G-invariant. Lemma 3.15 implies that all
three collections are of order 0, and consist of P-sets. Thus V := V1 ∪ V2 ∪ V3 is a G-invariant
collection of P-sets and satisfies part (a).

It remains to check that V also satisfies part (b) where we use Θ := 6X. Since V is G-invariant
it suffices to consider (e, ξ) ∈ G×∆.
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Let C be the set of all geodesics from some hv0, h ∈ Bα(e) to ξ. If all c ∈ C are 6X-small, then
part (b) holds. Indeed, if ξ ∈ V , then, using Lemma 3.15(a), we obtain Bα(e)× {ξ} ⊆ V (ξ, 6X)
and part (b) holds. If ξ ∈ ∂Γ, then part (b) holds as well, simply since C contains a Θ-small
geodesic from v0 to ξ. Therefore we may assume that not all c ∈ C are 6X-small.

Let c0 be a geodesic from v0 to ξ. Let W be the set of all internal vertices w of c0 for which
�wc0 is X-large. Lemma 2.14 implies for any c ∈ C and any size for angles Θ′ that the following
holds:

(3.18) c will pass through any w ∈W ;

(3.19) if v is an internal vertex of c, where v /∈W , then the angle of c at v is 2X-small;

(3.20) if, for w ∈W , the angle of c0 at w is Θ′ +X-large, then the angle of c at w is Θ′-large;
if, for w ∈W , the angle of c0 at w is 4X-small, then the angle of c at w is 5X-small.

Since not all c ∈ C are 6X-small, we conclude from (3.20) that W 6= ∅. Among all w ∈W we
let w0 be the one closest to v0. Then (3.18) implies that w0 is also closest to all hv0, h ∈ Bα(e). In
particular, any c will, on its way to ξ, meet w0 before meeting any of the other w. Using (3.19) this
implies that any geodesic starting in some hv0, h ∈ Bα(e) and ending in w0 will be 2X-small.
If �w0

c0 is 4X-large, then by (3.20) for any c ∈ C the angle of c at w0 is 3X-large. Using
Lemma 3.16(a) we see that in this case, Bα(e)× {ξ} ⊆ V (w0, 2X) and part (b) holds.

Therefore we may assume that �w0
c0 is 4X-small. Then (3.20) implies that for all c ∈ C the

angle at w0 is 5X-small. Since not all c ∈ C are Θ-small, there are w ∈ W and c ∈ C such that
the angle of c at w is 5X-large. Among all such pairs we pick (w1, c1) such that w1 is closest
to v0. As before (3.18) implies that w1 is also closest to all hv0, h ∈ Bα(e). Using (3.19) this
implies that all geodesics starting in some hv0, h ∈ Bα(e) and ending at w1 are 5X-small. Since
w0 6= w1 we can use (3.18) again, to see that for any h ∈ Bα(e) there is a geodesic from hv0 to
ξ that agrees with c1 between w0 and ξ. Therefore, for any h ∈ Bα(e) there is a geodesic from
hv0 to ξ for which the angle at w1 is 5X-large. If ξ ∈ V , then using Lemma 3.15(a), we deduce
Bα(e)× {ξ} ⊆ V (w1, 5X) and part (b) holds.

If ξ ∈ ∂Γ we need to distinguish two further cases. If the angle of c1 at w1 is even Θ = 6X-large,
then Lemma 3.16(a) implies Bα(e) × {ξ} ⊆ V (w1, 5X) and part (b) holds. Otherwise, we use
again that not all c ∈ C are 6X-small. Therefore, there is w2 ∈W and c2 ∈ C such that the angle
of c2 at w2 is 6X-large. Since w1 was chosen closest to v0, w2 will be further from v0 than w1.
Now using (3.20) twice we see that for any geodesic c ∈ C the angle at w2 is 4X-large. Since we
already found geodesics for any h ∈ Bα(e) from hv0 to ξ whose angle at w1 is 5X-large, we can
now use Lemma 3.16(b) to conclude Bα(e)× {ξ} ⊆ V (w1, 5X). Therefore part (b) holds. 2

Covering G× Pd,Θ

Associated to Γ there is, for given d > 0 and a given size for angles Θ, a finite-dimensional
simplicial complex Pd,Θ, the relative Rips complex of Γ. The construction of Pd,Θ is reviewed in
Definition A.3. The union Pd,Θ := Pd,Θ ∪ ∂Γ carries a compact topology, see Lemma A.11(b).
Theorem 3.1 has the following straight forward extension from ∆ to Pd,Θ.

Corollary 3.21. For any d > 0 and any size for angles Θ the action of G on Pd,Θ is finitely
P-amenable.

Proof. Given α > 0 we need to construct a P-cover of G× Pd,Θ as in Definition 0.1.
The action of G on Pd,Θ is simplicial and the dimension of Pd,Θ is finite by Lemma A.4. In

particular, Remark 0.3 applies and we find a P-cover W of G× Pd,Θ of dimension N ′ such that
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(3.22) dimW is bounded by the dimension of Pd,Θ,

(3.23) for any (g, x) ∈ G× Pd,Θ there is W ∈ W such that G× {x} ⊆W .

The compact topology on Pd,θ is such that Pd,Θ is not necessarily open in Pd,θ, but Pd,Θ\V∞
is open in Pd,θ. Therefore, the collection {W\G × V∞ | W ∈ W} consists of open P-subsets,
satisfies (3.22) and satisfies (3.23) for all (g, x) ∈ G× (Pd,Θ\V∞).

Given α > 0, Theorem 3.1 provides a P-cover V for G×∆ such that

(3.24) dimV is bounded by a number independent of α,

(3.25) for any (g, ξ) ∈ G×∆ there is V ∈ V such that Bα(g){ξ} ⊆ V .

Since Pd,Θ is compact with a countable basis for the topology it is also metrizable. Therefore
we find a G-invariant metric dG×Pd,Θ on G × Pd,Θ. Using Lemma B.2 we can extend V to

G-invariant collection V+ of P-subset of G×Pd,Θ that still satisfies (3.24) and (3.25). Altogether
{W\G× V∞ |W ∈ W} ∪ V+ is the desired cover of G× Pd,Θ. 2

4. The Farrell–Jones conjecture for relatively hyperbolic groups

Let G be a group and A be an additive category with a strict G-action and a strict direct sum.
In [BL12a, § 4.1] such categories are called additive G-categories. Similar to (twisted) group
rings there is an additive category

∫
GA whose morphisms are formal linear combinations of

group elements with morphisms from A as coefficients.4 Given a family F of subgroups of G
there is the assembly map

HG
∗ (EFG; KA) → K∗

(∫
G
A
)
. (4.1)

The K-theoretic Farrell–Jones conjecture (with coefficients) asserts that this map is an
isomorphism for the family F := VCyc of virtually cyclic subgroups of G [BR07, Conjecture 3.2].
The original formulation of the conjecture in [FJ93] can be recovered as a special case of (4.1)
by using for A the category of finitely generated free Z-modules; then

∫
GA is equivalent to

the category of finitely generated free Z[G]-modules. We will say that G satisfies the K-theoretic
Farrell–Jones conjecture relative to F if (4.1) is an isomorphism for all additive G-categories A. A
consequence of the transitivity principle (see [FJ93, Theorem A.10] and [BFL14, Theorem 2.10])
is the following. Suppose that G satisfies the K-theoretic Farrell–Jones conjecture relative to F
and that every group F ∈ F satisfies the K-theoretic Farrell–Jones conjecture. Then G satisfies
the K-theoretic Farrell–Jones conjecture.

If A is in addition equipped with a strict involution, see for example [BL12a, § 4.1], then∫
GA inherits an involution and there is the L-theoretic assembly map

HG
∗ (EFG; L−∞A ) → L

〈−∞〉
∗

(∫
G
A
)
. (4.2)

The L-theoretic Farrell–Jones conjecture (with coefficients) asserts that this map is an
isomorphism for the family of virtually cyclic subgroups VCyc. Everything said for K-theory
above has an L-theory counterpart. In particular, we will say that G satisfies the L-theoretic
Farrell–Jones conjecture relative to F if (4.2) is an isomorphism for all additive G-categories A
with involution.

4 In [BR07, § 2] this category is denoted A ∗G G/G.
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Next we give a minor reformulation of conditions from [BL12a, BLR08b] that implies the
Farrell–Jones conjecture relative to F . For a family F of groups we write F2 for the family of
groups that contain a group from F as a subgroup of index less than or equal to 2.

Theorem 4.3. Let G be a group that admits a finitely F-amenable action on a compact
contractible finite-dimensional ANR X. Then the following hold:

(a) G satisfies the K-theoretic Farrell–Jones conjecture relative to F ;

(b) G satisfies the L-theoretic Farrell–Jones conjecture relative to F2.

Proof. We start by recalling [BL12a, Definition 1.5] where a metric space Y is called controlled
N -dominated if for every ε > 0 there is a finite CW -complex K of dimension at most N , maps
i : Y → K, p : K → Y and a homotopy H : Y × [0, 1] → Y between p ◦ i and idY such that the
tracks {H(y, t) | t ∈ [0, 1]} are of diameter at most ε. Compact finite-dimensional ANRs have
this property; this follows for example from [Bor67, Theorem 10.1, p. 122].

(a) In [BLR08b, Theorem 1.1] the K-theoretic Farrell–Jones conjecture relative to F is proven
under very similar conditions. In this reference also an action of G on a compact metrizable space
X is required. Assumption 1.4 in this reference is what we defined as finitely F-amenability
here. In this reference it is further assumed that X contains a simplicial complex X whose
complement is a Z-set in X. This further assumption is only used in the proof of [BLR08b,
Lemma 6.9]. It is not hard to see that this Lemma also holds for controlled N -dominated metric
spaces, compare [BL12a, Lemma 8.4]. Therefore, the Z-set assumption can be safely replaced
with the assumption that X is a compact finite-dimensional ANR. Alternatively, part (a) can
be deduced from [Weg12, Theorem 1.1]. The conditions given in this reference are more involved
(using strong homotopy actions) and designed for more general situations, but can be checked
to hold in our case.

(b) This follows from [BL12a, Theorem 1.1(ii)]. The assumption in this reference is that G
is transfer reducible over F [BL12a, Definition 1.8]. To check that this assumption is satisfied in
our situation we use the action of G on X. The covers appearing in [BL12a, Definition 1.8] exist
because this action is finitely F-amenable. 2

Theorem 4.4. Let P be a family of subgroups of G that contains all virtually cyclic subgroups.
Suppose that G is relatively hyperbolic to subgroups P1, . . . , Pn ∈ P. Then the following hold:

(a) G satisfies the K-theoretic Farrell–Jones conjecture relative to P;

(b) G satisfies the L-theoretic Farrell–Jones conjecture relative to P2.

Proof. Let Pd,Θ be the space from Definition A.9. By Corollary 3.21 this space carries a finitely
P-amenable action. It is a finite-dimensional compact contractible ANR for suitable d,Θ by
Lemma A.11 and Theorem A.16. Now use Theorem 4.3. 2

Remark 4.5. In Theorem 4.4 it suffices to assume that P contains all virtually cyclic subgroups
of type I, instead of all virtually cyclic subgroup. The reason for this is that no virtually cyclic
subgroups of type II appeared in the previous Sections, see Remark 2.18.

For L-theory this does not strengthen Theorem 4.4, since all virtually cyclic groups contain
a virtually cyclic group of type I as a subgroup of index at most 2.

For K-theory this slightly strengthens Theorem 4.4. However, it is known that such a
strengthening is always possible: in the K-theoretic Farrell–Jones conjecture only virtually cyclic
subgroups of type I are needed [DQR11].
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Corollary 4.6. Let G be relatively hyperbolic to subgroups P1, . . . , Pn. Then the following
hold:

(a) G satisfies the K-theoretic Farrell–Jones conjecture, provided that the Pi satisfies the K-
theoretic Farrell–Jones conjecture;

(b) G satisfies the L-theoretic Farrell–Jones conjecture, provided that all subgroups of G that
contain one of the Pi as a subgroup of index at most 2 satisfy the L-theoretic Farrell–Jones
conjecture.

Proof. This follows from Theorem 4.4 and the transitivity principle reviewed earlier in this
section. 2

Remark 4.7. Many classes of groups that are known to satisfy the Farrell–Jones conjecture are
closed under finite index overgroups, but there is no general result to this effect. A good formalism
to circumvent this difficulty is the Farrell–Jones conjecture with wreath products considered for
example in [BLRR14, FR00].

A group G is said to satisfy the Farrell–Jones conjecture with wreath products relative to a
family of subgroups F if for any finite group F the wreath product GoF satisfies the Farrell–Jones
conjecture relative to F . This version of the conjecture passes to finite overgroups and to finite
wreath products [BLRR14, Remark 6.2]. Moreover, the conditions that we verified for relatively
hyperbolic groups in the proof of Theorem 4.4 can also be used to obtain results for the Farrell–
Jones conjecture with wreath products [BLRR14, Theorem 5.1]. Combining this observation
with the transitivity principle we obtain the following variant of Corollary 4.6. Suppose that G
is relatively hyperbolic to subgroups P1, . . . , Pn all of which satisfy the Farrell–Jones conjecture
with wreath products, then G satisfies the Farrell–Jones conjecture with wreath products.

Here it is no longer necessary to distinguish between K- and L-theory; everything in this
remark applies as stated to the K-theoretic and the L-theoretic version of the conjecture.

Remark 4.8. If G is relatively hyperbolic to infinite subgroups P1, . . . , Pn, then for the action
of G on ∆ each Pi fixes a unique point in ∆. In particular, no overgroups of the Pi have fixed
points on the space P2(∆) of unordered pairs in ∆ used in [BL12a, § 9]. It seems plausible that
this observation together with a careful analysis of the arguments in [BL12a] can be used to
show that the appearance of index-2 overgroups in Theorem 4.4(b) and Corollary 4.6(b) is not
necessary.

We conclude this section with some examples where Corollary 4.6 applies.

Example 4.9. Let G be the fundamental group of a complete Riemannian manifold M of pinched
negative curvature and finite volume. Then G is hyperbolic relative to virtually finitely generated
nilpotent groups [Bow12, Far98]. Since virtually finitely generated nilpotent groups satisfy both
the K- and L-theoretic Farrell–Jones conjecture [BFL14], the K- and L-theoretic Farrell–Jones
conjecture for G holds.

Example 4.10. Let G be the fundamental group of a finite graph of groups with finite edge
groups. Then the associated action of G on the Bass–Serre tree reveals G as relatively hyperbolic
to the vertex groups. Thus if all vertex groups satisfy the K-theoretic Farrell–Jones conjecture
then G satisfies the K-theoretic Farrell–Jones conjecture. If all overgroups of vertex groups of
index at most 2 satisfy the L-theoretic Farrell–Jones conjecture then G satisfies the L-theoretic
Farrell–Jones conjecture.
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Example 4.11. Suppose that G acts cocompactly and properly discontinuously on a systolic
complex with the Isolated Flats property. Then G is relatively hyperbolic to virtually finitely
generated abelian subgroups [Els08]. Since virtually finitely generated abelian groups satisfy
both the K- and L-theoretic Farrell–Jones conjecture [BFL14, Qui12], the K- and L-theoretic
Farrell–Jones conjecture for G holds.
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Appendix A. The relative Rips complex and the boundary

In this appendix we prove that ∆ is finite dimensional and embeds into a finite-dimensional
compact contractible ANR with a complement homeomorphic to a simplicial complex.5 For
the boundary of hyperbolic groups both these facts are well known [BM91]. For relative
hyperbolic groups closely related results have been obtained by Dahmani [Dah03] and Mineyev
and Yaman [MY]. Our treatment is very similar to the one in these references, but we do not
require any assumptions on the parabolic subgroups.

Throughout this appendix we use again the notation from § 2. In particular, G is a relatively
hyperbolic group exhibited by a cocompact action on the fine and hyperbolic graph Γ with finite
edge stabilizers. Throughout this appendix we will make the following additional assumption
on Γ: no two vertices from V∞ are adjacent. This can be easily arranged for by replacing Γ with
its first barycentric subdivision.

∆+ is finite dimensional

Theorem A.1. The dimension of ∆+ is finite.

A very similar result by Dahmani is [Dah03, Lemma 3.7], whose proof we mostly copy.

Proof. For a vertex v of finite valency let ∂vΓ ⊆ ∂Γ consist of all ξ ∈ ∂Γ for which there exists a
Θ(3)-small geodesic from v to ξ. Let U be the union of all ∂vΓ, where we vary v over all vertices
of finite valency. If ξ ∈ ∂Γ\U , then any geodesic from a vertex of finite valency to ξ will have a
Θ(3)-large angle at infinitely many vertices. The finite union of finite-dimensional spaces is again
finite dimensional, see [HW41, p. 28]. Therefore it suffices to show that V , U and ∂Γ\U are finite
dimensional subspace of ∆+.

We recall again the countable sum theorem [Pea75, Theorem 2.5, p. 125]: the countable
union of closed subsets of dimension less than or equal to n is of dimension less than or equal
to n. In particular, the countable subspace V ⊆ ∆+ is of dimension 0. The spaces ∂vΓ are finite
dimensional by Lemma A.2 below with a uniform bound on their dimensions. As a consequence
of Addendum 2.10 the ∂vΓ are closed in ∂Γ. Thus U is finite dimensional by the countable sum
theorem.

5 The complement will be the relative Rips complex minus its vertices of infinite valence. Thus the complement is
not a subcomplex of the relative Rips complex, but it is homeomorphic to a simplicial complex.
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It remains to show that ∂Γ\U is finite dimensional. In fact, we will show that it is
homeomorphic to a subset of the boundary of a tree T and therefore 0-dimensional. Fix a vertex
v0 of finite valency. The tree T is a maximal subtree of Γ and can be build inductively by choosing,
for each vertex at distance n from v0, an edge of Γ that connects it to a vertex at distance n− 1
from v0. For any ξ ∈ ∂Γ the tree T will contain a geodesic from v0 to ξ. (To construct such a
geodesic pick a sequence of vertices vn with vn → ξ and apply Lemma 2.9(a) to geodesics cn
from v0 to vn in T .) The inclusion T → Γ induces a continuous surjective map f : ∆+(T ) → ∆+,
where ∆+(T ) is the union of the vertices of T with ∂T and is also equipped with the observer
topology. For any ξ ∈ ∂Γ\U there is a unique geodesic in T from v0 to ξ. Indeed, any geodesic c
in Γ from v0 to ξ will have a Θ(3)-large angle at infinitely many vertices and any other geodesic
c′ in Γ from v0 to ξ will, by Lemma 2.11, also pass through these vertices. Therefore c = c′ if
both are in T . It follows that the restriction of f to the preimage of ∂Γ\U is bijective. We claim
that, since ∆+(T ) is compact, this restriction of f is a homeomorphism. To prove this claim we
need to show that the inverse of f on ∂Γ\U is continuous. Let ξn → ξ be a convergent sequence
in ∂Γ\U . Let ξ′n, ξ

′ be the unique preimages in ∆+(T ) of the ξn, ξ. We need to show ξ′n → ξ′

in ∆+(T ). Assume this fails. Then, as ∆+(T ) is compact, there is a subsequence I ⊆ N with
limn∈I ξ

′
n = ξ′′ 6= ξ′ in ∆+(T ). By continuity of f , we have f(ξ′′) = limn∈I f(ξ′n) = limn∈I ξn = ξ.

In particular, ξ′′ belongs to the preimage of ∂Γ\U under f . Now we use that the restriction of f
to this preimage is injective to contradict ξ′′ 6= ξ′. Thus ξ′n → ξ′ in ∆+(T ). 2

Lemma A.2. There is N such that dim ∂v0Γ 6 N for all vertices v0 of finite valency.

Proof. Let Vv0 be the set of all vertices v of Γ for which there exists a Θ(3)-small geodesic from
v0 to v. Hyperbolicity of Γ implies that this is a quasi-convex subset of Γ: there is r > 0 such
that for v, v′ ∈ Vv0 any geodesic between v and v′ will be contained in the r-neighborhood of
the union of geodesics from v0 to v and v′. Consequently, Vv0 is hyperbolic in the metric dv0

inherited as a subspace of Γ. Let Γv0 be the graph whose vertices are Vv0 and for which there is
an edge between v and v′ whenever dv0(v, v′) 6 2r+1. Of course, the metric dΓv0

induced by Γv0

on Vv0 satisfies dv0 6 (2r + 1)dΓv0
. Conversely, since any Θ(3)-small geodesic in Γ starting in v0

defines also a path in Γv0 , we can as before apply hyperbolicity to any geodesic c in Γ between
points v, v′ ∈ Vv0 and replace c with a path in Γv0 of length equal to the length of c. Thus dΓv0
and dv0 are Lipschitz equivalent. In particular, Γv0 is hyperbolic.

Let v, v′ ∈ Vv0 . Let Θ be a size for angles such that 3Θ(3) ⊆ Θ. Since v0 is a vertex of finite
valency we can, after enlarging Θ, assume that all angles at the vertex v0 are Θ-small. We claim
that any geodesic c in Γ between v and v′ is Θ-small. If this fails, then for some internal vertex
w of c the angle �wc is Θ-large. Let cv and cv′ be Θ(3)-small geodesics from v0 to v and v′.
We apply Lemma 2.12 to the geodesic triangle whose sides are c, cv and cv′ . Since cv and c′v
are Θ(3)-small we conclude that w = v0. But our choice of Θ guarantees that �wc is Θ-small.
Therefore c is Θ-small.

For v ∈ Vv0 the ball Br(v) of radius r around v in Vv0 with respect to dv0 is contained in
the set of vertices of Γ that can be connected to v by a Θ-small geodesic of length r. If v is of
finite valency, then this set is finite by Corollary 2.2. Moreover, as the action of G on the vertices
of Γ is cofinite, the number of vertices in Br(v) is bounded by a number depending only on r.
Any vertex w ∈ Vv0 of infinite valency is adjacent to a vertex v ∈ Vv0 of finite valency. (Consider
the Θ(3)-small geodesic between w and v0 and recall that we assumed that no two vertices of
infinite valency are adjacent.) Since Br(w) ⊆ Br+1(v) whenever v, w ∈ Vv0 are adjacent, we can
now conclude that Vv0 is uniformly proper with respect to dv0 (or dΓv0

): the number of elements
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in a ball is bounded by a number only depending on the radius of the ball. The dimension of
the boundary of a hyperbolic graph can be estimated in terms of the number of vertices in
balls of a fixed radius (depending on the hyperbolicity constant); this is a standard fact (see
for example [BLR08a, Proof of Proposition 9.3(ii)]). Consequently, the boundary of Γv0 is finite
dimensional. Since this boundary agrees with ∂v0Γ it follows that ∂v0Γ is finite dimensional. The
action of G on the set of vertices of finite valency is cocompact. It follows that the maximum of
the dimension of the ∂v0Γ is finite. 2

The relative Rips complex
We will say that a geodesic is (d,Θ)-small if it is Θ-small and of length at most d.

Definition A.3. Let Θ be a size for angles and d > 0. The relative Rips complex Pd,Θ of Γ has
V as the set of vertices. A finite set σ of vertices spans a simplex for Pd,Θ if and only if between
any two vertices v, v′ ∈ σ there exists a (d,Θ)-small geodesic.

Lemma A.4. The relative Rips complex Pd,Θ is finite dimensional. For n > k > 1 each k-simplex
is contained in only finitely many n-simplices.

Proof. Let v ∈ V and e be an edge incident to v. Because of Lemma 2.1 there are only finitely
many vertices v′ for which there exists a (d,Θ)-small geodesic from v to v′ whose first edge is e.
Since G acts cocompactly on the set of edges the number of such geodesics is uniformly bounded.

Fix v′ 6= v such that there exists a Θ-small geodesic c between v and v′. Let W (v, v′) be the
set of vertices w for which there exist (d,Θ)-small geodesics, cw between w and v and c′w between
w and v′. We need to show that the number of elements in W (v, v′) is uniformly bounded. Let
e be the initial edge of c, starting at v. Let f be the initial edge of cw, starting at v. We claim
that (e, f) is Θ + 2Θ(3) small. Lemma 2.1 implies then that the number of such f is uniformly
bounded and the first paragraph of this proof implies then that the cardinality of W (v, v′) is
uniformly bounded.

It remains to prove that (e, f) is Θ + 2Θ(3) small. If c′w does not meet v, then (e, f) is Θ(3)

small. Otherwise �vc′w is Θ-small and Lemma 2.6 implies then that (e, f) is Θ+2Θ(3)-small. 2

In the next statement the positive integer δ will be again a hyperbolicity constant for Γ.

Proposition A.5. Assume that d > 4δ and 7Θ(3) ⊆ Θ. Then Pd,Θ is contractible. More precisely
the following holds.

Let K be a finite subcomplex of Pd,Θ. Let L be the subcomplex of Pd,Θ spanned by all vertices
ṽ for which there are vertices v, v′ ∈ K such that ṽ belongs to a geodesic between v and v′. Then
K is contractible within L.

Proof. Let VK be the set of vertices of K. Fix v0 ∈ VK . Let α := maxv∈VK dΓ(v0, v). Let a be
the number of vertices in VK for which dΓ(v0, v) = α. For v ∈ VK let W (v) be the set of vertices
w ∈ V such that there exists a geodesic c from v0 to v such that c passes through w such that
�wc is 2Θ(3)-large. Let β := maxv∈VK ,w∈W (v) dΓ(v0, w). Let b be the number of vertices v ∈ VK
for which there is w ∈ W (v) with dΓ(v0, w) = β. Clearly, α > β. If α = 0, then K consists of a
single vertex and there is nothing to prove.

For the general case we will use induction on (α+ β, a+ b). We claim that there is a vertex
v ∈ VK and a vertex ṽ on a geodesic from v0 to v such that:
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(A.6) there is a (d,Θ)-small geodesic from v to ṽ;

(A.7) if there is a (d,Θ)-small geodesic from v to v′, with v′ ∈ VK , then there is also a (d,Θ)-small

geodesic from ṽ to v′;

(A.8) either dΓ(v0, v) = α and dΓ(v0, ṽ) < α or there is w ∈ W (v) with dΓ(v0, w) = β, and

dΓ(v0, w̃) < β for all w̃ ∈W (ṽ). (In fact, in the second case we will use ṽ = w.)

Given this claim there is a homotopy in L that replaces v by ṽ. The effect on (α+ β, a+ b)

is then that we either reduce α+ β or that we reduce a+ b but do not increase α+ β. This will

complete the induction step modulo our claim.

To prove the claim, we distinguish two cases. In the first case we assume α > β + d. Then

choose v ∈ VK such that dΓ(v0, v) = α. As δ is an integer, we can pick a vertex ṽ with dΓ(v, ṽ) = 2δ

that belongs to a geodesic c between v0 and v. Clearly (A.8) holds. The geodesic c|[v,ṽ] is of length

2δ 6 d. Let w be an internal vertex of c|[v,ṽ]. If �wc is Θ-large, then, since 2Θ(3) ⊆ Θ, w ∈W (v)

and β > dΓ(v0, w) > dΓ(v0, ṽ) > α− 2δ > α− d. Since this contradicts α > β + d, the angle �wc
at w is Θ-small. Thus c|[v,ṽ] is Θ-small and (A.6) holds. In fact, this argument proves that c|[v,ṽ]

is 2Θ(3)-small. To prove (A.7) consider v′ ∈ VK such that there exists a (d,Θ)-small geodesic c′

between v and v′. Hyperbolicity of Γ implies that there is w ∈ V with dΓ(ṽ, w) 6 δ such that

w belongs to a geodesic between v0 and v′ or to a geodesic between v and v′. In the first case

dΓ(w, v′) = dΓ(v0, v
′)−dΓ(w, v0) 6 dΓ(v0, v

′)−(dΓ(v0, ṽ)−dΓ(w, ṽ)) 6 α−(α−2δ−δ) = 3δ 6 d−δ.
In the second case dΓ(w, v′) = dΓ(v, v′)−dΓ(w, v) 6 dΓ(v, v′)−(dΓ(v, ṽ)−dΓ(w, ṽ)) 6 d−(2δ−δ) =

d − δ. Thus dΓ(ṽ, v′) 6 d in both cases. Let c̃ be a geodesic from v′ to ṽ. It remains to show

that c̃ is Θ-small. Assume this fails. Then there is an internal vertex w of c̃ such that �w c̃ is

Θ-large. We can then apply Lemma 2.12 to the geodesics c|[v,ṽ], c
′ and c̃. Since c|[v,ṽ] is 2Θ(3)-small

and 2Θ(3) + 2Θ(3) ⊆ Θ, Lemma 2.12 implies w ∈ c′. In particular, dΓ(w, v) < d and therefore

dΓ(v0, w) > dΓ(v0, v) − dΓ(w, v) > α − d > β. Let c′′ be a geodesic from v′ to v0. Consider the

geodesic triangle whose sides are c̃, c′′ and c|[v0,ṽ]. Since �w c̃ is Θ-large, we can again apply

Lemma 2.12 and deduce w ∈ c′′ ∪ c|[v0,ṽ]. Moreover, since 2 · 2Θ(3) + 3Θ(3) ⊆ Θ we can combining

this Lemma with Lemma 2.13 and deduce that the angle of c′′ or of c|[v0,ṽ] at w will be 2Θ(3)-large.

In the first case w ∈W (v′) in the second w ∈W (v). Both cases imply dΓ(w, v0) 6 β. But this is

a contradiction since we proved earlier dΓ(v0, w) > β.

It remains to prove our claim under the assumption α < β + d. If β = 0 then there are

(d,Θ)-small geodesics between v0 and any v ∈ VK . Thus we can set ṽ := v0 if β = 0. So assume

β > 0 and pick v ∈ VK , a geodesic c between v0 and v and an internal vertex ṽ of c such

that �ṽc is 2Θ(3)-large and dΓ(v0, ṽ) = β. Clearly (A.8) holds. The geodesic c|[v,ṽ] is of length

less than or equal to α − β 6 d. Let w be an internal vertex of c|[v,ṽ]. If �wc is Θ-large, then,

since 2Θ(3) ⊆ Θ, w ∈ W (v) and we obtain the contradiction β > dΓ(v0, w) > dΓ(v0, ṽ) = β.

Thus c|[v,ṽ] is Θ-small and (A.6) holds. In fact, this argument proves that c|[v,ṽ] is 2Θ(3)-small.

To prove (A.7) let v′ ∈ VK such that there exists a (d,Θ)-small geodesic c′ between v and v′. Let

c′′ be a geodesic between v0 and v′. Consider the geodesic triangle whose sides are c, c′ and c′′.

Since �ṽc is 2Θ(3)-large, Lemma 2.12 implies ṽ ∈ c′ ∪ c′′. If ṽ ∈ c′, then c′|[v′,ṽ] is a (d,Θ)-small

geodesic between v′ and ṽ and (A.7) holds. If ṽ ∈ c′′, then we use the restriction c′′|[v′,ṽ]. This

restriction is Θ-small, since otherwise we could argue as in the proof of (A.6) and find w ∈W (v′)

with dΓ(v0, w) > β. Similarly, in this case dΓ(ṽ, v′) = dΓ(v′, v0)− dΓ(ṽ, v0) 6 α− β 6 d. 2

From now on we will assume that d and Θ satisfy the assumptions of Proposition A.5.
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Definition A.9. Let Pd,Θ := Pd,Θ∪∂Γ. For an open subset U of ∆+ we define Pd,Θ(U) ⊆ Pd,Θ as
the subcomplex spanned by the vertices of Γ that belong to U . For ξ ∈ Pd,Θ we define collections
of subsets Nξ of Pd,Θ as follows.

(a) If ξ ∈ Pd,Θ\V∞, then Nξ consists of all open neighborhoods W of ξ in Pd,Θ\V∞.

(b) If ξ ∈ ∂Γ, then Nξ consists of all sets of the form Pd,Θ(U)∪U , where U is a neighborhood
of ξ in ∆+.

(c) If ξ ∈ V∞, then Nξ consists of all sets of the form Pd,Θ(U) ∪ U ∪ W , where U is a
neighborhood of ξ in ∆+, and W is a neighborhood of ξ in Pd,Θ (i.e. the intersection of W with
any simplex of Pd,Θ is open in the simplex).

We will use the topology on Pd,Θ which for U ⊆ Pd,Θ is open if and only if for every ξ ∈ U
there is N ∈ Nξ with N ⊆ U .

Lemma A.10. Each N ∈ Nξ is a (not necessarily open) neighborhood of ξ in Pd,Θ.

Proof. If ξ ∈ Pd,Θ\V∞, then Nξ consists of open subsets of Pd,Θ. Before we discuss the cases
ξ ∈ ∂Γ and ξ ∈ V∞ we point out a collection of open subsets of Pd,Θ. Consider U ′ ⊆ ∆+ open,
W ′ ⊆ Pd,Θ open and assume that Pd,Θ(U ′) ⊆ W ′ and that V∞ ∩W ′ ⊆ U ′. It is not difficult to
check that then W ′ ∪ U ′ is open in Pd,Θ.

Let ξ ∈ ∂Γ and N = Pd,Θ(U)∪U ∈ Nξ. Lemma 2.19 implies that there exists a neighborhood
U ′ of ξ in ∆+ with the following property: if v is a vertex in Γ for which there exists a geodesic of
length less than or equal to d starting in v and ending in U ′, then v ∈ U . It follows that Pd,Θ(U ′)
is contained in the interior P ◦d,Θ(U) of Pd,Θ(U). Set now W ′ := P ◦d,Θ(U)\(V∞\U ′), i.e. we remove
all vertices of infinite valency from Pd,Θ(U) that do not belong to U ′. Then W ′ ∪U ′ satisfies the
conditions from the first paragraph of the proof and thus is open in Pd,Θ. Since ξ ∈W ′∪U ′ ⊆ N ,
N is a neighborhood of ξ.

Let ξ ∈ V∞ and N = Pd,Θ(U) ∪ U ∪W ∈ Nξ. Addendum 2.20 implies that there exists a
neighborhood U ′ of ξ in ∆+ with the following property: if v is a vertex in Γ for which there exists
a (d,Θ)-small geodesic starting in v and ending in U ′\ξ, then v ∈ U . It follows that Pd,Θ(U ′)\{ξ}
is contained in P ◦d,Θ(U). Thus Pd,Θ(U ′) ⊆ P ◦d,Θ(U) ∪ W . Set W ′ := (P ◦d,Θ(U) ∪ W )\(V∞\U ′).
Again W ′ ∪ U ′ is open in Pd,Θ. Since ξ ∈W ′ ∪ U ′ ⊆ N , N is a neighborhood of ξ. 2

Lemma A.10 implies that the inclusions ∆ → Pd,Θ and Pd,Θ\V∞→ Pd,Θ are homeomorphisms
onto their images. The canonical map i : Pd,Θ → Pd,Θ is continuous, but i is not a
homeomorphism onto its image (unless V∞ = ∅). For the continuity of i it is important to include
the sets W in the definition of the neighborhood basis Nξ for ξ ∈ V∞, see Definition A.9(c).

Lemma A.11. We have the following:

(a) the topology on Pd,Θ is second countable;

(b) Pd,Θ is compact and metrizable;

(c) Pd,Θ is finite dimensional;

(d) for any ξ ∈ Pd,Θ, and every neighborhood U of ξ in Pd,Θ there is a neighborhood U ′ of ξ in

Pd,Θ such that for any map f : Sk → i−1(U ′) there is a map f̂ : Dk+1
→ i−1(U) such that

f̂ |Sk = f .

Proof. (a) Since G is countable and acts cocompactly on Γ there are only countably many
simplices in Pd,Θ. By Lemma A.4 every point in Pd,Θ\V∞ is contained in only finitely

774

https://doi.org/10.1112/S0010437X16008216 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008216


Coarse flow spaces for relatively hyperbolic groups

many simplices. Therefore, Pd,Θ\V∞ is second countable and we need for a basis of the topology
on Pd,Θ only countable many open subsets as in part (a) from Definition A.9. Similarly, since ∆ is
second countable we need only countable many open subsets as in part (b). Finally, for part (c),
since V∞ is countable, we need to argue that each ξ ∈ V∞ has a countable neighborhood basis.
It suffices to vary U over a countable neighborhood basis of ξ ∈ ∆. Addendum 2.20 implies that
for each such U almost all vertices of Γ that are incident to ξ (in Pd,Θ) are contained in U .
Using Lemma A.4 it follows that all but finitely many of the simplices of Pd,Θ that contain ξ
are contained in Pd,Θ(U). Therefore, for each U it suffices to vary W over countable collection
of neighborhoods of ξ ∈ Pd,Θ.

(b) Let ξ ∈ ∆+, v ∈ V∞. Using Addendum 2.20 we find open neighborhoods U of ξ in ∆+

and W of v in Pd,Θ such that Pd,Θ(U) ∩W = ∅. Combining this observation with the fact that
∆+ and Pd,Θ are Hausdorff we see that Pd,Θ is also Hausdorff.

Since the topology on Pd,Θ has a countable basis it suffices to prove sequential compactness.
Let (xn)n∈N be a sequence in Pd,Θ. We will produce a convergent subsequence. If xn ∈ ∂Γ for
infinitely many n, then we can use the compactness of ∆. Therefore we assume that xn ∈ Pd,Θ for
all n. Since Pd,Θ is finite dimensional we find k and vertices v0,n, . . . , vk,n such that for each n the
point xn belongs to the simplex spanned by v0,n, . . . , vk,n. Since ∆+ is compact we can assume
that ξj := limn vj,n exists in ∆+ for each j. We now apply Lemma 2.19 and Addendum 2.20
to the v0,n, . . . , vk,n as sequences in n. It follows that either the ξj =: ξ all coincide or that we
find a subsequence I ⊆ N such that for each j, vj,n =: wj is constant in n ∈ I. In the first case
limn∈N xn = ξ. In the second case we find a subsequence of xn that converges to a point on the
simplex spanned by the wj .

Since Pd,Θ is compact and has a countable basis for the topology it is metrizable.
(c) This follows from Theorem A.1 and Lemma A.4 and the fact that the finite union of

finite-dimensional spaces is finite dimensional [HW41, p. 28].
(d) If ξ ∈ Pd,Θ\∆ = Pd,Θ\V∞, then ξ has arbitrarily small contractible neighborhoods. If

ξ ∈ ∆, then we may assume that Pd,Θ(U+) ⊆ U for some neighborhood U+ of ξ ∈ ∆+. Using
Lemma 2.21 we find a smaller neighborhood U ′+ of ξ such that all vertices on geodesics between
points of U ′+ belong to U+. Proposition A.5 implies that any finite subcomplex of Pd,Θ(U ′+) is
contractible within Pd,Θ(U+). If ξ ∈ ∂Γ, we can use the interior of Pd,Θ(U ′+) ∪ U ′+ for U ′. If
ξ ∈ V∞, then we pick in addition an neighborhood W ′ of ξ in Pd,Θ such that W ′ ⊆ U . Moreover,
since Pd,Θ(U ′+) is a subcomplex of Pd,Θ, we can assume that W ′ ∩ Pd,Θ(U ′+) is a deformation
retract of W ′. Now we can choose the interior of Pd,Θ(U ′+) ∪ U ′+ ∪W ′ for U ′. 2

Let K be a simplicial complex and U be a cover of a space X. A map f : K ′ → X defined on
a subcomplex K ′ of K, containing the 0-skeleton K(0) of K, is said to be a partial U-realization
if for every simplex σ of K, there is a member of U that contains f(K ′ ∩ σ). If K ′ = K, then f
is called a full U-realization.

Lemma A.12. Let U be an open cover of Pd,Θ and n ∈ N. Then there exists an open cover U ′
of Pd,Θ such that for any finite simplicial complex K of dimension less than or equal to n, any
partial i−1U ′-realization of K in Pd,Θ extends to a full i−1U-realization K → Pd,Θ.

Proof. Using Lemma A.11(d) we find a sequence of successively smaller covers U = Un, . . . ,
U0 = U ′ such that for any U ′ ∈ Uk there is U ∈ Uk+1 such that any map Sk → i−1(U ′) extends
to Dk+1

→ i−1(U). Inductively, any partial i−1U ′-realization can then be extended to a i−1U-
realization K → Pd,Θ. 2
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Let U be a cover of a space X. Maps f, f ′ : Z → X are said to be U-close if for any x ∈ Z
there is U ∈ U containing both f(x) and f ′(x). The mesh of a cover of a metric space is the
supremum of the diameter of its members.

Lemma A.13. For any open cover W of Pd,Θ and any map f : K → Pd,Θ defined on a finite
complex there is a map f ′ : K → Pd,Θ such that f and i ◦ f ′ are W-close.

Proof. Pick a metric dP for Pd,Θ and ε > 0 such that 3ε is a Lebesgue number for W. Let U
be a cover of mesh less than or equal to ε. Pick U ′ as in Lemma A.12 with respect to U and
n := dimK. Pick δ > 0 such that 3δ is a Lebesgue number for U ′ and δ < ε. Now subdivide K
until the diameter of the image of each simplex in Pd,Θ is at most δ. Since i(Pd,Θ) is dense in Pd,Θ
we find f ′0 : K(0)

→ Pd,Θ defined on the 0-skeleton K(0) of K such that dP (i ◦ f ′0(x), f(x)) 6 δ
for any x ∈ K(0). It follows that f ′0 is a partial i−1U ′ realization and therefore extends to a full
i−1U-realization f ′ : K → Pd,Θ. By construction for any x ∈ K, dP (f(x), f ′(x)) 6 2δ + ε 6 3ε.
Thus f and i ◦ f ′ are W-close. 2

Lemma A.14. Let f : K → Pd,Θ be a map defined on a finite simplicial complex. Then there
exists a homotopy H : K × (0, 1] → Pd,Θ such that

(x, t) 7→
{
f(x) t = 0,

i(H(x, t)) t > 0,

is a continuous homotopy K × [0, 1] → Pd,Θ.

Proof. Let dP be again a metric on Pd,Θ. Let Ul be a sequence of open covers of Pd,Θ with
meshUl → 0. Let U ′l be a cover as in Lemma A.12 with respect to Ul and n := dimK+1. Let λl be
a Lebesgue number for Ul. Let εl be a sequence such that εl+εl+1 6 λl for all l. Using Lemma A.13
we find maps f ′l : K → Pd,Θ such that f and i ◦ f ′l are εl-close, i.e. dP (f(x), i(f ′l (x))) < εl for
all x ∈ K. For t = 1/l set H(x, 1/l) := f ′l (x). In order to define H(x, t) for 1/l + 1 < t < 1/l,
we can view f ′l+1

∐
f ′l : K × {1/l + 1, 1/l}→ Pd,Θ as a partial U ′l -realization for an appropriate

triangulation of K × [1/l + 1, 1/l] and use Lemma A.12. Since meshUl → 0 the map H defined
this way has the desired continuity property. 2

Lemma A.15. The space Pd,Θ is locally n-connected for each n, i.e. for each ξ ∈ Pd,Θ and each
open neighborhood U of ξ, there is a smaller neighborhood U ′ of ξ such that any map f : Sk → U ′

with k 6 n extends to a map Dk+1
→ U .

Proof. Pick U ′ as in Lemma A.11(d). Lemma A.14 implies that any map f : Sk → U ′ is homotopic
to a map of the form i ◦ f ′ with f ′ : Sk → i−1(U ′). Now f ′ extends to a map Dk+1

→ i−1(U) by
Lemma A.11(d) and this yields the desired extension of f as well. 2

Recall that we fixed d and Θ such that Proposition A.5 applies.

Theorem A.16. The space Pd,Θ is a contractible ANR.

Proof. From Lemmas A.11 and A.15 we know that Pd,Θ is compact, finite dimensional and
locally n-connected for any n. Since this is a characterization of finite-dimensional compact
ANRs [Bor67, Theorem 10.3, p. 122], Pd,Θ is an ANR. Lemma A.14 together with the
contractibility of Pd,Θ (Proposition A.5) imply that Pd,Θ is weakly contractible. Since finite-
dimensional ANRs are retracts of simplicial complexes [Bor67, Theorem 10.1, p. 122] the
contractibility of Pd,Θ follows. 2
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Remark A.17. Bestvina and Mess [BM91] proved Theorem A.16 for hyperbolic groups and the
argument in this section is closely modeled on their argument. For hyperbolic groups Bestvina
and Mess showed moreover that the boundary is a Z-set in the analog of Pd,Θ, but the methods
of this section do not give this stronger statement. The reason for this is, that the contractions
from Proposition A.5 may not work in Pd,Θ\∆ = Pd,Θ\V∞. For example, if Γ is a tree and if we
use for Θ only the trivial angles (e, e), then Pd,Θ = Γ. Nevertheless, it seems likely that in many
cases ∆+ is a Z-set in Pd,Θ for suitable d,Θ.

Appendix B. Extending open sets

Here we review a convenient procedure to extend open subset to open subsets of an ambient
space. Let (X, dX) be a metric space. Let X0 ⊆ X be a subspace. For an open subset U of X0 we
define U+ := {x ∈ X | dX(x, U) < dX(x,X0\U)}. This construction has the following properties
(compare [BL12b, Lemma 4.14]): U+ is open; X0 ∩ U+ = U ; (U ∩ V )+ = U+ ∩ V +. We record
the following two consequences.

Lemma B.1. For any open subset U ⊆ X0, the open subset U+ ⊆ X satisfies U = X0 ∩U+ and
∂0U = X0 ∩ ∂U+ where ∂0 is the boundary in X0 and ∂ is the boundary in X.

Proof. We already know that U+ is open and satisfies U =X0∩U+. This implies ∂0U ⊆X0∩∂U ⊆
X0\U . Let V be the complement of the closure of U in X0. Then V + is open and V + ∩U+ = ∅.
Thus V + ∩ ∂U+ = ∅. Thus X0 ∩ ∂U+ ⊆ X0\(U ∩ V ) = ∂0U . 2

Suppose now that G acts isometrically on X and that X0 ⊆ X is G-invariant.

Lemma B.2. Let F be a family of subgroups of G. Let U be a G-invariant collection of F-subsets
of X0. Then U+ := {U+ | U ∈ U} is a G-invariant collection of F-subsets of X extending the
U ∈ U . The order of U and U+ agree.

Proof. We have (gU)+ = g(U+) as the action is isometric. This implies that U+ consists of
F-subsets and that U+ is G-invariant. The equation (U ∩ V )+ = U+ ∩ V + implies that the
orders of U and U+ agree. 2

Appendix C. Ideal triangles are slim

Lemma C.1. Let Γ be a δ-hyperbolic graph, i.e. all finite geodesic triangles are δ-slim. Then all
geodesic triangles, including those with one or more corners on the boundary ∂Γ are 5δ-slim.

Proof. Let c, c′ and c′′ be the three sides of a geodesic triangles. Write ξ, ξ′ and ξ′′ for the three
corners of the triangle, i.e. c is geodesic between ξ′ and ξ′′, c′ is a geodesic between ξ and ξ′′, and
c′′ is a geodesic between ξ and ξ′. We pick vertices y ∈ c, y′ ∈ c′ and y′′ ∈ c′′, We write cξ′ for the
restriction of c to a geodesic from y to ξ′. Similarly, we define cξ′′ , c

′
ξ, c
′
ξ′′ , c

′′
ξ and c′′ξ′ . These six

geodesics are asymptotic in three pairs. Thus we find A > 0 such that the Hausdorff distances
between c′ξ and c′′ξ , and between cξ′ and c′′ξ′ , and between cξ′′ and c′ξ′′ are all three less than or
equal to A.

Let now v be a vertex on c. We pick a geodesic a of length at most A that starts on c′ and
ends on c′′. If ξ ∈ ∂Γ, then we can assume in addition that dΓ(v, a) > 100(A+ δ). If ξ is a vertex
of Γ then we assume that a is the constant geodesic at ξ. We pick a vertex x on a. Similarly,
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we pick geodesics a′ and a′′ with vertices x′ ∈ a′ and x′′ ∈ a′′. We can assume that along c the
vertex v is between a′ ∩ c and a′′ ∩ c; if not then move a′ towards ξ′ and a′′ towards ξ′′. We also
pick geodesics b from x′ to x′′, b′ from x to x′′, and b′′ from x to x′.

Consider now the geodesic 4-gon whose four sides are b, and restrictions of a′, c and a′′. Since
a′ and a′′ are either constant or far from v we can apply hyperbolicity and find a vertex w1 ∈ b
with dΓ(v, w1) 6 2δ. Next we use the geodesic triangle with sides b, b′ and b′′. By hyperbolicity
there is w2 ∈ b′ ∪ b′′ with dΓ(w1, w2) 6 δ. Without of loss of generality we assume w2 ∈ b′. Now
we consider the geodesic 4-gon whose four sides are b′ and restrictions of a, c′ and a′′. Since a
and a′′ are either constant or far from v (and then also far from w2) we can apply hyperbolicity
and find a vertex v′ ∈ c′ with dΓ(w2, v

′) 6 2δ. Altogether, dΓ(v, v′) 6 5δ and v′ ∈ c′ ∪ c′′. 2
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