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Abstract

The first isolated and well-preserved phalanx (autopodial element) of a generically and
specifically indeterminate (probably xenopsarian) plesiosaur from the Maastrichtian type area
(south-east Netherlands) is described and illustrated. Morphological features of this bone,
such as the articular subchondral surfaces, allow it to be distinguished from phalanges of
co-occurring mosasaurs (Mosasauridae, Squamata) and could imply rapid growth in
plesiosaurs, similar to that observed in extant leatherback turtles. The large size of the phalanx
indicates that it originates either from a large juvenile or from a paedomorphic individual. The
paucity of plesiosaur remains in biocalcarenites of late Maastrichtian age in the Maastrichtian
type area could be explained by the shallow settings, in which these strata were deposited, which
may not have offered suitable ecological resources conducive to abundant plesiosaur
inhabitation. Presumably, the lack of steep continental slopes in the type Maastrichtian, at
which oceanic upwelling of cold, nutrient-rich water supported a higher prey density for pelagic
predators such as plesiosaurs, may have inhibited plesiosaur occupation. Rather, decomposing
floating carcasses may have been the source of dissociated elements of plesiosaurs in this area,
such as isolated teeth, vertebrae and the autopodial element described here.

Introduction

During the Mesozoic, plesiosaurs constituted a diverse and widely distributed group of marine
reptiles. The Jurassic–Cretaceous transition witnessed a faunal turnover amongst marine
reptiles, and the plesiosaurian clade, Xenopsaria, radiated rapidly during the Early Cretaceous
(Benson & Druckenmiller, 2014). Xenopsarians comprise two plesiosaur clades, namely the
Elasmosauridae Cope, 1869a and the Leptocleidia Ketchum & Benson, 2010, with the latter
including the Polycotylidae (see Benson & Druckenmiller, 2014).

Members of the family Elasmosauridae were still widespread and diverse during the latest
Maastrichtian, as exemplified by Zarafasaura from phosphatic strata of Morocco (Lomax &
Wahl, 2013; Vincent et al., 2013), as well as bymaterial fromChile (Otero et al., 2014), Argentina
(O’Gorman et al., 2014), Antarctica (O’Gorman & Coria, 2016) and Arctic regions of Eurasia
(Zverkov et al., 2023) and North-America (Russell, 1967). Until recently, only two polycotylid
clades appeared to have ranged into the early Maastrichtian, namely Occultonectia and
Polycotylinae (Mulder et al., 2000; Sato, 2005; O’Gorman & Gasparini, 2013; Fischer et al.,
2018). Recently, a new polycotylid with an elongated snout and remarkably long neck from the
lower Maastrichtian of the United States has been added to the latest Cretaceous record of this
family (Persons et al., 2022), while Clark et al. (2024) additionally introduced a new clade of
derived polycotylids that ranged into the Maastrichtian, the Dolichorhynchia. Representatives
of the family Polycotylidae Williston, 1908 in general had short, stout necks and an elongated
rostrum (Druckenmiller & Russell, 2008; Frey et al., 2017; Fischer et al., 2018). Similar to
polycotylids, elasmosaurids possessed numerous pointy teeth, but had extremely long necks and
a short rostrum (Everhart, 2006; Kubo et al., 2012; Brum et al., 2022). Both groups had four
morphologically similar flippers that enabled them to move efficiently through the water using
all limbs simultaneously, a way of propulsion also used by marine turtles and penguins often
referred to as subaqueous flight or ‘flying under water’ (Robinson, 1975; Massare, 1994;
Caldwell, 1997; Carpenter & Sanders, 2010; Muscutt et al., 2017). However, alternative modes of
locomotion such as rowing have been suggested for plesiosaurs as well (Araújo et al., 2015b).

TheMaastrichtian type area (south-east Netherlands and contiguous regions in Belgium and
Germany; Fig. 1) has long been known to yield both articulated and dissociated skeletal remains
of mosasaurs and cheloniid turtles (Kuypers et al., 1998; Dortangs et al., 2002; Janssen et al.,
2011; Bastiaans et al., 2020). Compared to the common occurrence of mosasaur and marine
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turtle remains throughout the upper part of the Gulpen Formation
(Lanaye Member) and all members of the overlying Maastricht
Formation, the extreme paucity of plesiosaur remains in the area is
remarkable (Mulder et al., 2000; Schulp et al., 2016; Miedema et al.,
2019). To date, only a handful of teeth and eight vertebrae from the
Maastrichtian type area have been assigned to the Elasmosauridae
(Roos, 1966; Mulder, 1990; Mulder et al., 2000; Renkens, 2023). A
small caudal vertebra from the upper portion of the Maastricht
Formation (Emael Member) in the Sibbe area (near Valkenburg
aan de Geul, the Netherlands) is the most recent addition
(Miedema et al., 2019). As far as we are aware, no remains of
polycotylids have yet been identified in these strata.

Here we add an additional plesiosaur find from the
Maastrichtian type area, consisting of a single, isolated, yet well-
preserved phalanx from the basal Emael Member (Maastricht
Formation) at the former ENCI-HeidelbergCement Group quarry
(Sint-Pietersberg, Maastricht). We refer the specimen to a
generically and specifically indeterminate plesiosaur, adding to
the meagre plesiosaur record previously consisting of isolated teeth
and vertebrae only.

Geological setting and stratigraphy

The phalanx described herein (collections of the Natuurhistorisch
Museum Maastricht, NHMM 2022 009, leg. J.H.M. Barten),
discovered in April 2016, originates from the fossiliferous basal lag
of the Emael Member (Maastricht Formation), which rests on the
Romontbos Horizon, as exposed in the north-western corner of the
former ENCI-HeidelbergCement Group quarry (Fig. 2; Table 1).
According to the most recent chemostratigraphical age model for
the typeMaastrichtian (Vellekoop et al., 2022), NHMM2022 009 is
around 66.55 million years old. Strata assigned to the Emael
Member were laid down in a fully marine environment, although
there must have been nearby landmasses, as is indicated by the
discovery of terrestrial plants (Jagt & Jagt-Yazykova, 2012;
Vellekoop et al., 2022).

Institutional abbreviations

NHMM: Natuurhistorisch Museum Maastricht, Maastricht, the
Netherlands.

Systematic palaeontology

Sauropterygia Owen, 1860
Plesiosauria de Blainville, 1835
Plesiosauroidea Welles, 1943

Plesiosauroidea gen. et sp. indet

Figures 3A–D, 4Q–T

Material

A single isolated phalanx (NHMM 2022 009) from the basal Emael
Member (Maastricht Formation) at the former ENCI-
HeidelbergCement Group quarry, south of Maastricht, the
Netherlands.

Description

Specimen NHMM 2022 009, here identified as an isolated phalanx
of a generically and specifically indeterminate plesiosaur, measures
63 mm in proximo-distal length and 34 and 32 mm in extension at
the articular facets (Fig. 3). In fact, these articular facets are rough
articular subchondral surfaces (compare Valente et al., 2007, figs 2,
4; Snover & Rhodin, 2008, figs 2.3, 2.23B), which could indicate
osteological immaturity of the animal from which NHMM 2022
009 originated. The morphology of the phalanx could also reflect a
state of paedomorphism, as often seen in elasmosaurids (compare
Araújo et al., 2015a, p. 106). Lastly, NHMM 2022 009 might
represent one of the distalmost, poorly ossified phalanges because
distal limb bones in general show delayed ossification
(Caldwell, 1997).

Figure 1. Map of southern Limburg (the
Netherlands) and contiguous areas in
northeastern Belgium and the Aachen area
(Germany) with localities that have yielded
elasmosaur skeletal remains to date (data from
Mulder et al., 2000; Miedema et al., 2019;
Renkens, 2023; J.W.M. Jagt, pers. obs.).
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The circumference around the mid-shaft measures 17 mm
(Fig. 3). The bone is hourglass-shaped and well-preserved and does
not reveal any traces of transport and erosion, with the exception of
minor damage near the articular facets (articular subchondral
surfaces). Both these surfaces are near circular in outline and are
slightly convex with a highly rugose bone structure consisting of
irregularly distributed bony ridges (Fig. 3C, D). Between these
ridges, some less ossified areas are seen with a more open bone
structure, and both surfaces display foramina. The latter are here
interpreted to indicate transphyseal vascular channels that
penetrated into the covering cartilage in vivo, comparable to the
phalangeal anatomy as is seen in some extant reptiles, for example,
leatherback turtles (Snover & Rhodin, 2008). The bone surface of
the shaft of NHMM 2022 009 is smooth, but does contain
numerous small pores, as well as a few larger ones. Since phalanges
of the adjoining finger and toe bones were closely connected in
plesiosaurs and were likely held together in a layer of tendons and
ligaments (Everhart, 2017), these pores might indicate foramina of
vascular canals and attachment points of ligaments (see Snover &
Rhodin, 2008). Towards the edges of the articular subchondral
surfaces, the bone surface of the shaft becomes slightly rougher.

Discussion and conclusions

Identification of the phalanx

In stark contrast to teeth, phalanges of the majority of Mesozoic
marine reptiles (with the exception of the elongated and slender
phalanges of sea turtles and circular or elliptical phalanges of
ichthyosaurs) tend to look quite similar and are therefore
comparatively undiagnostic. In view of this, very detailed
descriptions of elasmosaurid digits are few (although they are
depicted in some papers, for example, Williston, 1906; Welles,
1943, 1952, 1962; Sato & Storrs, 2000; Everhart, 2006; Sato et al.,
2006; Otero et al., 2014, Sachs & Kear, 2017) and they do not serve
as a key element in generic and specific identification. However,
robust plesiosaur phalanges displaying convex articular

subchondral surfaces, including a rugose bone texture with
foramina, have been observed in plesiosaurs of Jurassic age, for
instance in the genus Cryptoclidus Seeley, 1892, and also in taxa
from the Lower Cretaceous of Russia and the Upper Cretaceous of
Angola (Hawthorne et al., 2019, fig. 12; Fischer et al., 2021, fig. 8J,
K; Araújo et al., 2015a, fig. 3E, G). Nevertheless, to our knowledge,
juvenile and/or paedomorphic features such as the subchondral
texture on the articular facets of NHMM 2022 009 have not yet
been observed in mosasaur and extinct turtle digits. In consid-
eration of its size, the presence of these features in phalanx NHMM
2022 009 is unique and hints at a plesiosaurian origin. Moreover, it
is less constricted in the median portion than a mosasaur phalanx
of the same size (Fig. 4), and the articular facets are near circular in
outline, in contrast to the articular surfaces of phalanges of
Mosasaurus hoffmanni Mantell, 1829 (NHMM collections) that
have a more rectangular or elliptical outline (Fig. 4).

During the late Maastrichtian, the sole surviving lineages of
Plesiosauroidea comprised members of the families Polycotylidae
and Elasmosauridae, both belonging to the Xenopsaria (Ketchum
& Benson, 2010; Benson & Druckenmiller, 2014). During the
evolution of the Polycotylidae, the podials (including phalanges)
became increasingly shorter and wider over time; early poly-
cotylids tend to have longer and slenderer limb elements than the
highly derived species that possessed short and blocky phalanges
(Schumacher, 2007). Phalanges from a polycotylid found in
Mexico and illustrated and described in detail by Frey et al. (2017)
are characterised by an hourglass shape and furthermore possess
an almost straight interphalangeal articulation surface. The length/
breadth ratio of the phalanges is around 1.8 on average and the
appearance of the bones is robust and short. Phalanges of other
polycotylids such as Trinacromerium bonneri Adams, 1997 and
Polycotylus latipinnis Cope, 1869b from the Western Interior
Seaway are also much shorter, more robust and less constricted
than NHMM 2022 009 (Adams, 1997, figs 11B, 13; Schumacher &
Martin, 2015, fig. 13). The polycotylid Palmulasaurus quadratus
(see Albright et al., 2007b) from the Upper Cretaceous (lowermost
Turonian) Tropic Shale of southern Utah shows short and blocky

Figure 2. Photograph of the north-western corner of the
former ENCI-HeidelbergCement Group quarry (Sint-
Pietersberg, Maastricht) with good exposures of nearly all
members of the Maastricht Formation and site of provenance
of NHMM 2022 009 (indicated by a blue arrow). Photograph:
M.J.M. Deckers.
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proximal phalanges as well, with concave anterior and posterior
surfaces (Albright et al., 2007a, fig. 5). However, the distal, more
elongated phalanges of Palmulasaurus quadratus do resemble the
morphology of NHMM 2022 009.

NHMM 2022 009 has convex interphalangeal articulation
surfaces and is more elongate in shape and less constricted in the
middle portion than most of the above-mentioned polycotylid
phalanges. NHMM 2022 009 is of late Maastrichtian age and does
not match the typical blocky morphology of highly derived
polycotylid phalanges well. O’Gorman (2020) noted that phalanges
in typical elasmosaurs such as Albertonectes vanderveldei Kubo
et al. (2012) were quite short with a length/breadth ratio smaller
than 2. This corresponds to the dimensions of NHMM2022 009. In
addition to this, there is no firm evidence of polycotylids in the
Maastrichtian type area (Miedema et al., 2019). Taking this into
consideration, we regard the present specimen to show a closest
affinity to autopodial elements of members of the family
Elasmosauridae. However, caution is called for in assigning a

relatively undiagnostic bone, such as this isolated phalanx, with
certainty to any particular family within the Xenopsaria, especially
since the morphology of autopodial elements in (xenopsarian)
plesiosaurs remains an understudied aspect of most skeletal
descriptions in the literature.

Structure-function relationship of rugose articular surfaces

As noted above, the articular surfaces (articular subchondral
surfaces) of the present phalanx are characterised by a highly
rugose bone structure consisting of irregular ridges (Fig. 3C, D).
These features imply an in vivo cartilaginous cover structure,
conducive to the smooth functioning of interphalangeal joints, that
had not yet attached to the bone properly – such would have
occurred in juvenile animals (Hall, 2005). Propodials and distal
limb bones of juvenile plesiosaurs show a lack of articular facets
and a low degree of ossification of the articular surfaces (Wahl,
2006; Kear, 2007). This does not apply to (sub-)adult plesiosaurs.
One of the most notable examples of a subadult Early Cretaceous
plesiosaur is the holotype of Brancasaurus brancai Wegner, 1914
from western Germany (Geologisch-Paläontologisches Museum
Münster, A3.B4). The specimen possesses well-defined epipodial
facets, which can be interpreted as an adult (or subadult)
osteological feature (Sachs et al., 2016). NHMM 2022 009 does
not possess well-defined articulation facets. The ossification is
clearly incomplete and hence the articular surfaces lack full
definition.

It should be noted in this respect that several authors have
reported osteologically immature plesiosaur individuals that had
reached maturity (O’Gorman et al., 2014; Araújo et al., 2015a;
Araújo & Smith, 2023). This paedomorphism hampers any
assessment of the ontogenetic stage of plesiosaurs, especially
where isolated finds such as the present phalanx are concerned,
under consideration of its size.

The paradox that becomes evident when dealing with
paedomorphic plesiosaur individuals might be explained by rapid
growth towards maturity. Such a phenomenon is seen in the extant
leatherback, Dermochelys coriacea (Vandellius, 1761). The ‘phe-
nomenally rapid growth’ (Snover & Rhodin, 2008, p. 23) of this
turtle is, amongst other skeletal characters, connected with the
chondro-osseous development of the phalanges, which show

Table 1. Local lithostratigraphy (after Jagt & Jagt-Yazykova, 2012), with the indication of levels that have yielded elasmosaurid finds (and numbers of specimens) to
date and dating in millions of years (Ma) after Vellekoop et al. (2022). Note: the Kunrade Formation is currently regarded to correspond to the uppermost Gulpen
Formation (Lanaye Member) up to the basal Emael Member

Formation Member Dating (Ma) Teeth Vertebrae Phalanges

MAASTRICHT Meerssen 66.02 (top)
66.15 (base)

MAASTRICHT Nekum 66.15 (top)
66.35 (base)

1 4

MAASTRICHT Emael 66.35 (top)
66.55 (base)

3 2 1

MAASTRICHT Schiepersberg 66.55 (top)
66.60 (base)

MAASTRICHT Gronsveld 66.60 (top)
66.90 (base)

MAASTRICHT Valkenburg 66.90 (top)
67.00 (base)

GULPEN (pars) Lanaye 67.50 (top)

Figure 3. NHMM 2022 009, a plesiosaur phalanx from the basal Emael Member
(Maastricht Formation) of the former ENCI-HeidelbergCement Group quarry (Sint-
Pietersberg, Maastricht). Dorsal or ventral views (A, B) and proximal and distal views of
the articular facets (C, D). Scale bar equals 40 mm. Photographs: L.P.J. Barten.
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anatomical structures that are identical to those seen in NHMM
2022 009 (Snover & Rhodin, 2008, pp. 22, 23, figs 2.3, 2.23 B).
Proximal and distal ends of limb bones of young leatherbacks are
covered with a thick, well-vascularised cartilaginous structure. The
supply of nutrients via the well-vascularised cartilaginous joint
capsules allows rapid accretion of new bone tissue (Rhodin et al.,
1981; Snover & Rhodin, 2008). When the animal has reached an
advanced age and full body size, most of the ossification of the
articular surfaces takes place, replacing the cartilage structure
(Rhodin et al., 1981; Snover & Rhodin, 2008). The presence of
convex articular subchondral surfaces, including a rugose bone
structure with foramina as seen in autopodials of some

plesiosaurids (e.g. Araújo et al., 2015a; Hawthorne et al., 2019;
Fischer et al., 2021), might be indicative of some sort of chondro-
osseous bone formation in these plesiosaurs.

Caldwell (1997) recorded delayed ossification of distalmost limb
bones in plesiosaurs, which could also have led to the remarkable
morphological features observed in NHMM 2022 009. In
obligatorily aquatic marine mammals such as odontocete cetaceans,
paedomorphic features such as a delayed ossification of carpals,
metacarpals and phalanges have also been reported (Mellor et al.,
2009). In that respect, the morphology of the articular subchrondral
surfaces of NHMM 2022 009 might also reflect the presence of fully
active epiphyses (growth discs) positioned on top of the shaft, as seen
in both juveniles and adult mammals showcasing paedomorphosis.
Ossification patterns observed in the limbs of odontocete mammals
may thus be similar to those of extinct marine reptiles such as
plesiosaurs, as mentioned by Dawson (2003). However, this
particular phalanx is of a rather large size for a distal location in
the flipper; when compared to paedomorphic phalanges from
Angolan elasmosaurids (Araújo et al., 2015a, fig. 3E, G) or to the
proximal phalanges of a juvenile elasmosaurid from New Zealand
(Otero et al., 2018, fig. 9E), the relatively large dimensions of the
phalanx fromMaastricht are striking. The present specimen with its
typical articular subchrondral surfaces thus most likely originates
from either a large juvenile animal or a paedomorphic adult
plesiosaur. In order to assess the relative age of the individual this
phalanx came from, future palaeohistological and CT scan-based
analysis may be called for.

Previous plesiosaur finds from the Maastrichtian type area

All currently known plesiosaurian bone material from the study
area stems from the upper part of the Maastricht Formation
(Table 1), specifically from the Emael and Nekum Members
(Mulder et al., 2000; Miedema et al., 2019). The four cervical
vertebrae (NHMM1985141, NHMMMNDK 20.01.801a, NHMM
MND KB 50.20.01 and NHMM MND K 20.01.801b), all from the
former ‘t Rooth or Nekami quarry (now Sibelco; Bemelen, the
Netherlands), probably originated from the Nekum Member,
because the quarrying activities at that locality mostly concerned
this unit. Thus, we conclude that the present phalanx from the
basal Emael Member is in accordance with the stratigraphical
origin of other known plesiosaurian bone material from the
Maastrichtian type area.

The relative abundance of large aquatic reptiles such as
mosasaurs and marine turtles (Janssen et al., 2011, 2017; Schulp
et al., 2016), which are both well-represented in the fossil record of
the type Maastrichtian, is even more remarkable when the paucity
of elasmosaurs is considered. Several species of mosasaurs are quite
common, for example,Mosasaurus hoffmanni and Plioplatecarpus
marshi Dollo, 1882, while globidensines such as Prognathodon
saturator Dortangs et al., 2002 and Carinodens belgicus
(Woodward, 1891) are rarer in the same strata (Schulp et al.,
2013). Schulp et al. (2016) performed a study on stable isotopes in
tooth enamel of mosasaur taxa from the typeMaastrichtian, as well
as two elasmosaurid teeth from the area. They concluded that there
was no clear difference in isotope values between teeth of
elasmosaurids and of mosasaurs and, as a consequence, their
diving behaviour must have been comparatively similar if not
identical. The paucity of elasmosaurids in these strata probably was
due to a larger-scale absence of plesiosaurs in the epicontinental sea
that covered Europe during the Maastrichtian, as Strganac et al.

Figure 4. Comparison of phalanx NHMM 2022 009 (Q–T) from the basal Emael
Member (Maastricht Formation; see also Fig. 3) of the former ENCI-HeidelbergCement
Group quarry (Sint-Pietersberg, Maastricht) with a selection of mosasaur phalanges
(A–P) of a subadult individual of Mosasaurus hoffmanni Mantell, 1829 (NHMM 2015
027) from the same member (above Lava Horizon). Scale bar equals 40 mm.
Photographs: L.P.J. Barten.
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(2015) found Angolan elasmosaurids to forage far away from
shore, based on their isotopic carbon signature.

As mentioned by Miedema et al. (2019) and Strganac et al.
(2015), Maastrichtian marine reptile assemblages in regions that
are linked to oceanic upwelling, for instance because these areas
were located near steep continental slopes or influenced by Hadley
cells, are characterised by a relatively common occurrence of
elasmosaurids, accompanied by abundant mosasaur remains. It
has been suggested that oceanic upwelling of nutrient-enriched,
cold water from the deep sea near continental slopes, in
combination with a high primary productivity leading to abundant
prey, would allow both plesiosaurs and mosasaurs to coexist
(Miedema et al., 2019), as is illustrated by bone beds rich in both
plesiosaurs and mosasaurs from the Maastrichtian of Angola
(Strganac et al., 2015; Jacobs et al., 2016). Several taxa of mosasaurs
(e.g. Prognathodon andMosasaurus) often were the dominant apex
predators in shallower, epicontinental seas where oceanic
upwelling did not occur, such as the Maastrichtian type area
(Schulp et al., 2016).

There are localities in the NorthernHemisphere that apparently
were more suitable for plesiosaur inhabitation during the Late (or
latest) Cretaceous, as is illustrated by occurrences of elasmosaur
species in Campanian strata of southern Sweden (Einarsson et al.,
2010; Sørensen et al., 2013) and Canada (Kubo et al., 2012) and also
in Maastrichtian sedimentary rocks in Morocco (Mulder et al.,
2000; Lomax & Wahl, 2013), the US states of Montana (Serratos
et al., 2017) and California (Welles, 1943; O’Gorman, 2016).

The extreme paucity of plesiosaur remains in the shallow
epicontinental chalk sea of the Maastrichtian type area and the
isolated nature of currently recovered bones and teeth demonstrate
that plesiosaurs preferred other habitats during the late
Maastrichtian. Xenopsarian plesiosaurs may be considered to
have been occasional guests in the shallow epicontinental sea
during this time, either as live animals or as floating carcasses.With
the new chemostratigraphical calibration of the typeMaastrichtian
strata (Vellekoop et al., 2022), we may now also date the meagre
plesiosaur record from the study area, close to the Cretaceous-
Paleogene (K/Pg) boundary. The phalanx described here therefore
provides a valuable new data point in the scant type Maastrichtian
plesiosaur record that contributes to resolving the enigma
surrounding the rarity of plesiosaur material from this locality.
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