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1. Introduction

We consider a queueing system with % identical servers in parallel,
the services being negative exponential with parameter u. The input is a
natural generalisation of the usual general recurrent input. If we denote the
sequence of arrival points by {4,,n = 0} then the inter-arrival intervals
are given by

(1‘1) Ah+l_An = fO(UrH-'ﬂ) +f1(Un+p—1)+ Tt +fp(Un): n =0,

where the f; are (integrable) non-negative functions and {U,} is a sequence
of identically and independently distributed random variables. In the
simplest case, $ = 0, this is just a general recurrent input. We write U(-)
for the probability distribution function of the U,,.

The aim of this paper is to determine the equilibrium distribution
(when it exists) of the number of customers in the system as found by
arrivals. We also consider for a particular instance of (1.1) the case when
the waiting room is finite (Section 5) and the case of infinitely many servers
(Section 6).

2. The equilibrium queuelength distribution
We denote by P(u,, #,, * * *, %,,4,—1), OT, more compactly, by
Pj (u(m+p—1))’ j :>—_ 01

the probability, conditional on the values assumed by the first m+p
members of the sequence {U,} being u,, #,, * * *, %,,4,_4, that the number
of customers found in the system by the arrival at 4,, is j.

From the theory of the simple death process we have that I';(u),
the probability that the number of customers in the system is initially ¢
and finally j in a time interval of length » during which there are no arrivals,
is given by
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[2] Many server queue 707
(2.1) Ty(u) =

(;) [1—exp (—uu) ] exp (jumu), j<i<k,
exp (—hu) (pae) =] (i—1)1, r<jsi,

[¢ exp (—huw)pk (k)i (i—k—1) 1 Ty (u—a)de, [ <k <i,

0, otherwise.

By comparing the numbers of customers in the system at

Api—0 An—
we see that

§ u(rn+p 1))Fi+1,0(fo(Um+p)+ o +f,,(Um))’ 1 o,
(2.2) P,(um+)y = i—0

2 +i—1 u(m+p_l))F:i+i,:i(f0(Um+w)+ o +fp(Um))’
= 7> 0.
With the traffic intensity condition
P
(2:3) 2 Ef, > (uk)™
=0
we know from Loynes [1] that the limits
P, =lim E[P,~(U""+”’)], 1=0,

exist and constitute a proper probability distribution, and we can justify
the definitions

Qi{wy, * -, w,) = Um E[P(Ug, * ++, Up, Y15 Umezs * * * Uman) s

(2.4) e =0,
Qwg, * 1, 0,5 2) = _EOQ:HIC—I((”I’ ce )21 |z] < oo,
j=

where the expectation is with respect to Uy, ---, U, _;, and where
wy, *  *, w, are the particular values #,,;, ***, %, ,.

On taking expectations and letting m — co, we have from (2.2) and
(2.1) the following equation for Qw,, "« -, w,; 2):

a o0
5200 wyi5) = [ Q0 @1, 0y hla(o,) o)

X exp [—ku{fo(w,)+ - - - +f,(w)}1dU (u)

(2.5)

If we define
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708 C. Pearce [3]

(2.6) R(wy, "+, 0wy 2) = Q(wy, * * *, w,; 2) exp (—2), |2| < o0,

(2.5) becomes

d o
(2.7) (EZ +1) R(wl’“.’ wp;z) =J; R(u, Wy, 0y
sp{folwy)+ -+ +1,w)})AU ().

Inspection of the right hand side of this equation shows that z and w, occur
in ((9/0z)+1)R(wy, - **, w,; %) only in the combination z+pufy(w,). It
follows readily that R(w,, * - -, ®,; 2) can be written in the form

Ry, 0,2)
= g(01, -, ) €XP (—2)+ Ry(wy, -+ -, wpog, 2Hptlo(®,)), 12l < o0.

If this expression for R is substituted in (2.7) and a second differentiation
with respect to z performed, we find that

0 2 ® (0
(E’ +1) Ry(wy, "+ 054,2) = J; (—3;' +1) Ry(u, 01, "+, 0y,
ztp{folwy—) +hlw,_1) +hlw, o)+ - - - +F,(®)})aU (u).
Arguing as before we obtain a decomposition

Ry(wy, *+, 0y, 2) = [goloy, * * *, @y_y)+281(0g, " - -, @,_4)] €XP (—2)

+R2(w1, Tt Wy, Z+[t{fo(w,_1)+f1(w,_1)})»

and we can continue recursively to eventually obtain, analogously to (2.7),
an equation

9 P41

. (@ +)" &

=7 (5 +1) Roletutotirt -+ +,0)) a0 w), 1 < .
(]

Considered as an equation for ((9/dz)+1)?R,, (2.8) has a unique entire
solution (up to a scale factor), which is easily seen to be

(2.9) (53; —|—l)p R,(z) = const X exp [—z(1—-T)],

where T is the (unique) solution of (2.8)
T= f:exp [—2(=T)(fo(w)+ - - - +1,(u))]dU ()

inside the unit circle in the complex plane. That such a T is well-defined
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follows from (2.3) by a standard argument making use of Rouché’s theorem.
(2.9) finally gives us R, in the form

R,(2) = [ay+ayz+ -+ - +a, 42>1] exp (—2)+a, exp [—2(1—T)],

where the a, are constants.
The successive decompositions of R give, via (2.4) and (2.6), the
Q4,7 = k, in the form

»

he(wy,** 0y_y_,) €XP ("‘/‘ 2 E‘fi(wd))

f=p—r §=0
Qrirlwy, - 0,) = +AT*+ " exp [—u(1-T) .é :io fi{w)], 0=r=<p-—2
hT*" exp [—u(1—T) i ngj(w,-)], r=zp—L

=1 j=0

On taking expectations with respect to the w; we see that the limiting dis-
tribution {p,, j = 0} is purely geometric from P;,,_, onwards with common
ratio 7. This result has been established for the general recurrent input,
i.e., in the case p = 0, by Kendall [2]. To complete the solution we form
equations for Qg, -+, Qx_y, kg, **, h,_y, B from the relations (2.2)
(=1,---, k+p—1) together with the normalising relation

o0
2 Py(umtr) = 1.
§=0
The resultant equations can be solved for the unknown functions through
simple elimination and recursive substitution. The P, can then be obtained
by taking expectations.

3. Limiting distribution of waiting times

If an arrival finds 2—1 or fewer customers already in the system he does
not have to wait to commence service. If he finds § = & customers already
present, he has to wait until j+1—£% of these have been served before his
service can commence. As the probability of precisely j-+1—% such services
being completed in a time < x is known as

exp (—kus) (k) 1+ (+1—E)!,

the waiting time for arrivals can readily be determined.

If we write
P, = BT, ] = k+p—2,

then the limiting probability that an arrival has to wait a time < z before
he can begin service is
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Fl@) = 3 Pyt z P1— zexp (—kua) (kycw) 1]

i=0
p—2 p—2 .
= 1= 3 3 Puy;exp (—hua) (kua) !
=i j=1

—T*72(1—-T)Bexp (—hux(1-T7)), =x=0,p=2.

When p = 0, i.e., when the input is general recurrent, it is readily verified
that the waiting time distribution reduces to a weight at the origin combined
with a negative exponential distribution, a result first noted by Kendall [2].

4. Imbedded chain method

For simplicity we restrict our attention to the case p = 1 with f, and
f1 scalar multipliers 4, and b,, though these restrictions are not necessary.
It is also convenient to take b,, b, positive with sum unity. We shall see
although the arrival instants are no longer recurrence points, it is possible
to extend the usual imbedded chain technique as used, for example, for
GI[M/1, to facilitate the analysis of our more general systems.

With the simplifications above, (1.1) reduces to

(4.1) Apy—Ay = bUpy+0,U,, n = 0.

The point R,,n = 0, occurring a time b,U, after A, can be intuitively
regarded as the instant at which the effect of U, in the input stream ceases
and that of U,,, commences. The points 4 and R occur alternately in time,
R, segmenting the interval (4, 4,,,) into positions of length b,U,,, 54U .4,
and 4,,, segmenting (R,, R, ;) into portions 4,U,,,, b,U,,,. With the
proviso that arrivals are never multiple the sequences {4,}, {R,} are disjoint
and interlacing. We shall consider the number of customers in the system
at the regenerative time points {R,}.

Let P;; represent the probability that § individuals are waiting or being
served at a regenerative point, conditional on the corresponding number
at the previous regenerative point being 7 (¢, 7 = 0).

The only arrival during (R, R, ) is at 4,,,,, and we can write down
directly

) % ir B oy o(Br1)AU (), =0,
4‘2 = 00 f—j+r . .
(4.2) Py, S i (bow) i yry (byw)dU (),  0<j<itl,
0 r=0
0, 7 >1+1.

It is readily verified that the number of customers present, observed
at the points of the sequence {R,,n = 0}, constitutes an irreducible,
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aperiodic Markov chain. By the standard Feller theory, to establish ergodi-
city on the imbedded chain it suffices to find a non-zero vector x whose
components form an absolutely convergent series and for which

(4.3) 2, = Y z,P,, j=o.

Such a vector, if it exists, must be unique to within a scale factor, and,
when the sum of the components is normalized to unity, x becomes the
equilibrium distribution of probability in the system. We shall show that
under the traffic intensity condition

(4.4) EU > (uk)™

such a vector x exists.
From (4.2) we have that, with a trial

X = {x(): tt Yy xk—l: 1; Ty T2, . '})
(4.3) reduces to

(4.5) T = [ exp [—puk(1—T))dU (u)

for j > k. By virtue of (4.4) Rouché’s theorem yields that (4.5) has a
(unique) solution inside the unit circle. We have thus established ergodicity
under condition (4.4) provided we can find a set w,, -« -, #;_; of values
satisfying (4.3) for 0 < 7 < k. To prove that this can be done, we note from
(4.2) that P,; =0 for ¢ < j—1, so that, as P, ;,> 0 for § > 0, the
equations (4.3) for j = &, k—1, - - -, 1 can be used for the successive deter-
mination of x,_,, #;_,, * * *, %, in terms of 7. That

o0
xyg = X x; Py
“~

is consistent with the values so obtained follows from the fact that the
terms of each row of the matrix (P;;) sum to unity.

Under (4.4), therefore, the number of customers present as observed at
regenerative points has a proper equilibrium probability distribution, and
this is of the form

P (number of customers = §) = T *n,, ] =k

The instants chosen as regenerative points have physical significance
only in the input process, and it is of somewhat more interest in the queueing
system to know the number of customers present at arrival instants.

The first arrival after a regenerative point R,, is at 4,,,, and the length
byU 4, of the interval (R,,, 4,,,,) is independent of the previous history
of the system. As the number of services completed during (R,,, 4,41)
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depends only on the number of customers present at R, and on the time
byU,.+1, the number of customers present as found by an arrival must
possess a proper limiting distribution.

If P, represents the stationary probability that an arrival finds j
customers, then

P; = , %”Hrpfw,i(bo“)dU(“): 120
Use of the known form of {=;, ¢ = 0} and of the I';; gives

73 mseFuan s

0 r=0

0

P,=\{+ f:oﬂkTyk [fuexp [—kpx(l—T)]I’k,.(u—x)dx] dU(u), O0=j<k,

j—k o0
T f exp [—kubyu(1—T)1dU (u), j=k
1]

A similar argument enables us to determine the stationary probability
distribution {p;, { = 0} in continuous time. In particular, we can easily
show that {p,} is geometric from p,,, onwards with common ratio 7. For,
by considering the mean probability of there being § customers in the system
over an interval of fixed length separating a pair of consecutive regenerative
points, and then allowing this length to vary, we obtain

o0 bou [e. o]
o= [T S e exp () () 1

biu o

3 1, 14r exp (—hislbgu—+a) (ulbos-+2))lr | 4U W)

0

— my_y (uk) f:’ exp [—pukby(1—T)]dU (u), i = ktp.

As stated earlier, the imbedded chain technique can be used with rather
more involved problems than those of this section, although the algebra
rapidly becomes prohibitive. Consider, for instance, an input for which

Ap—A4, =bU,p+ - +0,U,, n=0,

where the b, are positive constants with sum unity. Here we can select
points R, later than the corresponding arrival points 4, by amounts
-1 r

E U'n+1' z bm—a'
r=0 8=0

The interval (R,, R,,,) will then have length U, ., so that the lengths of
the intervals (R,, R,,) form an identically and independently distributed
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sequence. For p > 1, R, will not necessarily lie between A4, and 4,
although it will lie between 4, and 4,,,_;.

Similar calculations to ours have been performed by Winsten [3],
who also uses an imbedded chain whose time points do not correspond to
instants of physical discontinuity of the system.

For the idea of extending our method to general p we are indebted to
Dr R. M. Loynes.

5. Finite waiting room

The methods of the previous section provide a very easy approach to
the consideration of a queue with an input satisfying (4.1) when the size
of the waiting room is restricted.

Suppose that the number of customers waiting and in service is
restricted to m = %, and that any arrivals finding # customers in the system
are lost.

(2.1) is still valid, and corresponding to (4.2) we have

oo %
2 Iy i o(bo®) s _pin,0(by%)AU (u), =0, im,
0 r=0
00 i-j+1 . . .
f > Ti,,-_,,(bou)I’,-_,H’i(blu)dU(u), 0<i =141, i#m,
0 r=0
o0 m—j
P..— 2 Fm,m—r(bou)Fm—r+l,i(blu)dU(u)
i 0 r=0

+ f Ty n(bow) T ,(B0)dU ), 0 <j<m, i=m,
(1]

f T (b6 8) T (b 0) AU (), i=j=m,
0
0, i >1i+41.

As before the Markov chain is clearly aperiodic and irreducible, so
since the state space is finite, the chain must be ergodic. The practical
solution of the equations

m
x,-:zxipﬁ, Oéjém}
i=0
again proceeds by a simple recursion.

6. Infinitely many servers

We also give an explicit solution for the equilibrium distribution of
the number of busy servers for a system with an infinite number of servers
and an input of type (4.1), working with the regenerative points {R,}.
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It is easily shown that the equilibrium distribution {P;, ¢ = 0} always
exists. We denote its generating function by
P(z) = 3 P2, 2] < 1.

=0

We now have

J [1—exp (—uu)]*~7 exp (—jun), 0759,
) = (7)[ p (—uu)] p (—juun) ]
0 i>1,

and (P;;) maintains the form

. 20 T i (oot} _pi,0(b1%)dU (u), 7=0,
P.. = 00 1—i+1 . .
v > I'i,i—r(bou’)Fi—r+1,:’(b1u)dU(u)’ 0<j=1i+],
0 r=0
0 7> 141,

Substitution of these values in the equations
® .
Pj:zPiPij: 7=0,
i=0

and formation of the generating function P(z) from the left hand sides of
these equations gives

(6.1)  P(z) = [ [14(s—1) exp (—pubou)]P[L+(z—1) exp (—pu)]dU (u).
We now presume the legitimacy of the definitions
g; = (i) [@[d7 P(2)] =1 120,

our a posteriori justification residing in the fact that we shall solve for the
g; and obtain finite values.
Differentiation of (6.1) yields immediately

4=, exp (—jum)dU (u)+q;_, [, exp (—pu(i—b1))aU), =1,

whence
0= 20 TT[ [ exp (—uni—8) a0 )
x :1— f " exp (—ym’)dU(u)}—l], i=1.

0

We note that, since
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J.:o exp (—pux)dU(u) — 0, as x - o0,

the expression inside the square brackets in (6.2) is less than } for all
sufficiently large ¢, so that the ¢, are bounded. Our assumption is clearly
justified.
The solution (6.2) for the ¢, is completed by observing that
fo=P(1) =1

The equilibrium probabilities {P,} can now be determined from

P, = (UiN[@/dZ' 3 g(z—1)T,0

-3 (e

As before we can deduce the equilibrium distribution {p;, § = 0} of
the number of busy servers as found by arrivals.

An arrival will find § servers occupied if and only if there were j+m
(m = 0) customers in the system at the last regenerative point and there

have subsequently been m departures. Thus

v
=

Pi=2 Piim . Fi+m,i(b0u)dU(“)x 7

m=0
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