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THE BRUSS–ROBERTSON–STEELE INEQUALITY

L. C. G. ROGERS ,∗ University of Cambridge

Abstract

The Bruss–Robertson–Steele (BRS) inequality bounds the expected number of items of
random size which can be packed into a given suitcase. Remarkably, no independence
assumptions are needed on the random sizes, which points to a simple explanation; the
inequality is the integrated form of an ω-by-ω inequality, as this note proves.
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1. The basic problem

The Bruss–Robertson–Steele (BRS) inequality was first proved in [2], and later generalized
in [3]. The recent survey in [1] gives a fine review.

You have N objects which you would like to take in your suitcase on a flight. The weight of
object j is Zj, but the total weight you are allowed to take on the flight must not exceed s > 0.
You want to maximise the number of objects that you can take, subject to this constraint. This
can be posed as a linear programme:

max
x≥0

∑
i

xi subject to xi ≤ 1 for all i,
∑

i

xi Zi ≤ s.

Strictly, we have to have that each xi is in {0, 1}, but this additional constraint will only reduce
the value; since we are looking for upper bounds, the gap here will help us. We can write this
in canonical matrix form,

max
x≥0

c�x subject to Ax ≤ b,

where c� = (1, . . . , 1), b� = (1, . . . , 1, s), and

A =
(

I

Z�

)
.

The dual linear programme is

min
y≥0

b�y subject to c ≤ A�y.
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Written out more fully, this is

min
y≥0

N∑
j=1

yj + syN+1 subject to 1 ≤ yj + ZjyN+1 for all j. (1)

The value of the dual problem is the value of the primal problem (e.g. [4, Section 4.2]), and for
any dual-feasible y the value b�y is an upper bound for the value of the problem. If we write
yN+1 = η for short, the problem in (1) requires

min
y≥0

N∑
j=1

yj + ηs subject to 1 ≤ yj + ηZj for all j.

Obviously, once η > 0 has been chosen, the best dual-feasible choice of y1, . . . , yN will be
yj = (1 − ηZj)+. Thus, for any η > 0, the value �∗ of the problem is bounded above by

�(η) ≡
N∑

j=1

(1 − ηZj)
+ + ηs,

which is clearly a convex piecewise-linear function of η.

2. The BRS inequality

In the problem studied by Bruss and Robertson, and later in greater generality by Steele,
Z1, . . . , ZN are positive random variables, and the distribution function of Zj is Fj, assumed for
convenience to be continuous. In this situation, the value �∗ of the suitcase packing problem
will of course be random, and the BRS inequality gives an upper bound for E�∗. Let us see how
the BRS inequality follows easily from the linear-programming story of the previous section.

Clearly, for any η > 0 we have

E�∗ ≤E�(η) =E

N∑
j=1

(1 − ηZj)
+ + ηs

=
N∑

j=1

∫ 1/η

0
(1 − ηz) Fj(dz) + ηs. (2)

Now we optimize the bound in (2) by differentiating:

0 = −
N∑

j=1

∫ 1/η

0
z Fj(dz) + s,

which will be satisfied when η = η∗, the root of

N∑
j=1

∫ 1/η

0
z Fj(dz) = s. (3)
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Taking η = η∗ and using (3), the bound in (2) for E�∗ is easily seen to be

E�∗ ≤
N∑

j=1

∫ 1/η∗

0
Fj(dx),

which is the BRS inequality.

Remark 1. Even if the implicit equation in (3) cannot be solved explicitly, the bound in (2)
can still be applied for any choice of η.
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