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Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
PO Box 127, 1364 Budapest, Hungary

(balka.richard@renyi.mta.hu; harangi.viktor@renyi.mta.hu)

(Received 31 March 2012)

Abstract We prove that for any non-degenerate continuum K ⊆ R
d there exists a rectifiable curve such

that its intersection with K has Hausdorff dimension 1. This answers a question of Kirchheim.
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1. Introduction

A topological space K is called a continuum if it is compact and connected. The following
question was asked by B. Kirchheim (personal communication, 2011).

Question 1.1. Does there exist a non-degenerate curve (or, more generally, a con-
tinuum) K ⊆ Rd such that every rectifiable curve intersects K in a set of Hausdorff
dimension less than 1?

The motivation behind this question was [3, Example (b), p. 208], where Gromov seems
to suggest that such non-degenerate curves exist. In this paper we answer Question 1.1
in the negative.

Theorem 1.2 (main theorem). For any non-degenerate continuum K ⊆ Rd there
exists a rectifiable curve such that its intersection with K has Hausdorff dimension 1.

Remark 1.3. Finding a one-dimensional intersection is the best we can hope for, since
any purely unrectifiable curve K in the plane (e.g. the Koch snowflake curve) has the
property that the intersection of K and a rectifiable curve has zero H1 measure.

2. Preliminaries

The diameter and the boundary of a set A are denoted by diamA and ∂A, respectively.
For A ⊆ Rd and s � 0 the s-dimensional Hausdorff measure is defined as

Hs(A) = lim
δ→0+

Hs
δ(A),
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where

Hs
δ(A) = inf

{ ∞∑
i=1

(diamAi)s : A ⊆
∞⋃

i=1

Ai ∀idiam Ai � δ

}
.

Then, the Hausdorff dimension of A is

dimH A = sup{s � 0: Hs(A) > 0}.

Let A ⊆ Rd be non-empty and bounded, and let δ > 0. Set

N(A, δ) = min
{

k : A ⊆
k⋃

i=1

Ai ∀idiam Ai � δ

}
.

The upper Minkowski dimension of A is defined as

dimM (A) = lim sup
δ→0+

log N(A, δ)
− log δ

.

If A ⊆ Rd is non-empty and bounded, then it follows easily from the above definitions
that

dimH A � dimM (A).

For more information on these concepts see [2,4].
A continuous map f : [a, b] → Rd is called a curve. Its length is defined as

length(f) = sup
{ n∑

i=1

|f(xi) − f(xi−1)| : n ∈ N+, a = x0 < · · · < xn = b

}
.

If length(f) < ∞, then f is said to be rectifiable. We say that f is naturally parametrized
if for all x, y ∈ [a, b], x � y, we have that

length(f |[x,y]) = |x − y|.

We simply write Γ = f([a, b]) instead of f if the parametrization is obvious or not
important for us. For every non-degenerate rectifiable curve Γ we have 0 < H1(Γ ) < ∞,
so dimH Γ = 1. If |f(x) − f(y)| � |x − y| for all x, y ∈ [a, b], then f is called 1-Lipschitz.
Every naturally parametrized curve is clearly 1-Lipschitz.

3. The proof

First we need some lemmas. The following lemma is probably known, but we could not
find a reference, so we outline its proof.

Lemma 3.1. If a non-empty bounded set A ⊆ Rd has upper Minkowski dimension
less than 1, then a rectifiable curve covers A.
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Proof. We can assume that A is compact and that A ⊆ [0, 1]d, since we can take its
closure and transform it into the unit cube with a similarity; this does not change the
upper Minkowski dimension of the set or whether it can be covered by a rectifiable curve.

For every n ∈ N we divide [0, 1]d into non-overlapping cubes with edge length 2−n in
the natural way, and we denote the cubes that intersect A by

Qn,1, Qn,2, . . . , Qn,rn ,

where rn is the number of such cubes. As every set with diameter at most 2−n can
intersect at most 3d of the above cubes, we obtain that rn � 3dN(A, 2−n). We fix s such
that dimM (A) < s < 1. By the definition of the upper Minkowski dimension, there exists
a constant c1 ∈ R such that, for all n ∈ N,

rn � c12sn. (3.1)

Let n ∈ N and i ∈ {1, . . . , rn} be arbitrarily fixed. Let Pn,i be the vertex of Qn,i that is
the closest to the origin. If Qn+1,j1 , . . . , Qn+1,jm are the next level cubes contained by
Qn,i, then consider the broken line

Γn,i = Pn,iPn+1,j1Pn+1,j2 · · ·Pn+1,jm
Pn,i.

Thus,
length(Γn,i) � (m + 1) diamQn,i � 2m

√
d 2−n. (3.2)

Let ln be the sum of these lengths for all i ∈ {1, . . . , rn}. Then, (3.2) and (3.1) imply
that

ln � 2rn+1
√

d 2−n � 2c12s(n+1)
√

d 2−n = c22(s−1)n, (3.3)

where c2 = c1
√

d 2s+1. We set

Ln =
n∑

k=0

lk and L =
∞∑

k=0

lk.

Since s < 1, (3.3) implies that L < ∞.
We now define the rectifiable curve covering A. First, we take the broken line Γ0 = Γ0,1

with its natural parametrization g0 : [0, L0] → Γ0. Assume that the curves gk : [0, lk] → Γk

are already defined for all k < n. At every point Pn,i, i ∈ {1, . . . , rn}, we insert the broken
line Γn,i in Γn−1, so we obtain a naturally parametrized curve gn : [0, Ln] → Γn.

For every n ∈ N we define fn : [0, L] → Γn such that

fn(x) =

{
gn(x) if x ∈ [0, Ln],

gn(Ln) if x ∈ [Ln, L].

We now prove that the sequence 〈fn〉 uniformly converges. We fix n ∈ N and x ∈ [0, L]
arbitrarily. As

∞∑
n=0

ln < ∞,
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it is enough to prove that |fn+1(x) − fn(x)| � ln+1. By construction, there exists y ∈
[0, L] such that fn(x) = fn+1(y) and |x−y| � ln+1. Since gn+1 is naturally parametrized,
we obtain that

|fn+1(x) − fn(x)| = |fn+1(x) − fn+1(y)| � |x − y| � ln+1.

Therefore, 〈fn〉 uniformly converges to some f : [0, L] → Rd. As a uniform limit of
1-Lipschitz functions, f is also 1-Lipschitz, thus rectifiable.

It remains to prove that A ⊆ f([0, L]). Let z ∈ A. We need to show that there exists
x ∈ [0, L] such that f(x) = z. For every n ∈ N there exists in ∈ {1, . . . , rn} such that
z ∈ Qn,in

. Let xn ∈ [0, L] such that fn(xn) = Pn,in for all n ∈ N. By choosing a
subsequence, we may assume that xn converges to some x ∈ [0, L]. Therefore,

f(x) = lim
n→∞

fn(xn) = lim
n→∞

Pn,in = z.

The proof is complete. �

The next lemma is [1, Lemma 6.1.25].

Lemma 3.2. If A is a closed subspace of a continuum X such that ∅ 
= A 
= X, then
for every connected component C of A we have that C ∩ ∂A 
= ∅.

We also need the following technical lemma.

Lemma 3.3. Suppose that K ⊆ Rd is a continuum contained by a unit cube Q and
that K has a point on each of two opposite sides of Q. Then, for any positive integer N

we can find N pairwise non-overlapping cubes Q1, . . . , QN , with edge length 1/N such
that for each i ∈ {1, . . . , N} there exists a continuum Ki ⊆ K ∩ Qi, with the property
that Ki has a point on each of two opposite sides of Qi.

Proof. Let N ∈ N+ be fixed. Set S0 = {0} × [0, 1]d−1 and for all i ∈ {1, . . . , N}
consider

Si = {i/N} × [0, 1]d−1 and Ti = [(i − 1)/N, i/N ] × [0, 1]d−1.

We may assume that Q = [0, 1]d and that the two opposite sides intersecting K are S0

and SN . Let x ∈ K ∩ S0 and y ∈ K ∩ SN .
We now prove that for each i ∈ {1, . . . , N} there exists a continuum Ci ⊆ K ∩ Ti such

that Ci ∩ Si−1 
= ∅ and Ci ∩ Si 
= ∅. Let C1 be the component of K ∩ T1 containing x.
Applying Lemma 3.2 for X = K, A = K∩T1 and C = C1 yields that C1∩S1 
= ∅ (observe
that if we consider A = K ∩ T1 as a subspace of K, then its boundary is contained in
K ∩S1). Let C ′

2 be the component of K ∩(T2 ∪· · ·∪TN ) containing y. Similarly as above,
we obtain that C ′

2 ∩ S1 
= ∅. If we continue this process, we get the required continua
C2, . . . , CN .

Finally, for each i ∈ {1, . . . , N} we construct a cube Qi ⊆ Ti with edge length 1/N
and a continuum Ki ⊆ Qi such that Ki has a point on each of two opposite sides of
Qi. Clearly, the cubes Qi will be pairwise non-overlapping, and it is enough to construct
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Q1 and K1 (one can get Qi, Ki similarly). We consider the standard basis of Rd, e1 =
(1, 0, . . . , 0), . . . ,ed = (0, 0, . . . , 1). Set A1 = C1, V1 = {0} × Rd−1, W1 = {1/N} × Rd−1,
Z1 = [0, 1/N ] × Rd−1 and m(1) = 1. Then, the definitions yield that A1 has a point on
both Vm(1) and Wm(1). Let j ∈ {2, . . . , d} and assume that Ak, Vk, Wk, Zk and m(k)
are already defined for all k < j such that Ak has a point on both Vm(k) and Wm(k). Let
xj ∈ Aj−1 be a point that has minimal jth coordinate, and let Vj be the affine hyperplane
that is orthogonal to ej and contains xj . Set Wj = Vj +(1/N)ej , and let Zj be the closed
strip between Vj and Wj . If Aj−1 ⊆ Zj , then let Aj = Aj−1 and m(j) = m(j − 1). If
Aj−1 � Zj , then let Aj be the component of xj in Aj−1 ∩ Zj and m(j) = j; in this case,
Lemma 3.2 yields Aj ∩ Wj 
= ∅. Thus, Aj has a point on both Vm(j) and Wm(j). Let

Q1 =
d⋂

j=1

Zj

and K1 = Ad. Then, Q1 ⊆ S1 is a cube with edge length 1/N and K1 ⊆ Q1 is a
continuum. As K1 has a point on both Vm(d) and Wm(d), we obtain that K1 has a point
on each of two opposite sides of Q1. The proof is complete. �

Now we are ready to prove Theorem 1.2.

Proof. By considering a similar copy of K, we may assume that K is contained by a
unit cube Q and that K has a point on each of two opposite sides of Q.

Let ε > 0 be arbitrary. First, we prove the weaker result that there exists A ⊆ K such
that 1−ε � dimH A = dimM (A) < 1. By Lemma 3.1, A is covered by a rectifiable curve.
We fix an integer N � 2, for which

s :=
log(N − 1)

log N
� 1 − ε.

We construct A ⊆ K such that dimHA = dimM (A) = s. Set In = {1, . . . , N − 1}n for
every n ∈ N+. Iterating Lemma 3.3 implies that for all n ∈ N+ and (i1, . . . , in) ∈ In

there exist cubes Qi1···in in Q with edge length 1/Nn such that Qi1···in ⊆ Qi1···in−1 , and
there exist continua Ki1···in ⊆ K such that Ki1···in ⊆ Qi1···in ∩ Ki1···in−1 and Ki1···in has
a point on each of two opposite sides of Qi1···in . Set

An =
N−1⋃
i1=1

· · ·
N−1⋃
in=1

Ki1···in
,

and let

A =
∞⋂

n=1

An.

Clearly, A ⊆ K is compact.
On the one hand, as A ⊆ An and An is covered by (N − 1)n cubes of edge length

1/Nn, we obtain that N(An,
√

d/Nn) � (N − 1)n for all n ∈ N+. Therefore,

dimM (A) � log(N − 1)
log N

= s.
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On the other hand, we prove that Hs(A) > 0. Assume that

A ⊆
∞⋃

j=1

Uj ;

it is enough to prove that
∞∑

j=1

(diamUj)s � 1
2d(N − 1)

.

Clearly, we may assume that Uj is a non-empty open set with diamUj < 1 for each j,
and the compactness of A implies that there is a finite subcover

A ⊆
k⋃

j=1

Uj .

We fix n0 ∈ N+ such that 1/Nn0 < min1�j�k diam Uj . For j ∈ {1, . . . , k} let

tj = #{(i1, . . . , in0) ∈ In0 : Uj ∩ Ki1···in0

= ∅}.

Since

A ⊆
k⋃

j=1

Uj ,

we have that
k∑

j=1

tj � (N − 1)n0 . (3.4)

We now show that, for all j ∈ {1, . . . , k},

(diamUj)s � tj
2d(N − 1)n0+1 . (3.5)

We fix j ∈ {1, . . . , k}. There exists 0 � m < n0 such that 1/Nm+1 � diam Uj < 1/Nm.
Clearly, the number of cubes Qi1···im at level m that intersect Uj is at most 2d. Therefore,
tj � 2d(N − 1)n0−m. On the other hand, diamUj � 1/Nm+1 implies that (diamUj)s �
1/(N − 1)m+1, and (3.5) follows. By (3.4) and (3.5), we obtain that

k∑
j=1

(diamUj)s �
k∑

j=1

tj
2d(N − 1)n0+1 � 1

2d(N − 1)
.

Hence, Hs(A) > 0. Therefore, dimH A � s, so s � dimH A � dimM (A) � s. Thus,
1 − ε � dimH A = dimM (A) < 1.
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We are now in a position to prove that there exists a rectifiable curve Γ with dimH(Γ ∩
K) = 1. Pick an arbitrary point x ∈ K and let Kn be the intersection of K and the closed
ball of radius 1/2n centred at x. Let Cn denote the component of Kn containing x. Since
Cn is a non-degenerate continuum by Lemma 3.2, we know that there exists Bn ⊆ Cn

such that 1 − (1/n) � dimH Bn = dimM (Bn) < 1. Therefore, Lemma 3.1 implies that
there exist rectifiable curves Γn covering Bn. We may assume that the end points of Γn

are in Bn. We can also assume that the length of Γn is at most 1/2n. (Otherwise we
split Γn up into finitely many parts, each having length at most 1/2n; then, one of these
parts intersects Bn in a set of Hausdorff dimension at least 1 − (1/n).) We concatenate
the curves Γn with line segments. Then, the full length of the line segments is at most

2
∞∑

n=1

1
2n

= 2,

the full length of the curves Γn is at most

∞∑
n=1

1
2n

= 1,

so we get a rectifiable curve Γ that covers

∞⋃
n=1

Bn.

As

dimH

( ∞⋃
n=1

Bn

)
= 1,

the intersection Γ ∩ K has Hausdorff dimension 1. The proof is complete. �
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