INTERSECTION OF CONTINUA AND RECTIFIABLE CURVES

RICHÁRD BALKA AND VIKTOR HARANGI
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127, 1364 Budapest, Hungary
(balka.richard@renyi.mta.hu; harangi.viktor@renyi.mta.hu)

(Received 31 March 2012)

Abstract

We prove that for any non-degenerate continuum $K \subseteq \mathbb{R}^{d}$ there exists a rectifiable curve such that its intersection with K has Hausdorff dimension 1. This answers a question of Kirchheim.

Keywords: continuum; rectifiable curve; Hausdorff dimension
2010 Mathematics subject classification: Primary 28A78

1. Introduction

A topological space K is called a continuum if it is compact and connected. The following question was asked by B. Kirchheim (personal communication, 2011).

Question 1.1. Does there exist a non-degenerate curve (or, more generally, a continuum) $K \subseteq \mathbb{R}^{d}$ such that every rectifiable curve intersects K in a set of Hausdorff dimension less than 1 ?

The motivation behind this question was [3, Example (b), p. 208], where Gromov seems to suggest that such non-degenerate curves exist. In this paper we answer Question 1.1 in the negative.

Theorem 1.2 (main theorem). For any non-degenerate continuum $K \subseteq \mathbb{R}^{d}$ there exists a rectifiable curve such that its intersection with K has Hausdorff dimension 1.

Remark 1.3. Finding a one-dimensional intersection is the best we can hope for, since any purely unrectifiable curve K in the plane (e.g. the Koch snowflake curve) has the property that the intersection of K and a rectifiable curve has zero \mathcal{H}^{1} measure.

2. Preliminaries

The diameter and the boundary of a set A are denoted by $\operatorname{diam} A$ and ∂A, respectively. For $A \subseteq \mathbb{R}^{d}$ and $s \geqslant 0$ the s-dimensional Hausdorff measure is defined as

$$
\mathcal{H}^{s}(A)=\lim _{\delta \rightarrow 0+} \mathcal{H}_{\delta}^{s}(A)
$$

where

$$
\mathcal{H}_{\delta}^{s}(A)=\inf \left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} A_{i}\right)^{s}: A \subseteq \bigcup_{i=1}^{\infty} A_{i} \forall i \operatorname{diam} A_{i} \leqslant \delta\right\}
$$

Then, the Hausdorff dimension of A is

$$
\operatorname{dim}_{H} A=\sup \left\{s \geqslant 0: \mathcal{H}^{s}(A)>0\right\}
$$

Let $A \subseteq \mathbb{R}^{d}$ be non-empty and bounded, and let $\delta>0$. Set

$$
N(A, \delta)=\min \left\{k: A \subseteq \bigcup_{i=1}^{k} A_{i} \forall i \operatorname{diam} A_{i} \leqslant \delta\right\}
$$

The upper Minkowski dimension of A is defined as

$$
\overline{\operatorname{dim}}_{M}(A)=\limsup _{\delta \rightarrow 0+} \frac{\log N(A, \delta)}{-\log \delta}
$$

If $A \subseteq \mathbb{R}^{d}$ is non-empty and bounded, then it follows easily from the above definitions that

$$
\operatorname{dim}_{H} A \leqslant \overline{\operatorname{dim}}_{M}(A)
$$

For more information on these concepts see $[\mathbf{2}, \mathbf{4}]$.
A continuous map $f:[a, b] \rightarrow \mathbb{R}^{d}$ is called a curve. Its length is defined as

$$
\operatorname{length}(f)=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|: n \in \mathbb{N}^{+}, a=x_{0}<\cdots<x_{n}=b\right\}
$$

If length $(f)<\infty$, then f is said to be rectifiable. We say that f is naturally parametrized if for all $x, y \in[a, b], x \leqslant y$, we have that

$$
\operatorname{length}\left(\left.f\right|_{[x, y]}\right)=|x-y|
$$

We simply write $\Gamma=f([a, b])$ instead of f if the parametrization is obvious or not important for us. For every non-degenerate rectifiable curve Γ we have $0<\mathcal{H}^{1}(\Gamma)<\infty$, so $\operatorname{dim}_{H} \Gamma=1$. If $|f(x)-f(y)| \leqslant|x-y|$ for all $x, y \in[a, b]$, then f is called 1-Lipschitz. Every naturally parametrized curve is clearly 1-Lipschitz.

3. The proof

First we need some lemmas. The following lemma is probably known, but we could not find a reference, so we outline its proof.

Lemma 3.1. If a non-empty bounded set $A \subseteq \mathbb{R}^{d}$ has upper Minkowski dimension less than 1, then a rectifiable curve covers A.

Proof. We can assume that A is compact and that $A \subseteq[0,1]^{d}$, since we can take its closure and transform it into the unit cube with a similarity; this does not change the upper Minkowski dimension of the set or whether it can be covered by a rectifiable curve.

For every $n \in \mathbb{N}$ we divide $[0,1]^{d}$ into non-overlapping cubes with edge length 2^{-n} in the natural way, and we denote the cubes that intersect A by

$$
Q_{n, 1}, Q_{n, 2}, \ldots, Q_{n, r_{n}}
$$

where r_{n} is the number of such cubes. As every set with diameter at most 2^{-n} can intersect at most 3^{d} of the above cubes, we obtain that $r_{n} \leqslant 3^{d} N\left(A, 2^{-n}\right)$. We fix s such that $\overline{\operatorname{dim}}_{M}(A)<s<1$. By the definition of the upper Minkowski dimension, there exists a constant $c_{1} \in \mathbb{R}$ such that, for all $n \in \mathbb{N}$,

$$
\begin{equation*}
r_{n} \leqslant c_{1} 2^{s n} \tag{3.1}
\end{equation*}
$$

Let $n \in \mathbb{N}$ and $i \in\left\{1, \ldots, r_{n}\right\}$ be arbitrarily fixed. Let $P_{n, i}$ be the vertex of $Q_{n, i}$ that is the closest to the origin. If $Q_{n+1, j_{1}}, \ldots, Q_{n+1, j_{m}}$ are the next level cubes contained by $Q_{n, i}$, then consider the broken line

$$
\Gamma_{n, i}=P_{n, i} P_{n+1, j_{1}} P_{n+1, j_{2}} \cdots P_{n+1, j_{m}} P_{n, i}
$$

Thus,

$$
\begin{equation*}
\operatorname{length}\left(\Gamma_{n, i}\right) \leqslant(m+1) \operatorname{diam} Q_{n, i} \leqslant 2 m \sqrt{d} 2^{-n} \tag{3.2}
\end{equation*}
$$

Let l_{n} be the sum of these lengths for all $i \in\left\{1, \ldots, r_{n}\right\}$. Then, (3.2) and (3.1) imply that

$$
\begin{equation*}
l_{n} \leqslant 2 r_{n+1} \sqrt{d} 2^{-n} \leqslant 2 c_{1} 2^{s(n+1)} \sqrt{d} 2^{-n}=c_{2} 2^{(s-1) n} \tag{3.3}
\end{equation*}
$$

where $c_{2}=c_{1} \sqrt{d} 2^{s+1}$. We set

$$
L_{n}=\sum_{k=0}^{n} l_{k} \quad \text { and } \quad L=\sum_{k=0}^{\infty} l_{k}
$$

Since $s<1$, (3.3) implies that $L<\infty$.
We now define the rectifiable curve covering A. First, we take the broken line $\Gamma_{0}=\Gamma_{0,1}$ with its natural parametrization $g_{0}:\left[0, L_{0}\right] \rightarrow \Gamma_{0}$. Assume that the curves $g_{k}:\left[0, l_{k}\right] \rightarrow \Gamma_{k}$ are already defined for all $k<n$. At every point $P_{n, i}, i \in\left\{1, \ldots, r_{n}\right\}$, we insert the broken line $\Gamma_{n, i}$ in Γ_{n-1}, so we obtain a naturally parametrized curve $g_{n}:\left[0, L_{n}\right] \rightarrow \Gamma_{n}$.

For every $n \in \mathbb{N}$ we define $f_{n}:[0, L] \rightarrow \Gamma_{n}$ such that

$$
f_{n}(x)= \begin{cases}g_{n}(x) & \text { if } x \in\left[0, L_{n}\right] \\ g_{n}\left(L_{n}\right) & \text { if } x \in\left[L_{n}, L\right]\end{cases}
$$

We now prove that the sequence $\left\langle f_{n}\right\rangle$ uniformly converges. We fix $n \in \mathbb{N}$ and $x \in[0, L]$ arbitrarily. As

$$
\sum_{n=0}^{\infty} l_{n}<\infty
$$

it is enough to prove that $\left|f_{n+1}(x)-f_{n}(x)\right| \leqslant l_{n+1}$. By construction, there exists $y \in$ $[0, L]$ such that $f_{n}(x)=f_{n+1}(y)$ and $|x-y| \leqslant l_{n+1}$. Since g_{n+1} is naturally parametrized, we obtain that

$$
\left|f_{n+1}(x)-f_{n}(x)\right|=\left|f_{n+1}(x)-f_{n+1}(y)\right| \leqslant|x-y| \leqslant l_{n+1}
$$

Therefore, $\left\langle f_{n}\right\rangle$ uniformly converges to some $f:[0, L] \rightarrow \mathbb{R}^{d}$. As a uniform limit of 1-Lipschitz functions, f is also 1-Lipschitz, thus rectifiable.

It remains to prove that $A \subseteq f([0, L])$. Let $\boldsymbol{z} \in A$. We need to show that there exists $x \in[0, L]$ such that $f(x)=\boldsymbol{z}$. For every $n \in \mathbb{N}$ there exists $i_{n} \in\left\{1, \ldots, r_{n}\right\}$ such that $\boldsymbol{z} \in Q_{n, i_{n}}$. Let $x_{n} \in[0, L]$ such that $f_{n}\left(x_{n}\right)=P_{n, i_{n}}$ for all $n \in \mathbb{N}$. By choosing a subsequence, we may assume that x_{n} converges to some $x \in[0, L]$. Therefore,

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=\lim _{n \rightarrow \infty} P_{n, i_{n}}=\boldsymbol{z}
$$

The proof is complete.
The next lemma is [1, Lemma 6.1.25].
Lemma 3.2. If A is a closed subspace of a continuum X such that $\emptyset \neq A \neq X$, then for every connected component C of A we have that $C \cap \partial A \neq \emptyset$.

We also need the following technical lemma.
Lemma 3.3. Suppose that $K \subseteq \mathbb{R}^{d}$ is a continuum contained by a unit cube Q and that K has a point on each of two opposite sides of Q. Then, for any positive integer N we can find N pairwise non-overlapping cubes Q_{1}, \ldots, Q_{N}, with edge length $1 / N$ such that for each $i \in\{1, \ldots, N\}$ there exists a continuum $K_{i} \subseteq K \cap Q_{i}$, with the property that K_{i} has a point on each of two opposite sides of Q_{i}.

Proof. Let $N \in \mathbb{N}^{+}$be fixed. Set $S_{0}=\{0\} \times[0,1]^{d-1}$ and for all $i \in\{1, \ldots, N\}$ consider

$$
S_{i}=\{i / N\} \times[0,1]^{d-1} \quad \text { and } \quad T_{i}=[(i-1) / N, i / N] \times[0,1]^{d-1}
$$

We may assume that $Q=[0,1]^{d}$ and that the two opposite sides intersecting K are S_{0} and S_{N}. Let $\boldsymbol{x} \in K \cap S_{0}$ and $\boldsymbol{y} \in K \cap S_{N}$.

We now prove that for each $i \in\{1, \ldots, N\}$ there exists a continuum $C_{i} \subseteq K \cap T_{i}$ such that $C_{i} \cap S_{i-1} \neq \emptyset$ and $C_{i} \cap S_{i} \neq \emptyset$. Let C_{1} be the component of $K \cap T_{1}$ containing \boldsymbol{x}. Applying Lemma 3.2 for $X=K, A=K \cap T_{1}$ and $C=C_{1}$ yields that $C_{1} \cap S_{1} \neq \emptyset$ (observe that if we consider $A=K \cap T_{1}$ as a subspace of K, then its boundary is contained in $\left.K \cap S_{1}\right)$. Let C_{2}^{\prime} be the component of $K \cap\left(T_{2} \cup \cdots \cup T_{N}\right)$ containing \boldsymbol{y}. Similarly as above, we obtain that $C_{2}^{\prime} \cap S_{1} \neq \emptyset$. If we continue this process, we get the required continua C_{2}, \ldots, C_{N}.

Finally, for each $i \in\{1, \ldots, N\}$ we construct a cube $Q_{i} \subseteq T_{i}$ with edge length $1 / N$ and a continuum $K_{i} \subseteq Q_{i}$ such that K_{i} has a point on each of two opposite sides of Q_{i}. Clearly, the cubes Q_{i} will be pairwise non-overlapping, and it is enough to construct
Q_{1} and K_{1} (one can get Q_{i}, K_{i} similarly). We consider the standard basis of $\mathbb{R}^{d}, \boldsymbol{e}_{1}=$ $(1,0, \ldots, 0), \ldots, \boldsymbol{e}_{d}=(0,0, \ldots, 1)$. Set $A_{1}=C_{1}, V_{1}=\{0\} \times \mathbb{R}^{d-1}, W_{1}=\{1 / N\} \times \mathbb{R}^{d-1}$, $Z_{1}=[0,1 / N] \times \mathbb{R}^{d-1}$ and $m(1)=1$. Then, the definitions yield that A_{1} has a point on both $V_{m(1)}$ and $W_{m(1)}$. Let $j \in\{2, \ldots, d\}$ and assume that $A_{k}, V_{k}, W_{k}, Z_{k}$ and $m(k)$ are already defined for all $k<j$ such that A_{k} has a point on both $V_{m(k)}$ and $W_{m(k)}$. Let $\boldsymbol{x}_{j} \in A_{j-1}$ be a point that has minimal j th coordinate, and let V_{j} be the affine hyperplane that is orthogonal to \boldsymbol{e}_{j} and contains \boldsymbol{x}_{j}. Set $W_{j}=V_{j}+(1 / N) \boldsymbol{e}_{j}$, and let Z_{j} be the closed strip between V_{j} and W_{j}. If $A_{j-1} \subseteq Z_{j}$, then let $A_{j}=A_{j-1}$ and $m(j)=m(j-1)$. If $A_{j-1} \nsubseteq Z_{j}$, then let A_{j} be the component of \boldsymbol{x}_{j} in $A_{j-1} \cap Z_{j}$ and $m(j)=j$; in this case, Lemma 3.2 yields $A_{j} \cap W_{j} \neq \emptyset$. Thus, A_{j} has a point on both $V_{m(j)}$ and $W_{m(j)}$. Let

$$
Q_{1}=\bigcap_{j=1}^{d} Z_{j}
$$

and $K_{1}=A_{d}$. Then, $Q_{1} \subseteq S_{1}$ is a cube with edge length $1 / N$ and $K_{1} \subseteq Q_{1}$ is a continuum. As K_{1} has a point on both $V_{m(d)}$ and $W_{m(d)}$, we obtain that K_{1} has a point on each of two opposite sides of Q_{1}. The proof is complete.

Now we are ready to prove Theorem 1.2.
Proof. By considering a similar copy of K, we may assume that K is contained by a unit cube Q and that K has a point on each of two opposite sides of Q.

Let $\varepsilon>0$ be arbitrary. First, we prove the weaker result that there exists $A \subseteq K$ such that $1-\varepsilon \leqslant \operatorname{dim}_{H} A=\overline{\operatorname{dim}}_{M}(A)<1$. By Lemma 3.1, A is covered by a rectifiable curve. We fix an integer $N \geqslant 2$, for which

$$
s:=\frac{\log (N-1)}{\log N} \geqslant 1-\varepsilon
$$

We construct $A \subseteq K$ such that $\operatorname{dim}_{H} A=\overline{\operatorname{dim}}_{M}(A)=s$. Set $\mathcal{I}_{n}=\{1, \ldots, N-1\}^{n}$ for every $n \in \mathbb{N}^{+}$. Iterating Lemma 3.3 implies that for all $n \in \mathbb{N}^{+}$and $\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{I}_{n}$ there exist cubes $Q_{i_{1} \cdots i_{n}}$ in Q with edge length $1 / N^{n}$ such that $Q_{i_{1} \cdots i_{n}} \subseteq Q_{i_{1} \cdots i_{n-1}}$, and there exist continua $K_{i_{1} \cdots i_{n}} \subseteq K$ such that $K_{i_{1} \cdots i_{n}} \subseteq Q_{i_{1} \cdots i_{n}} \cap K_{i_{1} \cdots i_{n-1}}$ and $K_{i_{1} \cdots i_{n}}$ has a point on each of two opposite sides of $Q_{i_{1} \cdots i_{n}}$. Set

$$
A_{n}=\bigcup_{i_{1}=1}^{N-1} \cdots \bigcup_{i_{n}=1}^{N-1} K_{i_{1} \cdots i_{n}}
$$

and let

$$
A=\bigcap_{n=1}^{\infty} A_{n}
$$

Clearly, $A \subseteq K$ is compact.
On the one hand, as $A \subseteq A_{n}$ and A_{n} is covered by $(N-1)^{n}$ cubes of edge length $1 / N^{n}$, we obtain that $N\left(A_{n}, \sqrt{d} / N^{n}\right) \leqslant(N-1)^{n}$ for all $n \in \mathbb{N}^{+}$. Therefore,

$$
\overline{\operatorname{dim}}_{M}(A) \leqslant \frac{\log (N-1)}{\log N}=s
$$

On the other hand, we prove that $\mathcal{H}^{s}(A)>0$. Assume that

$$
A \subseteq \bigcup_{j=1}^{\infty} U_{j}
$$

it is enough to prove that

$$
\sum_{j=1}^{\infty}\left(\operatorname{diam} U_{j}\right)^{s} \geqslant \frac{1}{2^{d}(N-1)}
$$

Clearly, we may assume that U_{j} is a non-empty open set with $\operatorname{diam} U_{j}<1$ for each j, and the compactness of A implies that there is a finite subcover

$$
A \subseteq \bigcup_{j=1}^{k} U_{j}
$$

We fix $n_{0} \in \mathbb{N}^{+}$such that $1 / N^{n_{0}}<\min _{1 \leqslant j \leqslant k} \operatorname{diam} U_{j}$. For $j \in\{1, \ldots, k\}$ let

$$
t_{j}=\#\left\{\left(i_{1}, \ldots, i_{n_{0}}\right) \in \mathcal{I}_{n_{0}}: U_{j} \cap K_{i_{1} \cdots i_{n_{0}}} \neq \emptyset\right\}
$$

Since

$$
A \subseteq \bigcup_{j=1}^{k} U_{j}
$$

we have that

$$
\begin{equation*}
\sum_{j=1}^{k} t_{j} \geqslant(N-1)^{n_{0}} \tag{3.4}
\end{equation*}
$$

We now show that, for all $j \in\{1, \ldots, k\}$,

$$
\begin{equation*}
\left(\operatorname{diam} U_{j}\right)^{s} \geqslant \frac{t_{j}}{2^{d}(N-1)^{n_{0}+1}} \tag{3.5}
\end{equation*}
$$

We fix $j \in\{1, \ldots, k\}$. There exists $0 \leqslant m<n_{0}$ such that $1 / N^{m+1} \leqslant \operatorname{diam} U_{j}<1 / N^{m}$. Clearly, the number of cubes $Q_{i_{1} \cdots i_{m}}$ at level m that intersect U_{j} is at most 2^{d}. Therefore, $t_{j} \leqslant 2^{d}(N-1)^{n_{0}-m}$. On the other hand, $\operatorname{diam} U_{j} \geqslant 1 / N^{m+1}$ implies that $\left(\operatorname{diam} U_{j}\right)^{s} \geqslant$ $1 /(N-1)^{m+1}$, and (3.5) follows. By (3.4) and (3.5), we obtain that

$$
\sum_{j=1}^{k}\left(\operatorname{diam} U_{j}\right)^{s} \geqslant \sum_{j=1}^{k} \frac{t_{j}}{2^{d}(N-1)^{n_{0}+1}} \geqslant \frac{1}{2^{d}(N-1)}
$$

Hence, $\mathcal{H}^{s}(A)>0$. Therefore, $\operatorname{dim}_{H} A \geqslant s$, so $s \leqslant \operatorname{dim}_{H} A \leqslant \overline{\operatorname{dim}}_{M}(A) \leqslant s$. Thus, $1-\varepsilon \leqslant \operatorname{dim}_{H} A=\overline{\operatorname{dim}}_{M}(A)<1$.

We are now in a position to prove that there exists a rectifiable curve Γ with $\operatorname{dim}_{H}(\Gamma \cap$ $K)=1$. Pick an arbitrary point $\boldsymbol{x} \in K$ and let K_{n} be the intersection of K and the closed ball of radius $1 / 2^{n}$ centred at \boldsymbol{x}. Let C_{n} denote the component of K_{n} containing \boldsymbol{x}. Since C_{n} is a non-degenerate continuum by Lemma 3.2, we know that there exists $B_{n} \subseteq C_{n}$ such that $1-(1 / n) \leqslant \operatorname{dim}_{H} B_{n}=\overline{\operatorname{dim}}_{M}\left(B_{n}\right)<1$. Therefore, Lemma 3.1 implies that there exist rectifiable curves Γ_{n} covering B_{n}. We may assume that the end points of Γ_{n} are in B_{n}. We can also assume that the length of Γ_{n} is at most $1 / 2^{n}$. (Otherwise we split Γ_{n} up into finitely many parts, each having length at most $1 / 2^{n}$; then, one of these parts intersects B_{n} in a set of Hausdorff dimension at least $1-(1 / n)$.) We concatenate the curves Γ_{n} with line segments. Then, the full length of the line segments is at most

$$
2 \sum_{n=1}^{\infty} \frac{1}{2^{n}}=2
$$

the full length of the curves Γ_{n} is at most

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1
$$

so we get a rectifiable curve Γ that covers

$$
\bigcup_{n=1}^{\infty} B_{n}
$$

As

$$
\operatorname{dim}_{H}\left(\bigcup_{n=1}^{\infty} B_{n}\right)=1
$$

the intersection $\Gamma \cap K$ has Hausdorff dimension 1. The proof is complete.
Acknowledgements. The authors gratefully acknowledge the support of the Hungarian Scientific Research Fund (Grant 72655).

References

1. R. Engelking, General topology, revised edn (Heldermann, Berlin, 1989).
2. K. Falconer, Fractal geometry: mathematical foundations and applications, 2nd edn (Wiley, 2003).
3. M. Gromov, Partial differential relations (Springer, 1986).
4. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, Volume 44 (Cambridge University Press, 1995).
