

# THE BRUSS-ROBERTSON-STEELE INEQUALITY

L. C. G. ROGERS <sup>(D)</sup>,\* University of Cambridge

#### Abstract

The Bruss–Robertson–Steele (BRS) inequality bounds the expected number of items of random size which can be packed into a given suitcase. Remarkably, no independence assumptions are needed on the random sizes, which points to a simple explanation; the inequality is the integrated form of an  $\omega$ -by- $\omega$  inequality, as this note proves.

Keywords: Bruss-Robertson-Steele inequality; linear program; pathwise

2020 Mathematics Subject Classification: Primary 60E15

Secondary 90C05

## 1. The basic problem

The Bruss–Robertson–Steele (BRS) inequality was first proved in [2], and later generalized in [3]. The recent survey in [1] gives a fine review.

You have *N* objects which you would like to take in your suitcase on a flight. The weight of object *j* is  $Z_j$ , but the total weight you are allowed to take on the flight must not exceed s > 0. You want to maximise the number of objects that you can take, subject to this constraint. This can be posed as a linear programme:

$$\max_{x \ge 0} \sum_{i} x_i \quad \text{subject to} \quad x_i \le 1 \text{ for all } i, \ \sum_{i} x_i Z_i \le s.$$

Strictly, we have to have that each  $x_i$  is in {0, 1}, but this additional constraint will only reduce the value; since we are looking for upper bounds, the gap here will help us. We can write this in canonical matrix form,

$$\max_{x \ge 0} c^{\top} x \quad \text{subject to} \quad Ax \le b,$$

where  $c^{\top} = (1, ..., 1), b^{\top} = (1, ..., 1, s)$ , and

$$A = \begin{pmatrix} I \\ Z^\top \end{pmatrix}.$$

The dual linear programme is

$$\min_{y \ge 0} b^\top y \quad \text{subject to} \quad c \le A^\top y.$$

© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust.

Received 1 September 2022; revision received 8 September 2022.

<sup>\*</sup> Postal address: Statistical Laboratory, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB. Email: chris@statslab.cam.ac.uk

Written out more fully, this is

$$\min_{y \ge 0} \sum_{j=1}^{N} y_j + sy_{N+1} \quad \text{subject to} \quad 1 \le y_j + Z_j y_{N+1} \text{ for all } j.$$
(1)

The value of the dual problem is the value of the primal problem (e.g. [4, Section 4.2]), and for any dual-feasible *y* the value  $b^{\top}y$  is an upper bound for the value of the problem. If we write  $y_{N+1} = \eta$  for short, the problem in (1) requires

$$\min_{y \ge 0} \sum_{j=1}^{N} y_j + \eta s \quad \text{subject to} \quad 1 \le y_j + \eta Z_j \text{ for all } j.$$

Obviously, once  $\eta > 0$  has been chosen, the best dual-feasible choice of  $y_1, \ldots, y_N$  will be  $y_j = (1 - \eta Z_j)^+$ . Thus, for any  $\eta > 0$ , the value  $\Phi^*$  of the problem is bounded above by

$$\Phi(\eta) \equiv \sum_{j=1}^{N} (1 - \eta Z_j)^+ + \eta s,$$

which is clearly a convex piecewise-linear function of  $\eta$ .

#### 2. The BRS inequality

In the problem studied by Bruss and Robertson, and later in greater generality by Steele,  $Z_1, \ldots, Z_N$  are positive random variables, and the distribution function of  $Z_j$  is  $F_j$ , assumed for convenience to be continuous. In this situation, the value  $\Phi^*$  of the suitcase packing problem will of course be random, and the BRS inequality gives an upper bound for  $E\Phi^*$ . Let us see how the BRS inequality follows easily from the linear-programming story of the previous section.

Clearly, for any  $\eta > 0$  we have

$$\mathbb{E}\Phi^* \le \mathbb{E}\Phi(\eta) = \mathbb{E}\sum_{j=1}^{N} (1 - \eta Z_j)^+ + \eta s$$
$$= \sum_{j=1}^{N} \int_0^{1/\eta} (1 - \eta z) F_j(\mathrm{d}z) + \eta s.$$
(2)

Now we optimize the bound in (2) by differentiating:

$$0 = -\sum_{j=1}^{N} \int_{0}^{1/\eta} z F_{j}(\mathrm{d}z) + s,$$

which will be satisfied when  $\eta = \eta^*$ , the root of

$$\sum_{j=1}^{N} \int_{0}^{1/\eta} z F_{j}(\mathrm{d}z) = s.$$
(3)

Taking  $\eta = \eta^*$  and using (3), the bound in (2) for  $\mathbb{E}\Phi^*$  is easily seen to be

$$\mathbb{E}\Phi^* \leq \sum_{j=1}^N \int_0^{1/\eta^*} F_j(\mathrm{d}x),$$

which is the BRS inequality.

**Remark 1.** Even if the implicit equation in (3) cannot be solved explicitly, the bound in (2) can still be applied for any choice of  $\eta$ .

## Acknowledgements

Thanks to Thomas Bruss for drawing this interesting inequality to my attention.

## **Funding information**

There are no funding bodies to thank relating to the creation of this article.

### **Competing interests**

There were no competing interests to declare which arose during the preparation or publication process of this article.

#### References

- [1] BRUSS, F. T. (2021). The BRS-inequality and its applications. Prob. Surv. 18, 44-76.
- [2] BRUSS, F. T. AND ROBERTSON, J. B. (1991). Wald's Lemma for sums of order statistics of IID random variables. Adv. Appl. Prob. 23, 612–623.
- [3] STEELE, J. M. (2015). The Bruss-Robertson inequality: Elaborations, extensions, and applications. Preprint, arXiv:1510.00843.
- [4] WHITTLE, P. Optimization under Constraints: Theory and Applications of Nonlinear Programming. Wiley, Chichester, 1971.