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A THEORY OF UNIFORMITIES FOR GENERALIZED 
ORDERED SPACES 

W. F. LINDGREN AND P. FLETCHER 

1. I n t r o d u c t i o n . Let (X,<9~) be a topological space equipped with a partial 
order ^ and let C ( ^ ) denote the continuous increasing functions mapping X 
into R (a function / : X —» R is increasing provided f(x) ^ f(y) whenever 
x = y)* Then (X,^~, S) is an N-space (in the terminology of [16], a com
pletely regular order space) provided ST is the weak topology of C ( ^ ) and if 
x ^ y is false, then there is a n / G C ( ^ ) such tha t f(y) < f(x). L. Nachbin 's 
introduction of TV-spaces was perspicacious, for these spaces now find applica
tion in a wide spectrum of mathematics . They are used in such diverse subjects 
as topological vector spaces [17; 18; 23], topological lattices, semi-lattices and 
semigroups [10; 14] and topological dynamics [7]; papers of J . Blat ter [1], 
J. Blat ter and G. Seever [2] and R. Redfield [19; 20] have established t ha t these 
spaces play an impor tan t role in general topology as well. One a t t r ibu te of 
TV-spaces t ha t makes them impor tant in many areas of mathemat ics is tha t 
these spaces admi t a full theory of uniform completion and compactification. 

While we are particularly interested in TV-spaces whose partial orders are 
linear orders, we have taken care to present our results in the more general 
set t ing of partial orders primarily for two reasons. First, as Nachbin observed, 
one can consider any completely regular space to be an TV-space by taking 
equali ty as the partial order. Second, we believe tha t our use of [11] in the 
s tudy of TV-spaces unifies and clarifies many of the results concerning arbi t rary 
TV-spaces tha t have been obtained previously. For example,Jf % is a convex 
uniformity compatible with an TV-space (X,^~, rg ) and (Xffl) is the uniform 
completion of (X, %), then Redfield has constructed a partial order < o n l 
t h a t extends ^ so tha t ( J ? , ^ ~ ( ^ 0 , < ) is an TV-space. The methods of Section 2 of 
our paper characterize such partial orders and show tha t they can be obtained 
in a natural way. 

In Section 3, we consider only those TV-spaces whose part ial order is a linear 
order. We show tha t these spaces are the generalized order spaces (GO spaces). 
I t follows from this result and [19, Proposition 3.3] t h a t a space (X,^~) is a GO 
space if, and only if, there is a linear order ^ o n l and a compatible uni
formity ^ o n l tha t is order convex with respect to ^ . T h u s for GO spaces 
the appropriate theory of uniform spaces is the theory of order convex uniform 
spaces; and, as might be expected, some insight into both order convex uni
form spaces and generalized ordered spaces is provided by the interplay t ha t 
exists between these two classes of spaces. 
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We adopt the terminology and notation of [16] except that, as is now cus
tomary, we use the term "quasi-uniformity" in lieu of Nachbin's original 
"semi-uniformity". In particular, as in [16], if i^ is a quasi-uniformity then 
^ * denotes the coarsest uniformity that con ta ins^ . All Af-spaces are assumed 
to be Hausdorff A'-spaces. 

2. N-spaces. We begin by recalling a fundamental result of [16]. 

THEOREM 2.1. If (X,.^~) is a topological space and ^ is a partial order on X, 
then (X,^~, ;§) is an N-space if, and only if, there is a quasi-uniformity i^ on 
X such that 

(X)3T =.T{f*) and 
(2) Ç\Y = G(^), where G(^) = {(x,y)\x^ y}. 

We say that *V determines (X,,T, g ) . If (X,.T, g ) is an N-space and °U 
is a uniformity on X compatible with (X, •3r), then a quasi-uniformity^ 
determines fyf p rov ided^* = °ll and i^ determines (X,^~, ^ ) . Our assump
tion that (X, ̂ ~) is a Hausdorff space is equivalent to the assumption that 
Pi y is a partial order on X [15, Theorem 3.1]. 

Although Theorem 2.1 provides a characterization of iV-spaces, these spaces 
may also be characterized as the pairwise completely regular bitopological 
spaces. Indeed the equivalence of pairwise completely regular spaces and pair-
wise uniform spaces observed in [5] may already be found expressed in terms 
of partial orders in [16]. 

We have need of the following reformulation of the principal results of [11]. 

THEOREM 2.2. Let (X, °lt) be a Hausdorff uniform space. If "f is a quasi-
uniformity on X such thafi^* = °U, then there^is exactly one quasi-uniform space 
{X,iS) such that Y\X X l = f and ( A , ^ * ) is the completion of the uniform 
space {X,V*). 

Throughout this paper we let ^ denote the reflection defined in Theorem 
2.2 and < denote C\y . Note that the classical result that every uniform 
space has a unique completion is a special case of Theorem 2.2. The following 
theorem is also a direct consequence of Theorem 2.2. 

THEOREM 2.3. Let {X,3/~, ^ J be an N-space determined by "V. Then *V 
determines the N-space (X,*T(V*), < ) . 

Let (X,^, g ) be an TV-space. Then a compact A^-space (X' ,37"', ^ ' ) is 
an N-compactification of {X,3f~, ^ ) provided there is a mapping k : X —* X' 
such that both k and k~l are continuous and order preserving and k(X) is a 
dense subset of X'. 

LEMMA 2.4. Let {X' ,S7~', S') be an N-space determined by a quasi-uniformity 
V and let iX,3T) be a subspace of (X',3T'). Then (X,$~, ^'\X X X) is an 
N-space, which is determined byi^'\X X X. 
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THEOREM 2.5. Let (X,3?~, ^ ) be an N-space determined by a totally bounded 
quasi-uniformity^. Then the X-space (X,^"~(^*), < ) determined by i^ is an 
N-compactification of {X,3T, ^ ) . Furthermore if {X' ,3?~') is a compactification 
of (X,3T), Sf is a closed partial order on X' and k : X —> X' is a dense topolog
ical and order embedding, then there is a totally bounded qua si-uniformity 7^ 
that determines {X,37~, ^ ) such thaff determines (X',3f', ^ ' ) . 

Let 7^ be a quasi-uniformity. It follows from [8, Theorem 1] that there is a 
largest totally bounded quasi-uniformity, denoted^ w , that is contained \wi^. 
Moreover 3T{f) = ^ r ( ^ w ) . 

THEOREM 2.6. Let (X,$~, ^ ) be an N-space and leff be a quasi-uniformity 
that determines {X,^T, ^j). Then^'u also determines (X,^~, ^ ) . 

Proof. To show that 7^w determines (X,3T, ^ ) it suffices to show that 
^ - ( ( ^ J * ) = ^"(3^*) and that H ^ « = P ^ . S i n c e ^ C ^ - 1 ) » ) ^ ^ C ^ " 1 ) -
^ " ( ( ^ J - 1 ) , we have that ^ ( 0 ^ „ ) * ) = ^ ( 3 ^ „ V ( ^ J " 1 ) = ^ ( ^ „ ) V 

We now show that Pi ̂ « = Pi ̂ . Since ^ C ^ , P ^ C P i ^ « . Suppose 
that (x, y) f O f • Then there is a V G ^ such that ^ C l X l - ( ( x j ) | . 
Thus I X I - ( ( X J ) K ^ « and (x, y) g P ^ w . 

In Theorem 2.6 we established that ^"((^ c o)*) = ^(^*) and since (J^*)w 

is compatible w i th^~(^*) , it follows t h a t ^ " ( ( ^ ) * ) = ^ ( O ^ * ) » ) . We note, 
however, that Example 4.1 shows that in general (y^w)* ^ (^*)w . 

THEOREM 2.7 [16, § 2 of Appendix]. Let (X,^T, ^ ) 5^ aw N-space. Then 
(X,^~, S) has an N-compactification. 

Proof. Let i^ be a quasi-uniformity that determines (X, Ĵ ~, ^ ). By Theorem 
2.6,7^0, is a totally bounded quasi-uniformity that determines (X,^~, ^ ), and 
the result follows from Theorem 2.5. 

A natural analogue in the theory of TV-spaces of the well-known result that a 
compact space admits a unique uniformity has been obtained by J. Blatter and 
G. L. Seever as a consequence of their * 'Translation Lemma" [2, Lemma 5.8]. 

TRANSLATION LEMMA. Let (X, ^~) be a compact space, let ^V be a quasi-
uniformity on X such that ̂ Çf*) C^7" and let ^ denote P ^ . Let A and B 
be subsets of X. Then there is an x £ c\r (A) and a y £ cl^ (B) such that 
x ^ y if, and only if, for each V ^Y, VT\ A X B ^ 0. 

The equivalence of conditions (3) and (4) of the following theorem were ob
tained as a consequence of the Translation Lemma in [2], while the equivalence 
of conditions (1) and (4) were obtained by S. Salbany in [21, Theorem 4.5]. 

THEOREM 2.8. Let X be a set, letW be a quasi-uniformity on X and let "t^ be 
a quasi-uniformity on X such that^f~(^*) is compact. Then each two of the fol
lowing statements are equivalent. 
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(2)<T(f*) = ^ ( 5 T * ) {equivalentlyV* =W*) and^Ç^'1) =^(W~l). 
( 3 ) j T ( ^ * ) = ^(W*) {equivalentlyY* =1V*) and Ç\Y = D^'. 

Proof. (1) => (2): j T ^ * ) = 3Ti^) V ^ C " 1 ) =^W) V ^ f T " 1 ) = 
<r(W*). 

(2)=» (3): Let ^ 1 Then (n^)(P) = c l ^ - i ) ( / > ) = c W - i } ( £ ) = 

(3) => (4): Since j T ( ^ * ) =^T(W*) is compact, ^ * = ^ * ; and so Y 
znàW are totally bounded. By [2, Corollary 5.10] and [8, Theorem \\V = W. 

(4) =» (1): This implication is evident. 

COROLLARY 2.9. Let (X',^'} rg') be an N-compactification of an N-space 
(X, ^f~, S )• Then there is only one quasi-uniformity^, which is totally bounded, 
that determines (X,^~, S) such thati^ determines (X',3T', ^ ' ) . 

COROLLARY 2.10 [2, Theorem 5.16] Let (X,^} <£) be an N-space. Then 
there is a one-to-one correspondence between the N-compactifications of (Xf^, ^ ) 
and the totally bounded qua si-uniformities (equivalently qua si-proximities) that 
determine (X,^~, ^ ) . 

3. Generalized ordered spaces. A linearly ordered space (abbreviated 
LOTS) is a triple (X, X, ^ ) where ^ is a linear order on X and X is the usual 
open interval toplogy of the order ^ . A generalized ordered space (abbreviated 
GO space) [3] is a triple (X,^~, :g ) where ^ is a linear order on X and J?7" is a 
topology on X such that (1) the open interval topology of ^ is coarser t h a n S 
and (2) every point of X has a locals-base consisting of (possibly degenerate) 
intervals of X. In [3, 17 A 23], it is established that a topological space (X,^) 
is a subspace of a LOTS if, and only if, there is a linear order on X such that 
(X,^/~, ^ ) is a GO-space. We begin this section by characterizing GO spaces 
in terms of iV-spaces. If (X, ^~, ^ ) is an TV-space and ^ is a linear order on X, 
then (X, 9~, ^ ) is called a linear N-space. 

LEMMA 3.1. Let (fX,$~, ^ ) be a linear N-space determined by a quasi-uni-
formity^'. Then S is a linear order on X so that (X,^7~(Y/')} < ) is a linear 
N-space. 

Proof. The proof is by contradiction. By [11, Theorem 15], 

X = [^ | J ^ is a minimal y * - Cauchy filter on X) 

and for each V ÇLY, 

V = {(S, S?) £ X X X\ there is an F Ç & and 

a G G ^ with F X G C V}. 

Suppose that < is not a linear order on X. Then there are Ĵ ~, ^ ^ 1 and 
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F £ f such tha t {^, ^ ) { f and ( ^ , F) £ V. Let W £ f such tha t 
W3 C V. There exists an F 6 « F and a G g ^ such tha t f X f C ^ a n d 
G X G C W. Since («^", ^ ) g W, there exists ( x j ) ^ f X G - I f and since 
S is a linear order on X and G ( ^ ) = H ^ > ( j , #) 6 W7- Since ( j , x) £ W7, 

G X i7 C W-Uy) X W(*0 C W73 C 7 . I t follows tha t ( ^ , J*") € V - a, a 
contradiction. 

T H E O R E M 3.2. (X, ^ " , ^) is a linear N-space if, and only if, it is a GO space. 

Proof. Suppose tha t (X, J^~, ^ ) is a GO space. Then (X, ST, S ) can be 
topologically and order embedded in a compact ordered space (Xf ,^f, rg') 
[3, Theorem 17 A 23] and [12, Theorem 2.9]. By [16, Proposition 13], 
(Xf ,^~f, ^ ' ) is a linear TV-space so tha t (X,3?~, ^ ) as a subspace is a linear 
TV-space. 

Now suppose t ha t (X,^~, ^ ) is a linear TV-space and let *V be a totally 
bounded quasi-uniformity tha t determines (X, <^f~, ^ ) . By Theorem 2.5, 
( X , ^ ~ ( 7 ^ * ) , < ) is an TV-compactification of {X,3f, :g ) and by the preceding 
lemma < is a linear order on X . As < is closed in I X I , the open interval 
topology is coarser than 3/~ {fV*} and as the open interval topology is 
Hausdorff a n d ^ T T * ) is compact, it follows tha t ( X , ^ " ( i T * ) , < ) is a LOTS. 
As in the proof of [3, Theorem 17 A 22] and [12, Theorem 2.9], it follows 
tha t {X,3T, ^ ) is a GO space. 

If ^ is a linear order on a (quasi-) uniform space (X, %), then °tt is convex 
with respect to ^ provided tha t for each U G °tt there is a V £ tft such tha t 
for each x £ X, V(x) is convex and V C U. 

T H E O R E M 3.3 [19, Proposition 3.1]. Let (X, %) be a uniform space. If there 
is a quasi-uniformity ^ on X such that i^* = ty then °tt is convex with respect 
to (M^. 

T H E O R E M 3.4 [19, Proposition 3.3] Let (X, °tt) be a uniform space ana let ^ 
be a linear order on X. Then °lt is convex with respect to ^ if, and only if, there is 
a quasi-uniformity that determines both °U and (X,^~'(°tt), ^ ) . 

Proof. If *V is a quasi-uniformity tha t determines both °tt and (X, ^~(%), ^ ), 
then by Theorem 3.3, °tt is convex with respect to C\i^ = G( ^ ). 

Now suppose tha t °tt is a convex uniformity with respect to ^ . Then , as is 
easily verified, °U satisfies the conditions of [16, Theorem 10] so tha t 
(X, ^(ty), ^ ) is determined by the quasi-uniformity generated by 

{G(^)ow\wç %\. 
T H E O R E M 3.5. Let (X,^) be a quasi-uniform space and suppose that C\i^ 

is the graph of a linear order. Theni^ is convex with respect to this linear order. 

Proof. By Theorem 3 . 3 , ^ * is convex. Let U G i^. Then there is an entou
rage F f f such tha t V C\ V~l C U and for each x ^ X, (V C\ V~l)(x) is 
convex. We assert t ha t for each x £ X, V(x) is convex. For suppose t ha t 
{a, c] C V(x) and tha t b £ X — V(x) such tha t a ^ b ^ c. Since [x, oo ) C 
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F(x), b < x; and as a ^ b < x, a G V~l{x). Thus {a, x] C (V~l H V)(x) 
and & G [a, x] C ( F _ 1 ^ F)(x) C F(x), a contradiction. 

To complete the proof it suffices to show that V C U. Let (x, y) G F. If 
x < y, then y G ( H ^ ) ( x ) C £/(*). If 3> < x, then y G F^fx) so that 
3> G ( 7 H F"1)!*) C U(x). 

One consequence of Corollary 2.9 is that if (X,^~, ^ ) is an iV-space and 
{X,^/~) is compact, then there is exactly one quasi-uniformity that determines 
(X,3T, ^ ) . This result is comparable to the following theorem. 

THEOREM 3.6. Let (X,°tt) be a uniform space that is convex with respect to a 
linear order ^ . Then there is exactly one quasi-uniformity *V such that C\Y = 
G ( ^ ) andV* = <%. 

Proof. In Theorem 3.4 it was established that there is a quasi-uniformity 7^ 
such that C\Y = G{^) and 7^* = °U. Suppose that W is another such 
quasi-uniformity and assume, without loss of generality, that there is a 
V G Y - IV. Since V G ̂ * = ^ * , there is a W G IV such that 
W H IF"1 C F. Moreover there exists (x, y) G W - V. Since (x, j ) f H f 
= G( ̂ ) and ^ is a linear order, (y,x) G G(^) = C\1V so that in particular 
(#, ;y) G H7-1. Then (x, y) £ W C\ W~l C F, a contradiction. 

THEOREM 3.7. Let (X,^~, ^ ) be a GO s/>ace awd let °U be a compatible convex 
uniformity. Then there is exactly one linear order S on the completion (X, tf/) 
of (X, (JH) extending ^ such that °tt is convex with respect to < . 

Proof. Since °tt is convex, by Theorem 3.4 there is a quasi-uniformity Y on 
X that determines °U. By Theorem 2.3 and Lemma 3.1, ( j ? , ^ " ( ^ ) , j < ) is a 
linear TV-space. Suppose t h a t ^ is a quasi-uniformity on X such t h a t ^ * = °ll 
and O ^ is the graph of some order on JY^that extends^ ^ . ByJTheorem 3.6, 
W\X X X =Y. By Theorem 2.2, ̂  = ^ and so C\1V = Ç\Y = G ( < ) . 

Let (X,^~~, ^ ) be a GO space and let (X',^', ^ ' ) be a compact LOTS. 
Then (X',^?7"', ^ ' ) is an ordered compactification of (X,3f, ^ ) provided there 
is a mapping & : X —> X' that is both a topological and an order embedding 
and k(X) is a dense subset of X'. 

THEOREM 3.8. Let (X',37~', ^ ' ) be any ordered compactification of a GO space 
(X, £T, fg). Then there is exactly one quasi-uniformity Y determining 
(X,^f~, ^ ) such that Y determines (X',^', ^ ' ) and this quasi-uniformity is 
totally bounded. 

Proof. Since every ordered compactification is an iV-compactification, the 
result is an immediate consequence of Corollary 2.9. 

THEOREM 3.9. Let (Xy^~, ^ ) be a GO space. Then the fine uniformity is 
convex. 

Proof. As every GO space can be embedded as a closed subspace of a LOTS, 
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it follows from [13, Theorems 3.4 and 4.1 and Corollary 2.7] t ha t the fine 
uniformity for X consists of al l^7" X ^"-neighborhood of the diagonal. Let U 
be a symmetric neighborhood of A and for each x G X let Wx be a convex open 
set about x such tha t Wx X Wx C U. Then W = U {Wx X Wx\x G X] is a 
member of the fine uniformity such tha t W C U and for each x £ X, W(x) 
is convex. 

COROLLARY 3.10. Let {X,S7~) be a GO space and let °tt be a compatible 
uniformity of weight w(tf/). Then there is a convex uniformity compatible with 
^~(°ti) of weight w(°U). 

Proof. Let J^~ denote the fine uniformity, which is convex. Let Se be a base 
for % of minimal cardinality. For each B £ Se there is a VB,i 6 ^ ~ such t ha t 
Ffl.i C B and for eachx £ X, VB,i(x) is convex. Inductively we define for each 
B £ Se a sequence (FfijZ-) so tha t for each positive integer i, VB,i+iO VBti+i C 
KB,*> ^TB,% G ^ and for each x Ç I , F B , * ( # ) is convex. Evident ly 

{VBti\B tS8,id N} 

is a subbase of cardinali ty w{°li) for a compatible convex uniformity. 

COROLLARY 3.11. Every metrizable GO space can be embedded as a dense 
subspace of a completely metrizable GO space. 

Proof. Let (X,^, ^ ) be a metrizable GO space. By the previous corollary 
there is a compatible convex uniformity °lé with a countable base. By the proof 
of Theorem 3.4, there is a quasi-uniformity 7 ^ tha t has a countable base and 
determines both (X,^, S ) and °ti. Consequently, (X, ST(ir),<) is a 
completely metrizable GO space in which (X,J^~, :g ) is embedded as a dense 
subspace. 

4. E x a m p l e s and q u e s t i o n s . The theory of convex uniformities for GO 
spaces provides problems tha t arise natural ly from the theory and so require 
no insight to pose. For example if {X,$~, S ) is a GO space and {X,£T) 
admits a uniformity with a certain uniform property, it is of evident concern 
whether one or all the convex uniformities for (X,^, S) also possess the 
given uniform property. The following problem is of equal interest but in 
general of greater difficulty. Suppose we assume tha t all the uniformities on a 
topological space X t ha t are convex with respect to a t least one of the linear 
orders on X t ha t renders X a GO space have a certain uniform property. W h a t 
topological properties are consequences of our assumption? This section does 
not consider all problems such as those suggested above, but it does point out 
some questions of a different vein and provides a number of examples in which 
the theory of quasi-uniformities prevails. 

Example 4 .1. Convex uniformities on [0, 1). 
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Let X = {x|0 ^ x < 1} with the topology and order inherited from R, as 
usual let I denote the one point compactification of X and let °tt denote the 
only compatible uniformity on I. Since I is an ordered compactification, by 
Theorem 3.9, °l/ is convex so that °ti\X X X is a non-complete totally bounded 
convex uniformity on X. Suppose that W is a quasi-uniformity on X that 
determines a non-complete convex uniformity on X. By Theorem 2.2 and 
Lemma 3.1, (X, 3/~(W*), < ) is a GO space in which X is order embedded as 
a dense subspace. Since J js the only GO space in which X can be so embedded, 
it follows that ( X , ^ ( # / * ) , < ) iŝ  the closed unit interval with its usual 
topology and order. Hence °U = W* and °tt\X X X = W*. We have estab
lished that 7^* is the only compatible non-complete convex uniformity on X 
and that 7^* is totally bounded. 

Let f be a quasi-uniformity on X that determines a convex uniformity. 
By Theorem 3.3, fi^w)* = W* and by Theorem 3 . 6 , ^ w - W. In particular, 
let i^ determine the fine uniformity. Then (7^*)w is C£*(X) so that by 
[9, Corollary 10], (^*)w is not convex; thus ( f *)w ^ (^"J*. 

In [22, § 2], W. J. Thron and S. J. Zimmerman associate with each topolog
ical space {X,37~) a quasi-order 

Rp = {(x, y) G X X X\ every open set containing y contains x}. 

It is easily verified that if 7^ is a compatible quasi-uniformity for (X,-^~), 
then C\V~l = Rg-. 

THEOREM 4.2. Let (X,^, :g) be a LOTS determined by a quasi-uniformity 
i^. Then 37~(^ ) is a minimal TQ topology. 

Proof. Since Rsrw) — Pl^"" 1 , Rsr(r)~x = G( ^ ) and R^-m is a linear order. 
Thus for each x Ç X, {y\x S y} = ( O ^ O M and {y\y ^ x} = {C\i^~l){x). 
By [22, Corollary 1], it suffices to establish that 

38 = {{X} \J {{y\x <y} :x e X] 

is a base f o r ^ " ( ^ ) . Let G £ 3~(^) and let x G G. If there is a y G G such that 
3> < x, then there is a F ^ f such that x Ç ( 0 ^ 0 ( 3 0 C F(;y) C G. Now 
suppose that x is the least member of G. There is a F G 7^ such that V{x) C G. 
Then V(x) = ( n ^OOO so that {;y|x ^ 3/} - V(x) = G Ç ^ " ( ^ ) C 
J7"(7^*) = Ĵ ~\ It follows that either { |̂x ^3/} = G = X or x has immediate 
predecessor x~ and x G {3>|x~ < 3/} = {y\x S y} = G. 

In order to establish that 38 is a base for^"(7^) it remains to show that for 
each* Ç X, {s|x < 2} = [ ( n ^ O ( x ) - {xj] 6 ^ ( 3 ^ ) . Let x Ç X and suppose 
that x < 3;. Then there is an entourage F G ^ such that x ([ V(y). By Theo
rem 3.5,7^ is convex. Hence there is a W £ 1^ such that W Ç_ V and IT(3/) is 
convex. Thus W(y) C {s|x < z). 

COROLLARY 4.3. Let (X,^, ^ ) be a LOTS determined by a quasi-uniformity 
i^. Then (^)i^ and3TÇV~x) are minimal To topologies. 

https://doi.org/10.4153/CJM-1979-004-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-004-4


ORDERED SPACES 43 

Example 4.4. A GO space that is determined by a quasi-uniformity 7^ such 
t h a t ^ O ^ ) is minimal T0 but^~(f-1) is not. 

Let (X,^/~, ^ ) be the Sorgenfrey line. For each p 6 X and e > 0 let 
V(ei P) = ! (x> y)\x = y — e and if p ^ x < p + e then £ 5̂  ;y}. Then 
{ V(t> P)\P € X, e > 0} is a base for the desired quasi-uniformity. 

Our first question is kin to the problem, solved by Thron and Zimmerman, 
of giving necessary and sufficient conditions that a topological space be a LOTS. 

Question 4.5. Let (X,^y~, ^ ) be a GO space determined by a quasi-uni
formity / ^ \ Under what conditions onf^ is ( X , ^ ^ * ) , < ) necessarily a 
LOTS? 

If ( X , ^ , ^ ) is a LOTS for which the cardinal of every Q-sequence whose 
limit is a gap is nonmeasurable, then vX is a GO space [6, Theorem 10.7]. It 
follows from Theorem 3.9 that if (X, J/~, ^ ) is a GO space of non-measurable 
cardinality, then vX is a GO space. This result and the result of [9, Observation 
following Corollary 11] that ^f*(X) is convex if, and only if, X is pseudocom
pact motivate the following question. 

Question 4.6. Let (X,^7", ^ ) be a GO space. Is & (X) necessarily convex 
with respect to ^ ? If not, what are necessary and sufficient conditions that 
%f(X) be convex? 

Example 4.7 A LOTS ( X , ^ , ^ ) determined by a quasi-uniformity i^ such 
that (X,^~0^*), <) is a GO space that is not a LOTS. 

In [6, Example 10.11], L. Gillman and M. Henriksen give an example of a 
LOTS X for which vX is not a LOTS. By Theorem 3.9 the fine uniformity °ll 
on X is convex. Thus °U is determined by a quasi-uniformity7^, andT^ deter
mines^ . Consequently (X, ^ ~ ( f *), C\'V) is a LOTS and (X,^~0^*), <) = 
vX is a GO space that is not a LOTS. 

We began this section by pointing out that to each problem in the study of 
uniform spaces and completely regular topological spaces there is a corre
sponding problem in the study of convex uniform spaces and linear X-spaces. 
We end the section by selecting three archetypal problems that illustrate this 
correspondence. 

Question 4.8. For which topological spaces ( X , ^ ) is it true that for each 
compatible uniformity tf/ there is a linear order S on X such that (X,^~} ^ ) 
is a GO space and °l/ is convex with respect to ^ ? For which GO spaces 
(X,J^~, S ) is every compatible uniformity convex? We conjecture that every 
compatible uniformity for ( X , ^ , ^ ) is convex if, and only if, (X,^7") is 
pseudocompact and admits an orderable one point compactification. The con
jecture obtains if (X,^7", g ) is a LOTS. 

Question 4.9. Suppose (X,^7") is an X-space that admits a convex uniformity. 
If every compatible convex uniformity is totally bounded is (X,Jr) pseudo-
compact? 
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Question 4.13. Let (X,^, :§) be a GO space. Under what conditions is the 
collection of all neighborhoods of G(^) a base for a quasi-uniformity on X 
that determines (X,^~, ^ ) ? 
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