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In this paper, we consider the following non-linear system involving the fractional
Laplacian {

(−Δ)su(x) = f(u, v),

(−Δ)sv(x) = g(u, v),
(0.1)

in two different types of domains, one is bounded, and the other is an infinite
cylinder, where 0 < s < 1. We employ the direct sliding method for fractional
Laplacian, different from the conventional extension and moving planes methods, to
derive the monotonicity of solutions for (0.1) in xn variable. Meanwhile, we develop
a new iteration method for systems in the proofs. Hopefully, the iteration method
can also be applied to solve other problems.
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1. Introduction

The work concerning qualitative properties of solutions was extensively investigated
by many researchers. Fruitful results have been obtained on the existence, non-
existence, symmetry and regularity and so on. Berestycki and Nirenberg [3] obtained
the monotonicity for the unbounded positive solutions of elliptic equations in the
case of a ‘coercive’ Lipschitz graph. In [6], Berestycki et al. proved the monotonicity
and uniqueness for elliptic equations in unbounded Lipschitz domains. Angenent
[1] and Clément and Sweers [15] derived that a bounded positive solution of elliptic
equations only depends on the xn-variable in a upper half space. Chen et al. [12]
worked on the symmetry and non-existence of positive solutions of equations with
fractional Laplacian in different types of domains. For more related results, please
see [7, 10, 11, 14, 18], and the references therein.
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In this work, we investigate the following system involving the fractional
Laplacian: {

(−Δ)su(x) = f(u, v),

(−Δ)sv(x) = g(u, v)
(1.1)

in a bounded domain and an unbounded domain, respectively.
From an applicable point of view, the fractional Laplacian have caught

researchers’ attention because of its non-locality and its applications in physical
sciences. So far it has been utilized to model diverse physical phenomena, such
as anomalous diffusion and quasi-geostrophic flows, turbulence and water waves,
molecular dynamics and relativistic quantum mechanics of stars (see [5, 9, 16,
22] and the references therein). It also has various applications in probability and
finance [2, 4]. In particular, the fractional Laplacian can be understood as the
infinitesimal generator of a stable Lévy diffusion process [4].

The fractional Laplacian is a non-local pseudo-differential operator, taking the
form

(−Δ)su(x) = Cn,α PV

∫
Rn

u(x) − u(z)
|x− z|n+2s

dz, (1.2)

where s ∈ (0, 1) and PV stands for the Cauchy principal value. This operator is
well defined for u ∈ C∞

0 (Rn). In this space, it can also be defined equivalently in
terms of the Fourier transform

(−Δ)su(x) = F−1(|ξ|2sFu(ξ))(x),
where F is the Fourier transform, and F−1 is the inverse Fourier transform. The
fractional Laplacian can be extended to locally integrable functions with certain
growth control—the weighted L1-space:

L2s = {u : Rn → R |
∫

Rn

|u(x)|
1 + |x|n+2s

dx <∞} (see [21]).

For u ∈ L2s, we define (−Δ)su as a distribution:

((−Δ)su)(φ) =
∫

Rn

u(x)(−Δ)sφ(x) dx, ∀ φ ∈ C∞
c (Rn).

To investigate the properties of solutions of equations involving the fractional Lapla-
cian, the method of moving planes and extension method [8] have been powerful
tools. In [25], the authors employed the method of moving planes in integral forms
(see [10, 11, 13] and the references therein) to study the symmetry of solutions.
However, this method needs to establish the equivalence between the differential
equations and the integral equations via Green’s functions, and it is a challenge
work. Also, this method depends heavily on some special properties of the corre-
sponding Green’s functions. So far, there are few results about the Green’s functions
in general domains. Chen et al. [12] developed a direct method of moving planes
for the fractional Laplacian. Based on the classical sliding method for Laplacian
[3], Wu and Chen [23, 24] developed the direct sliding method for the scalar equa-
tions involving the fractional Laplacian. Actually, the direct sliding method does
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not depend on the Green’s functions. In this paper, we employ the direct sliding
method [23, 24] to derive the monotonicity of solutions of system (1.1) in a general
bounded domain and an infinite cylinder.

The analogue problem to (1.1) for the fractional Laplacian has been investigated
by many authors:{

(−Δ)sui(x) = fi(u1, . . . , um), x ∈ Ω, i = 1, . . . ,m,

ui(x) = 0, x ∈ Rn \ Ω, i = 1, . . . ,m.
(1.3)

In the case Ω be a unit ball or half space, Mou [19] proved the symmetry and
monotonicity of positive solutions of (1.3) by the integral equation approach. When
i = 1, 2, f1 = up

2, f2 = uq
1 and Ω = Rn

+, Quaas and Xia [20] obtained the non-
existence of positive solutions of (1.3) by the method of moving planes with an
improved Aleksandrov–Bakelman–Pucci type estimate for the fractional Laplacian.

In this paper, we consider the non-linear equations involving the fractional Lapla-
cian in general domains. Due to the non-local nature of the operator, we need to
set exterior conditions in domain Γ,

u(x) = ϕ(x), v(x) = ψ(x), x ∈ Γc.

In order to ensure the monotonicity of solutions, one has to impose the necessary
exterior conditions (P) on Γ: For any three points x1 = (x′, x1

n), x2 = (x′, x2
n) and

x3 = (x′, x3
n) with x1

n < x2
n < x3

n, x′ ∈ Rn−1, and x1, x3 ∈ Γc, x1, x2 and x3 satisfy

ϕ(x1) < u(x2) < ϕ(x3), for x2 ∈ Γ,

ϕ(x1) � ϕ(x2) � ϕ(x3), for x2 ∈ Γc,

ψ(x1) < v(x2) < ψ(x3), for x2 ∈ Γ,

ψ(x1) � ψ(x2) � ψ(x3), for x2 ∈ Γc.

We first study (1.1) in bounded domain G, and establish monotonicity of solutions
for (1.1) as following:

Theorem 1.1. Let u, v ∈ L2s ∩ C1,1
loc (G) ∩ C(Ḡ) and (u, v) be a pair of solution for⎧⎪⎪⎨

⎪⎪⎩
(−Δ)su(x) = f(u, v), x ∈ G,

(−Δ)sv(x) = g(u, v), x ∈ G,

u(x) = ϕ(x), v(x) = ψ(x), x ∈ Gc,

(1.4)

where G is a convex bounded domain in xn direction, and u, v satisfy the exterior
condition (P) on G. If ∂f

∂v > 0, ∂g
∂u > 0 for x ∈ G, and ∂f

∂u , ∂f
∂v , ∂g

∂u , ∂g
∂v are bounded

from above in G, then u and v are monotone increasing with respect to xn-variable
in G. More precisely, for any τ > 0, one has

u(x′, τ + xn) > u(x′, xn), ∀ (x′, τ + xn), (x′, xn) ∈ G.

In the proof of theorem 1.1, employing the argument by contradiction at extreme
points, we first derive the key tool—narrow region principle in bounded domains.
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Combining with the sliding method, the solutions of system (1.4) are proved to
be monotonic in the bounded domain G. Next we briefly introduce the sliding
method. For any positive real number τ , by sliding downward τ units from the
bounded domain G, we have

Gτ = {x− τen |x ∈ G},

here en = (0, . . . , 0, 1). Denote

uτ (x) = u(x′, xn + τ), vτ (x) = v(x′, xn + τ),

Ũτ (x) = uτ (x) − u(x), Ṽ τ (x) = vτ (x) − v(x).

For τ sufficiently close to the width of G in xn direction, it is easy to see that G ∩Gτ

is a narrow region. Applying the narrow region principle in bounded domains yields
that

Ũτ (x) � 0, Ṽ τ (x) � 0, x ∈ G ∩Gτ . (1.5)

Note that (1.5) provides a starting position to slide the domain Gτ . Then we
slide Gτ back upward as long as inequality (1.5) holds to its limiting position. In
fact, the domain should be slid to τ = 0. We conclude that the solutions of (1.4)
are monotone increasing in xn variable.

Considering the unbounded domain Ω, because of the unboundedness property
for Ω, the extremum points in Ω cannot be attained which makes it hard to apply
the narrow region principle in unbounded domains directly. To overcome this diffi-
culty, we first take a minimization sequence approaching to the infimum, and then
make some perturbation about the sequence to attain the extremum points in some
bounded domain. Combining with the iteration method, we can deduce the narrow
region principle in unbounded domains. Then the monotonicity of solutions for (1.1)
in an unbounded domain Ω is obtained with the aid of the direct sliding method.

Theorem 1.2. Let u, v ∈ L2s ∩ C1,1
loc (Rn) be a pair of solution for⎧⎪⎪⎨

⎪⎪⎩
(−Δ)su(x) = f(u, v), x ∈ Ω,

(−Δ)sv(x) = g(u, v), x ∈ Ω,

u(x) = ϕ(x), v(x) = ψ(x), x ∈ Ωc,

(1.6)

where Ω = {x = (x′, xn) ∈ Rn | 0 < xn < M}, x′ = (x1, x2, . . . , xn−1), and M is a
finite positive real number. u, v satisfy the exterior condition (P) on Ω, and u(x′, ·)
and v(x′, ·) are bounded with x′ ∈ Rn−1. Suppose that ∂f

∂v > 0, ∂g
∂u > 0 for x ∈ Ω,

and ∂f
∂u , ∂f

∂v , ∂g
∂u , ∂g

∂v are bounded from above in Ω. Then u(x) and v(x) are monotone
increasing in xn-variable, that is, for any τ > 0,

u(x′, τ + xn) > u(x′, xn), ∀(x′, τ + xn), (x′, xn) ∈ Ω.

Remark 1.3. Theorem 1.2 still holds if Ω is any domain bounded in the
xn-direction.
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One of the interesting point about the monotonicity of solutions is that it helps
to pave the way for deriving existence, non-existence and some Sobolev inequalities,
as can be seen in [13, 14, 17] and the references therein.

This paper is organized as follows. In § 2, we establish some lemmas, such as the
narrow region principle in bounded domains and so on. In § 3 and 4, combining the
lemmas in § 2 with the sliding method, we derive the monotonicity of solutions for
(1.1) on bounded domains and unbounded domains.

2. Key tools in the sliding method

The aim of this section is to show the key tools in the sliding method. More precisely,
we investigate the narrow region principle in bounded domains and unbounded
domains so that the sliding method can be initiated.

Lemma 2.1 Narrow region principle for system in bounded domains. Let Ũ , Ṽ ∈
L2s ∩ C1,1

loc (E) satisfy⎧⎪⎪⎨
⎪⎪⎩

(−Δ)sŨ(x) − b1(x)Ũ(x) − c1(x)Ṽ (x) � 0, x ∈ E,

(−Δ)sṼ (x) − b2(x)Ũ(x) − c2(x)Ṽ (x) � 0, x ∈ E,

Ũ(x) � 0, Ṽ (x) � 0, x ∈ Ec,

(2.1)

where E is a bounded domain, c1(x) > 0, b2(x) > 0 in E, and bi, ci are bounded
from above in E, i = 1, 2. Then for d sufficiently small, which is the width of E in
xn direction, one has

Ũ(x) � 0, Ṽ (x) � 0, x ∈ E. (2.2)

Proof. If (2.2) is not valid, then at least one of Ũ and Ṽ is less than zero at some
point. We may assume that there exists a point x0 ∈ E such that

Ũ(x0) = min
Rn

Ũ(x) < 0.

By (2.1), for d sufficiently small, we have

0 � (−Δ)sŨ(x0) − b1(x0)Ũ(x0) − c1(x0)Ṽ (x0)

� cŨ(x0)
d2s

− b1(x0)Ũ(x0) − c1(x0)Ṽ (x0)

� cŨ(x0)
d2s

− c1(x0)Ṽ (x0). (2.3)

This implies that

Ṽ (x0) < 0, (2.4)

and

Ṽ (x0) � cŨ(x0)
d2sc1(x0)

. (2.5)
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It follows from (2.4) that there exists some point x1 ∈ E such that

Ṽ (x1) = min
Rn

Ṽ (x) < 0.

Similar to (2.3), we derive that, for d sufficiently small,

0 � (−Δ)sṼ (x1) − b2(x1)Ũ(x1) − c2(x1)Ṽ (x1)

� c′Ṽ (x1)
d2s

− b2(x1)Ũ(x0). (2.6)

Moreover, we get

Ũ(x0) � c′Ṽ (x1)
d2sb2(x1)

. (2.7)

Combining (2.5) and (2.7) yields that

Ṽ (x0) � cc′Ṽ (x0)
d4sc1(x0)b2(x1)

. (2.8)

Thus, one has

1 � cc′

d4sc1(x0)b2(x1)
. (2.9)

(2.9) is impossible for sufficiently small d. Therefore, (2.2) holds. �

Lemma 2.2 Narrow region principle for system in unbounded domains. Let D1 =
{x = (x′, xn) ∈ Rn|0 < xn < 2l} be an unbounded narrow region with some bounded
constant l, and D− = {x = (x′, xn) ∈ Rn|xn < 0}. If U , V ∈ L2s ∩ C1,1

loc (D1) satisfy⎧⎪⎪⎨
⎪⎪⎩

(−Δ)sU(x) − b̄1(x)U(x) − c̄1(x)V (x) � 0, x ∈ D1,

(−Δ)sV (x) − b̄2(x)U(x) − c̄2(x)V (x) � 0, x ∈ D1,

U(x) � 0, V (x) � 0, x ∈ D−.

(2.10)

Suppose that c̄1(x) > 0, b̄2(x) > 0 in D1, and b̄i, c̄i are bounded from above in D1,
i = 1, 2. Then for l sufficiently small, we get

U(x) � 0, V (x) � 0, x ∈ D1. (2.11)

Proof. The argument, by contradiction, is standard. Suppose (2.11) is false. Then
at least one of U(x) and V (x) are less than zero at some points belonging to D1.
Without loss of generality, we may assume that there are some points such that
the values of U at these points are less than zero. Then there exists a sequence
{xk}∞k=1 ⊂ D1 such that

U(xk) → A = inf
Rn

U(x) < 0, (2.12)

with |xk
n| < l, where xk

n is the n-th component of xk.
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Let

η(x) =

⎧⎪⎨
⎪⎩ae

1
|x|2 − l , |x| < l,

0, |x| � l,

(2.13)

taking a = e1/l such that η(0) = max
Rn

η(x) = 1.

Set ϕk(x) = η(x− xk). Combining with (2.12), there exists a positive sequence
{εk}∞k=1 such that

U(xk) − εkϕk(xk) < A < 0, (2.14)

where εk → 0 as k → ∞.
Obviously, for x ∈ Rn \Bl(xk), U(x) � A and ϕk(x) = 0. Then we have

U(xk) − εkϕk(xk) < U(x) − εkϕk(x), for x ∈ Rn \Bl(xk), (2.15)

here Bl(xk) = {x ∈ Rn | |x− xk| < l}.
Define Uk(x) = U(x) − εkϕk(x). It follows from (2.15) that there exists some

point x̄k ∈ Bl(xk) such that

Uk(x̄k) = min
Rn

Uk(x) < 0.

It is easy to see that

U(x̄k) � U(xk),

and

U(x̄k) → A, as k → ∞.

Applying the first inequality of (2.10) and the definition of the fractional Laplacian,
we derive

0 � (−Δ)sU(x̄k) − b̄1(x̄k)U(x̄k) − c̄1(x̄k)V (x̄k)

= (−Δ)sUk(x̄k) − b̄1(x̄k)Uk(x̄k) − c̄1(x̄k)V (x̄k)

+ εk(−Δ)sϕk(x̄k) − εk b̄1(x̄k)ϕk(x̄k)

� (
C

l2s
− b̄1(x̄k))Uk(x̄k) − c̄1(x̄k)V (x̄k)

+ εk(−Δ)sϕk(x̄k) − εk b̄1(x̄k)ϕk(x̄k). (2.16)

Then for sufficiently small l and sufficiently large k, one has

0 � C

l2s
Uk(x̄k) − c̄1(x̄k)V (x̄k) + o(εk). (2.17)

This implies that

V (x̄k) < 0. (2.18)
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Based on (2.18), there exists a sequence {zk}∞k=1 ⊂ D1 such that

V (zk) → B = inf
Rn

V (x) < 0, (2.19)

Set ψk(x) = η(x− zk). It is easy to see that

V (zk) − εkψk(zk) < B < 0 (2.20)

and

V (zk) − εkψk(zk) < V (x) − εkψk(x), for x ∈ Rn \Bl(zk). (2.21)

Define Vk(x) = V (x) − εkψk(x). It follows that there exists some point z̄k ∈
Bl(zk) such that

Vk(z̄k) = min
Rn

Vk(x) < 0.

Similar to the proof of (2.16), by the second inequality of (2.10), we arrive at

0 � (−Δ)sV (z̄k) − b̄2(z̄k)U(z̄k) − c̄2(z̄k)V (z̄k)

= (−Δ)sVk(z̄k) − b̄2(z̄k)Uk(z̄k) − c̄2(z̄k)Vk(z̄k)

− b̄2(z̄k)ϕk(z̄k)εk + (−Δ)sψk(z̄k)εk − c̄2(z̄k)ψk(z̄k)εk

� (
C ′

l2s
− c̄2(z̄k))Vk(z̄k) − b̄2(z̄k)Uk(z̄k)

− b̄2(z̄k)ϕk(z̄k)εk + (−Δ)sψk(z̄k)εk − c̄2(z̄k)ψk(z̄k)εk. (2.22)

For sufficiently small l and sufficiently large k, we derive

0 � C ′

l2s
Vk(z̄k) − b̄2(z̄k)Uk(z̄k) + o(εk). (2.23)

That is

Vk(z̄k) � C ′l2sb̄2(z̄k)Uk(z̄k) + o(εk)

� C ′l2sb̄2(z̄k)Uk(x̄k) + o(εk). (2.24)

By (2.17), we have

c̄1(x̄k)V (x̄k) � C

l2s
Uk(x̄k) + o(εk). (2.25)

Combining (2.24) with (2.25), we derive

C ′l2sc̄1(x̄k)b̄2(z̄k)Uk(x̄k)

� c̄1(x̄k)V (z̄k)

� c̄1(x̄k)V (x̄k)

� C

l2s
Uk(x̄k) + o(εk). (2.26)
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This yields

C ′b̄2(z̄k)c̄1(x̄k) � C

l4s
. (2.27)

For sufficiently small l, (2.27) is impossible.
This completes the proof of lemma 2.2. �

3. Monotonicity of solutions in bounded domains

In this section, we will verify theorem 1.1.

The proof of theorem 1.1. Consider the following system:⎧⎪⎪⎨
⎪⎪⎩

(−Δ)su(x) = f(u, v), x ∈ G,

(−Δ)sv(x) = g(u, v), x ∈ G,

u(x) = ϕ(x), v(x) = ψ(x), x ∈ Gc,

(3.1)

where G is a convex bounded domain in xn direction, and we denote the width of
G in xn direction as d.

First we introduce some basic notations. For any positive real number τ , denote

uτ (x) = u(x′, xn + τ), vτ (x) = v(x′, xn + τ),

Gτ = {x− τen |x ∈ G},
here x = (x1, . . . , xn−1, xn) = (x′, xn), en = (0, . . . , 0, 1), and

Στ = G ∩Gτ .

Define

Ũτ (x) = uτ (x) − u(x), Ṽ τ (x) = vτ (x) − v(x).

This proof consists of two steps.

Step 1. For 0 < τ < d sufficiently large, we want to show

Ũτ (x) � 0, Ṽ τ (x) � 0, ∀x ∈ Gτ . (3.2)

By the exterior conditions (P) of u and v, it is easy to see that

Ũτ (x) � 0, Ṽ τ (x) � 0, ∀x ∈ Gτ \ Στ . (3.3)

This implies that we only need to prove

Ũτ (x) � 0, Ṽ τ (x) � 0, ∀x ∈ Στ . (3.4)

Applying the mean value theorem to the first equation of (3.1), we have

(−Δ)sŨτ (x) = fu(ξτ
1 , v

τ )Ũτ (x) + fv(u, ζτ
1 )Ṽ τ (x), x ∈ G, (3.5)

where ξτ
1 is between u and uτ in G, and ζτ

1 is between v and vτ in G.
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Similarly, we have

(−Δ)sṼ τ (x) = gu(ξτ
2 , v

τ )Ũτ (x) + gv(u, ζτ
2 )Ṽ τ (x), x ∈ G, (3.6)

where ξτ
2 is between u and uτ in G, and ζτ

2 is between v and vτ in G.
Note that Στ is a narrow region for 0 < τ < d sufficiently large. Applying lemma

2.1 to Ũτ and Ṽ τ with

E = Στ , b1 = fu(ξτ
1 , v

τ ), c1 = fv(u, ζτ
1 ),

b2 = gu(ξτ
2 , v

τ ), c2 = gv(u, ζτ
2 ),

we derive that (3.4) is valid. We conclude that (3.2) must hold.

Step 2. Now we decrease τ as long as (3.2) holds to the limiting position. Define

τ0 = inf{τ | Ũτ (x) � 0, Ṽ τ (x) � 0, x ∈ Στ , 0 < τ < d}.
We want to prove

τ0 = 0. (3.7)

If τ0 > 0, we can show that Gτ0 can be slid upward a little bit and we still have,
for some small δ > 0 and τ ∈ (τ0 − δ, τ0),

Ũτ (x) � 0, Ṽ τ (x) � 0, ∀ x ∈ Στ . (3.8)

This contradicts with the definition of τ0. Therefore, (3.7) holds. We postpone
proving (3.8).

In fact, for τ0 > 0, we can show that

Ũτ0(x) > 0, Ṽ τ0(x) > 0, x ∈ Στ0 . (3.9)

Otherwise, at least one of min
x∈Στ0

Ũτ0(x) and min
x∈Στ0

Ṽ τ0(x) are equal to zero. We

may assume that, there exists a point x̄ ∈ Στ0 such that

Ũτ0(x̄) = min
x∈Στ0

Ũτ0(x) = 0.

It follows from (3.5) that

(−Δ)sŨτ0(x̄) = fv(u(x̄), ζτ0
1 (x̄))Ṽ τ0(x̄). (3.10)

On the other hand, by the exterior condition (P) of u, we arrive at

(−Δ)sŨτ0(x̄) = Cn, sP.V.

∫
Rn

Ũτ0(x̄) − Ũτ0(y)
|x̄− y|n+2s

dy < 0. (3.11)

Combining (3.10) and (3.11) yields

Ṽ τ0(x̄) < 0.

This is a contradiction. Hence (3.9) is valid. It follows that

Ũτ0(x) > 0, Ṽ τ0(x) > 0, ∀x ∈ Στ0 . (3.12)
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Next we can choose some closed Q ⊂ Στ0 such that Στ0 \Q is a narrow region.
Applying (3.12), we have

Ũτ0(x) � c0 > 0, Ṽ τ0(x) � c0 > 0, ∀x ∈ Q. (3.13)

By the continuity of Ũτ and Ṽ τ in τ , we obtain, for some small δ > 0 and τ ∈
(τ0 − δ, τ0),

Ũτ (x) � 0, Ṽ τ (x) � 0, ∀x ∈ Q. (3.14)

Applying the exterior condition (P), we have, for some small δ > 0 and τ ∈
(τ0 − δ, τ0),

Ũτ (x) � 0, Ṽ τ (x) � 0, ∀x ∈ Σc
τ . (3.15)

It follows from lemma 2.1 that for some small δ > 0 and τ ∈ (τ0 − δ, τ0)

Ũτ (x) � 0, Ṽ τ (x) � 0, ∀x ∈ Στ \Q. (3.16)

Combining (3.14), (3.15) and (3.16), we derive that, for some small δ > 0 and
τ ∈ (τ0 − δ, τ0),

Ũτ (x) � 0, Ṽ τ (x) � 0, ∀x ∈ Στ . (3.17)

This implies (3.8) holds. It follows that (3.7) must be true.
This completes the proof of theorem 1.1. �

4. Monotonicity of solutions in unbounded domains

In this section, we study system (1.6). For convenience, we write down (1.6) again:⎧⎪⎪⎨
⎪⎪⎩

(−Δ)su(x) = f(u, v), x ∈ Ω,

(−Δ)sv(x) = g(u, v), x ∈ Ω,

u(x) = ϕ(x), v(x) = ψ(x), x ∈ Ωc,

(4.1)

where Ω = {x = (x′, xn) ∈ Rn | 0 < xn < M}, x′ = (x1, x2, . . . , xn−1). We will ver-
ify theorem 1.2.

Proof of theorem 1.2. First we introduce some necessary notations. For any 0 �
τ � M , set

uτ (x) = u(x′, xn + τ), vτ (x) = v(x′, xn + τ).

Let

Ωτ = {x− τen |x ∈ Ω},
which is obtained by sliding Ω downward τ units in xn direction, en =
(0, 0, . . . , 0, 1).

Set

Dτ = Ω ∩ Ωτ ,

Uτ (x) = uτ (x) − u(x), V τ (x) = vτ (x) − v(x).

The proof consists of three steps.
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Step 1. For 0 < τ < M sufficiently large, we want to show that

Uτ (x) � 0, V τ (x) � 0, x ∈ Ωτ . (4.2)

Obviously,

Ωτ = Dτ ∪ (Ωτ ∩Rn
−).

By the exterior condition (P) of u and v, we get

Uτ (x) � 0, V τ (x) � 0, x ∈ Ωτ ∩Rn
−. (4.3)

It is easy to see that uτ (x) and vτ (x) satisfy the PDEs (4.1). Combining with
the mean value theorem, we obtain

(−Δ)sUτ (x) = fu(ξτ
1 , v

τ )Uτ (x) + fv(u, ζτ
1 )V τ (x), x ∈ Ω, (4.4)

where ξτ
1 is between u and uτ in Ω, and ζτ

1 is between v and vτ in Ω.
Similarly, we have

(−Δ)sV τ (x) = gu(ξτ
2 , v

τ )Uτ (x) + gv(u, ζτ
2 )V τ (x), x ∈ Ω, (4.5)

where ξτ
2 is between u and uτ in Ω, and ζτ

2 is between v and vτ in Ω.
For τ sufficiently close to M , Dτ is narrow region in xn direction. Applying the

‘narrow region principle for system on unbounded domains’ (lemma 2.2), we arrive
at

Uτ (x) � 0, V τ (x) � 0, ∀x ∈ Dτ . (4.6)

Combining (4.3) and (4.6), we derive that (4.2) must hold.

Step 2. (4.2) provides a starting point to carry out the sliding method. Now we
decrease τ as long as (4.2) holds to the limiting position. Define

τ0 = inf{τ |Uτ (x) � 0, V τ (x) � 0, x ∈ Dτ , 0 < τ < M }.

We will show that

τ0 = 0. (4.7)

Otherwise, suppose that τ0 > 0, we can show that Ωτ can be slid upward a little
bit and we still have, for some small δ > 0,

Uτ (x) � 0, V τ (x) � 0, τ0 − δ < τ � τ0. (4.8)

This is a contradiction with the definition of τ0. Then (4.7) holds. We delay to prove
(4.8).
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To prove (4.8), we first show that

inf
x∈Dτ0

Uτ0(x) > 0, inf
x∈Dτ0

V τ0(x) > 0. (4.9)

If (4.9) is not true, then at least one of infx∈Dτ0
Uτ0(x) and infx∈Dτ0

V τ0(x) is
equal to zero. We may assume that

inf
x∈Dτ0

Uτ0(x) = 0.

Hence, there exists a sequence {xk}∞k=1 ⊂ Dτ0 such that

Uτ0(xk) → 0, as k → ∞. (4.10)

Set

η(x) =

⎧⎪⎨
⎪⎩ae

1
|x|2 − r , |x| < r,

0, |x| � r,

(4.11)

choosing a = e1/r and r = M−τ0
2 , such that η(0) = max

Rn
η(x) = 1.

Let ϕk = η(x− xk). There exists a positive sequence {εk} such that

Uτ0(xk) − εkϕk(xk) < 0

with εk → 0, as k → ∞.
For any x ∈ Dτ0 \Br(xk), Uτ0(x) � 0 and ϕk(x) = 0. It is easy to see that,

Uτ0(xk) − εkϕk(xk) < Uτ0(x) − εkϕk(x), for x ∈ Dτ0 \Br(xk), (4.12)

where Br(xk) = {x ∈ Rn | |x− xk| < r}.
It follows that there exists some point x̃k ∈ Br(xk) ∩Dτ0 such that

Uτ0(x̃k) − εkϕk(x̃k) = min
x∈Dτ0

(Uτ0(x) − εkϕk(x)) < 0. (4.13)

Combining (4.10) and (4.13) yields that

Uτ0(xk) � Uτ0(x̃k) � Uτ0(xk) − εkϕk(xk) + εkϕk(x̃k).

Obviously, as k → ∞,

Uτ0(x̃k) → 0. (4.14)

By (4.4), we derive that, for k sufficiently large,

(−Δ)s(Uτ0 − εkϕk)(x̃k)

= fu(ξτ0
1 (x̃k), vτ0(x̃k))Uτ0(x̃k) + fv(u(x̃k), ζτ0

1 (x̃k))V τ0(x̃k) + o(εk), (4.15)

where ξτ0
1 (x̃k) is between u(x̃k) and uτ0(x̃k), and ζτ0

1 (x̃k) is between v(x̃k) and
vτ0(x̃k).
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On the other hand, employing the definition of the fractional Laplacian,

(−Δ)s(Uτ0 − εkϕk)(x̃k)

= Cn,sP.V.

∫
Rn

(Uτ0 − εkϕk)(x̃k) − (Uτ0 − εkϕk)(y)
|x̃k − y|n+2s

dy

� c

∫
Bc

r(x̃k)

(Uτ0 − εkϕk)(x̃k) − (Uτ0 − εkϕk)(y)
|x̃k − y|n+2s

dy

� c

∫
Bc

r(0)

(Uτ0 − εkϕk)(x̃k) − (Uτ0 − εkϕk)(y + x̃k)
|y|n+2s

dy

� c

∫
Bc

r(0)

−Uτ0(y + x̃k)
|y|n+2s

dy. (4.16)

Set uk(x) = u(x+ x̃k), Uτ
k (x) = Uτ (x+ x̃k). By Arzelà–Ascoli theorem, we have

uk(x) → u∞(x), as k → ∞, in Rn.

Hence, as k → ∞,

Uτ
k (x) → Uτ

∞(x) = uτ
∞(x) − u∞(x), x ∈ Bc

r(0). (4.17)

Combining (4.15), (4.16) and (4.17), we deduce that, as k → ∞,

∫
Bc

r(0)

−Uτ0∞ (y)
|y|n+2s

dy � 0. (4.18)

Obviously, (4.18) holds unless

Uτ0∞ (y) ≡ 0, y ∈ Bc
r(0). (4.19)

By (4.19), we derive

u∞(x′, xn) = u∞(x′, xn + τ0) = · · · = u∞(x′, xn +mτ0) (4.20)

for any m ∈ N+.
Choosing (x′, xn) ∈ Ω, and takingm large enough such that (x′, xn +mτ0) ∈ Ωc,

we apply the exterior condition on u to derive a contradiction with (4.20). Thus,
(4.9) holds.

Choosing sufficiently large K ⊂ Dτ0 such that Dτ0 \K is narrow in xn direction.
Combining (4.9) with the continuity of Uτ and V τ in τ , we derive that, for some
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small δ > 0,

Uτ0−δ(x) � 0, V τ0−δ(x) � 0, x ∈ K. (4.21)

Meanwhile, applying the exterior condition (P), we have

Uτ0−δ(x) � 0, V τ0−δ(x) � 0, x ∈ (Dτ0−δ)c. (4.22)

Employing lemma 2.2, we derive

Uτ0−δ(x) � 0, V τ0−δ(x) � 0, x ∈ Dτ0−δ \K. (4.23)

Combining (4.21) with (4.23), we obtain

Uτ0−δ(x) � 0, V τ0−δ(x) � 0, x ∈ Dτ0−δ. (4.24)

This contradicts the definition of τ0. Hence, (4.7) is valid. We conclude that u
and v are increasing in xn variable.

This completes the proof of theorem 1.2. �
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