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Abstract

Finite amplitude pulsations of realistic stellar models
are analyzed within the framework of a promising asymptotic
perturbation approach and the results are compared with those of
numerical hydrodynamic studies.

The pulsations of Cepheid variables are characterized by
the fact that the growthrates of the excited modes are fairly small
"compared to their oscillation frequencies. While this is a distinct
drawback for the numerical hydrodynamic modelling of the nonlinear
behavior of such stars, it can be used to one's advantage in a
nonadiabatic nonlinear perturbation formalism (NNPF) (Buchler &
Goupil 1984; BG84). Previous perturbation approaches (e.g. Buchler
1978, Regev & Buchler 1981, Dziembowski & Kovacz 1984, Takeuti &
Aikawa 1982) have assumed the pulsations to be quasiadiabatic
throughout the whole star, that is also in the obviously nonadiabatic
outer layers, and thus conveniently used the real adiabatic
eigenvectors as a perturbation basis. While quite useful for
analytical considerations, the quasiadiabatic approximation
unfortunately does not lead to an unambiguous practical computational
scheme (Pesnell & Buchler 1984). In contrast, the NNPF includes the
nonadiabatic effects already in lowest order through the use of the
linear nonadiabatic (LNA) eigenvectors. The price one has to pay is
that these eigenvectors are not only complex, but, in addition,
necessitate the introduction of the left (adjoint) LNA eigenvectors,
which form a dual set orthogonal to the right eigenvectors. One of
the small parameters of problem is then the ratio r of the
growthrate, «k, to the oscillation frequency, . Since r is a
global parameter, nonadiabatic effects can be arbitrarily large as
long as r remains small. The basic assumption of the NNPF is that
the LNA modes can be split into two groups, one containing the
strongly damped (slave) modes and one containing the marginally
unstable, excited modes together with those marginally stable modes
which may get entrained either because of a low order internal
resonance or because of a nonlinear loss of stability. When these
conditions are satisfied the center manifold theorem and the theory
of normal forms guarantee us that amplitude equations (AE) can be
found, which involve only the amplitudes of the second group of
modes.
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So far, we have applied (Klapp, Goupil and Buchler 1984;
KGB84) the NNPF to the case of Cepheid models, of population I (Bump
Cepheids) and of population II (paradigmatized by BL Her), in the
regime where they have an internal resonance of the type
20 = Q_, The subscripts 0 and 2 refer to the fundamental and
second overtone, respectively. The apposite AE are given by (BG84)

da0 da2 2

_— = % —_c =

It %3y + Nyaka,, and It gya, + Nyas (1)
where o = 1iQ + « are the LNA eigenvalues, a, and a, are the

complex amplitudes ¥or the two resonant modes and the coefficients N
and N, involve the quadratic nonlinearities of the momentum and heat
flow equations, expanded around hydrostatic and thermal

equilibrium. These quadratic operators are then sandwiched between

appropriate right and left LNA eigenvectors (BG84). In lowest order
the displacement can be written as

SR(m) = 0.5 [a (t) Ej(m) + a,(t) Ey(m) + CeCol + s, (2)
where the Ev(m) are the radial parts of the right LNA vectors.

The solution of eq. 1l provides the time dependence of the
amplitudes in eq. 2. By introducing moduli and phases for the
amplitudes, a_(t) = Av(t)exp(iﬂvt)exp(iev(t)), it is possible to
reduce the two complex AE to a set of three real AE involving Ay, A2
and T = 6,- 20, only. Of particular interest are the solutions with
constant AO, A2 and ' (stable fixed points of the AE),
corresponding to oscillations in which the amplitudes of the two
modes are constant. Interesting, more complicated behavior is also
possible (KGB84), namely periodic energy transfer between the two
modes or irregular (chaotic) transfer.

The physical content of our AE (1) is very simple. The
fundamental mode is unstable, saps thermal energy from the star and
converts it initially exponentially fast into mechanical
(pulsational) energy. As the oscillation amplitude gets sufficiently
large energy is shared with the resonant overtoune through the
nonlinear terms. The latter mode, bring vibrationally stable,
restores energy back to the thermal reservoir. Stable fixed points
(and more general bounded solutions as well) can result from a
balance between these effects.

Figure 1 shows an H-R diagram for a specific set of
models of 4 solar masses. Our AE assume a near resonance to hold and
we have indicated lines of constant period ratio, Pz/P marked 0,48,
0.50 and 0.52. Also exhibited is the line (F) below which the
fundamental mode is unstable. Finally to the right of the line
marked (FPB) our AE have no fixed points.
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Fig. 1 H-R Diagram Fig. 2 Sequence of models
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Fig. 2 shows the behavior of the amplitudes and phases
for a sequence of models of constant effective temperature. This
behavior, namely the variation of T' = T + 7 through u/2 and the
dip of the amplitudes near the resonance is typical and can readily
be derived from a mere inspection of the AE (KGB84). Similarly it
can be shown that these features do not occur exactly at the
resonance, the deviation depending on the magnitude of the ratios

(Re N /Im Nv)' This, while having been held against a resomnance
origin of the bumps (Vemury & Stothers 1978), in fact corroborates
it. If the quadratic terms were evaluated with adiabatic
eigenvectors, the Nv would be purely imaginary. The size of these
ratios and the shift of the above features from exact resonance are
then an overall measure of the nonadlabaticity of the pulsations.

In fig. 3 we show the (scaled) surface velocities for the
sequence of models of fig. 2, clearly exhibiting the so-called
Herzsprung progression of the bump. The calculated surface
velocities agree to within a factor of two with those obtained with
comparable numerical hydrodynamic models.

We have studied a variety of resonant Cepheid models
(KGB84), In all the models in which our AE predict a steady bump,
hydrodynamic models indeed also find one.

To be fair we should also mention some of the limitations
of the AE. The AE cannot claim to reproduce all the physics of the
envelope, for example, shock waves, which involve high
nonlinearities. Similarly they cannot pretend to reproduce the
skewed observed velocity profiles in the atmosphere which occur in
the dilute atmosphere. However, as long as the shock waves or the
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Fig. 3 Surface velocity for the sequence
of models of fig. 2.
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outermost dilute layers are not instrumental in the saturation
mechanism, our AE are a useful and fast computational tool for
determining the gross features of the nonlinear behavior of a given
stellar model, i.e., the type of finite amplitude behavior (stable
fixed point, limit cycle, irregular attractor), the magnitude of the
welocities and the position (phase) of the bump. The NNPF is thus
seen to be complementary to the much more (hundredfold) expensive,
but more detailed numerical hydrodynamic approach.

We conclude that the good agreement with the hydrocode
suggests that our formalism captures the basic saturation mechanism
and can be used with some confidence to study the nonadiabatic
nonlinear behavior of large classes of stellar models. To finish we
want to emphasize that the NNPF is not limited to the resonant models
considered in this contribution, but applies to other models as well.
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