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Number Concepts 1

1 Introduction
This Element is principally concerned with the conceptual building blocks of
numerical thoughts. These include, but needn’t be limited to, thoughts ascrib-
ing cardinalities to collections, such as the thought expressed by (1a), those
ascribing arithmetic properties to numbers, such as that expressed by (1b), and
those locating the ordinal position of something among a series of things, such
as the thought expressed by (1c).

(1) a. The Elmos on the table are two in number.

b. Two is an even number.

c. Mary is contestant number two.

Generally, as constituents of thoughts, concepts are widely assumed by philoso-
phers and psychologists to be essential to a range of cognitive capacities, most
obviously categorization, reasoning, language comprehension, and decision-
making. For example, understanding (1a–c) requires the possession of con-
cepts; having the thoughts expressed by each sentence permits the categori-
zation of some thing(s) as being a certain way – as being two in number, an
even number, or second among the contestants; and each thought clearly per-
mits reasoning, e.g. that there is more than one Elmo on the table, that some
number is even, or that Mary is a contestant. Having such thoughts requires
the possession of concepts which are broadly numerical in nature, or as we call
them, number concepts.1

In writing this Element, we have a pair of central aims. The first is to sum-
marize and critically evaluate empirical research on number cognition of the
sort pursued in developmental psychology and cognitive science – which we
will call number cognition research (NCR) – and to do so in a manner that is
helpful to philosophers with little or no background in that research. The second
aim is to highlight how research from disparate fields – such as, the philosophy
of mathematics, developmental psychology, and linguistics – can be mutually
informing, in previously unappreciated ways. In particular, by highlighting the-
oretical assumptions underlying much NCR, and by bringing insights from the
philosophy of mathematics and linguistics to bear on these assumptions, we
hope to spark further interdisciplinary dialog.
Here, we outline how the Element attempts to achieve this second aim, by

considering why number cognition researchers (NCRs) should care about the

1 A note on the conventions employed.We use boldface to indicate technical terms, and typically
reserve italics for emphasis. Single quotes are used when mentioning expressions, such as the
word ’dog’, and double quotes are used for direct quotation. Finally, we use capital letters to
designate concepts, as with the concept DOG.
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2 Philosophy of Mathematics

philosophy of mathematics, and why philosophers of mathematics should care
about NCR. Along the way, we highlight key issues raised throughout the
Element, while indicating the relevant sections.

1.1 Why Care about Philosophy of Mathematics?
One reason NCRs should care about the philosophy of mathematics is that the
sorts of foundational issues studied within this area of philosophy routinely
inform NCR. Specifically, as we’ll see, NCRs often adopt controversial phil-
osophical assumptions regarding such issues as what natural numbers are, and
how they are represented in language and thought.
To be clear, there is nothing wrong with importing foundational assumptions

into NCR. Indeed, it may be unavoidable. Nevertheless, we want to high-
light five points regarding the manner in which such assumptions figure within
NCR. First, typically these assumptions are only a small sample of the avail-
able options. Second, and despite this, justification for the preferred options
are rarely provided. Third, the choices made often have an important effect on
how NCR is conducted. Fourth, there are often independent problems with the
options chosen. Finally, sometimes adopting a neglected alternative would both
avoid these problems and cast the empirical issues in an importantly different
light.
To illustrate, consider the predominant metaphysical assumption about nat-

ural numbers within NCR: the Frege–Russell characterization. On this view,
the naturals are, loosely speaking, collections of sets having the same num-
ber of members. For example, the number two is identified with the collection
of all two-membered sets, the number three with the collection of all three-
membered sets, and so on. As we’ll see in Section 4.2.3, despite its undeniable
influence both within and outside of philosophy, the adoption of the Frege–
Russell characterization within NCR has not only exerted a significant effect
on how research is conducted, it has also led to certain theoretical problems
which have not been widely appreciated. Furthermore, there are available alter-
natives which, if adopted, would both avoid these problems and have important
implications for a range of relevant empirical issues.
First, note that the Frege–Russell characterization is only one version of sev-

eral kinds of characterizations of the naturals available. Specifically, it is a
cardinal characterization – one characterizing the naturals as answering ‘how
many’-questions. However, not only are there other cardinal characterizations
available, there are also different kinds of characterizations altogether, namely
ordinal and structuralist characterizations (Section 4.1).
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Number Concepts 3

Second, although the Frege–Russell characterization is very frequently
adopted by NCRs, its adoption is rarely, if ever, explicitly justified. Indeed,
as Rips et al. (2008, p. 625) observe, despite the availability of alternatives,

Nearly all cognitive research on the development of number concepts rests
on the idea that such concepts depend on enumerating objects . . . Psycholo-
gists seem to have been influenced . . . by the conception of natural numbers
as sets of all equinumerous sets of objects (see Frege 1884/1974; Russell
1920).2

For example, after querying where number concepts come from and how they
develop, vanMarle (2018, p. 131) immediately provides an answer to the ques-
tion of what numbers are: “As described by Frege (Frege, 1884/1980), formally,
numbers are a special kind of sets.”3

Third, and despite this, adopting the Frege–Russell characterization has
important implications for central issues in NCR, including the following:

• Denotations of Count Words: Count words – words used for counting, such
as ‘one’, ‘two’, ‘three’, and so on – are assumed to denote natural numbers,
as collections of sets (Section 4.2.3). For example, Bloom and Wynn (1997,
p. 512) write: “[In two black cats], two is a predicate that applies to the set
of cats. As Frege (1893/1980) has argued, numbers are predicates of sets of
individuals.” The presumption appears to be that because ‘two’ predicates
twoness of sets, the number two must be the extension of that predicate.
However, in addition to being a dubious interpretation of Frege (Benacerraf
[1965]), the assumed analysis is not the only – or even the most prominent –
analysis of count words available (Section 4.2.3).

• Representational States of Core Systems: Certain so-called “core systems”
(Section 2.2), such as the Approximate Number System (ANS), the Small
Number System (SNS), and the language faculty, are assumed to deploy rep-
resentations of sets. For example, regarding the ANS, Susan Carey (2009a,
p. 136) writes: “The analog magnitude number representations …require
representations of sets.” Similarly, concerning the SNS, Carey (Carey,
2009a, p. 150) writes: “Parallel individuation, like analog magnitude number
representation, depends on representations of sets and supports quantita-
tive computations over sets.” Finally, regarding natural language semantics,
Carey (Carey, 2009a, pp. 320–321) writes: “Semantic treatments of quanti-
fiers require the abstract concepts individual and set.” Again, however, this

2 Within contemporary ZF set theory, natural numbers are not sets (of equinumerous sets), of
course, since no such sets exist. Rather, they are classes.

3 For Frege, natural numbers are extensions of concepts (Frege [1884]) or courses of values
(Frege [1903]). If we interpret these as sets, then Frege’s account is inconsistent, of course,
due to Russell’s paradox.
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4 Philosophy of Mathematics

is not the only, let alone the most plausible, way of describing what these
systems represent (Section 4.2.3).

• Representational Capacities: It is sometimes assumed that because num-
ber concepts denote sets, acquiring such concepts requires representational
capacities implied by certain foundational programs, such as Zaremlo–
Fraenkel set theory or Frege arithmetic (Section 4.1). Quoting Carey (2009b,
pp. 1–2):

([C]haracterizing the logical prerequisites for natural number) leads to
analyses like those that attempt to derive the Peano–Dedekind axioms
from Zermelo–Fraenkel set theory or Frege’s proof that attempts to derive
these axioms from second order logic and the principle that if two sets can
be put in 1–1 correspondence they have the same cardinal value. Such
analyses seek to uncover the structure of the concept of natural number,
and certainly involve representational capacities drawn upon in mature
mathematical thought.

However, these are not the only foundational programs capable of deriving
the Dedekind-Peano axioms (Snyder et al. [2019]). Also, if acquiring the
relevant concepts involves an induction from perceptual inputs, then acquir-
ing such concepts would appear to require a capacity to perceive abstract
objects. In contrast, available alternatives would require no such capacity
(Section 4.2.3).

Fourth, despite its influence, there are significant problems with adopting
the Frege–Russell characterization within the context of NCR. For example,
in addition to potentially requiring perception of abstracta, when combined
with independently plausible assumptions concerning the semantic functions
of number words, the Frege–Russell characterization makes numerous false
semantic predictions (Section 4.2.3).
Finally, we suggest in Section 4.3 that replacing the Frege–Russell character-

ization with other foundational commitments both avoids some of the problems
just alluded to and casts certain core issues about number cognition in an impor-
tantly different light. For example, once the Frege–Russell characterization is
relinquished, we maintain that it is plausible to view the available semantic
evidence as supporting a novel kind of conceptual pluralism about num-
ber concepts – one in which adults possess multiple distinct, but semantically
related, concepts for each number word in their lexicon.

1.2 Why Care about Number Cognition Research?
Although this Element focuses primarily on the relevance of the philosophy
of mathematics for NCR, we think it important to comment briefly on why
philosophers should also care about NCR, especially since many contemporary
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Number Concepts 5

philosophers of mathematics may view such research as irrelevant to their own
concerns, for at least three reasons.
First, thanks largely to the influence of Frege, much philosophy of mathe-

matics is anti-psychologistic. Specifically, Frege (1884, p. xviii) expresses an
attitude which, we suspect, is still largely prevalent today: “psychology should
not imagine that it can contribute anything whatever to the foundation of arith-
metic.” Given this sentiment, we should not expect psychology to play a role
in the sorts of foundational matters that frequently concern philosophers of
mathematics.
Second, unlike NCR, much of the research within philosophy of mathe-

matics is revisionist in spirit. Strawson (2002) famously distinguishes two
methodological orientations toward metaphysics. Roughly, whereas descrip-
tive metaphysics is concerned with what the structure of reality would be like
if it were accurately represented by the conceptual scheme we actually have,
revisionary metaphysics is concerned with what the structure of reality would
be like if it were accurately represented by the conceptual scheme we ought to
have. At least since Frege, and his attempt to develop an ideal language suitable
for science, much philosophy of mathematics has been rather more concerned
with the latter. So, since NCR is concerned with how we in fact think, the
significance of such research for the philosophy of mathematics is once more
attenuated.
Finally, many philosophers of mathematics view themselves as principally

concerned with mathematics as a scientific discipline – one that’s populated
by specialists, typically engaged in highly creative forms of research that are
beyond the comprehension of all but a highly select group of other experts. Far
less concern, overall, is given to elementary arithmetic, and even less to our
mundane thoughts about counting Elmos or balancing checkbooks. Thus, it
may seem unobvious why philosophers should concern themselves with child-
hood conceptual development, let alone with numerical capacities we share
with nonhuman organisms. Indeed, from this vantage, it may seem about as
relevant as it would be for, say, philosophers of physics to study the childhood
development of folk physics, or for philosophers of literature to study how chil-
dren learn to read. In all such cases, the gap between the quotidian capacities
studied by psychologists and the forms of expertise that philosophers reflect
upon may appear so great as to render the former irrelevant to the respective
philosophical projects.
Nevertheless, there are at least three good reasons philosophers of math-

ematics should care about NCR.4 First, empirical claims of the sort which

4 For additional potential points of contact, see de Cruz (2016).
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6 Philosophy of Mathematics

concern NCR are already relatively commonplace in developing and defend-
ing influential positions within the philosophy of mathematics. Thus, insofar
as philosophers rely on such claims, they should ensure that their commitments
are actually supported by our best NCR.
To illustrate, consider the neo-logicism of Hale and Wright (2001). One of

their central metaphysical commitments is that natural numbers are finite car-
dinalities characterized by Hume’s Principle (HP), where ‘F’ and ‘G’ range
over predicates, ‘#’ is an operator mapping predicate extensions to cardinal
numbers, and ‘∼’ is the relation of equinumerosity holding between F and G
if each F can be mapped to a unique G, and vice versa.

(HP) ∀F,G. #F = #G ↔ F ∼ G

As Hale and Wright are aware, this is not the only characterization of the nat-
urals available (Section 4.1). Consequently, they seek to justify (HP) as the
correct characterization of the naturals, to the exclusion of alternatives. To
this end, they appeal to a principle known as Frege’s Constraint: roughly,
the correct formal characterization of the naturals ought to directly reflect their
primary empirical application [Snyder et al. (2018a)]. What’s more, they argue
that the primary empirical application of the naturals is counting. For Wright
(2000, p. 327) in particular, the metaphysical thesis is justified partly in virtue
of how children acquire number concepts.

It seems clear that one kind of epistemic access to …simple truths of arith-
metic proceeds precisely through their applications. Someone can – and our
children surely typically do – first learn the concepts of elementary arithmetic
by a grounding in their simple empirical applications and then, on the basis
of the understanding thereby acquired, advance to an a priori recognition of
simple arithmetic truths.

Thus, “there is a kind of a priori arithmetical knowledge which flows from an
antecedent understanding of the way that arithmetical concepts are applied”
– namely through counting. Yet whether children typically acquire arithmetic
knowledge only after learning how to count is, of course, an empirical claim,
one beholden to the developmental facts. Fortunately for Wright, those facts do
appear to support this contention (Section 2.2).5

As a second example, considermathematical empiricism, as defended, e.g.
by Kim (1981), Maddy (1990), and Yi (2018). As usually formulated, empir-
icism is principally an empirically motivated response to Benacerraf’s (1973)

5 Though see Linnebo (2009). Also, whether this actually justifies Frege’s Constraint, or indeed
whether it establishes counting as the primary empirical application of the naturals, is an
altogether different matter, one which we are highly skeptical of [Snyder et al. (2018a, 2019)].
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Number Concepts 7

Access Problem: roughly, how is it possible to have mathematical knowl-
edge if such knowledge is about abstract mathematical objects? Following J. S.
Mill, modern mathematical empiricists propose that our knowledge of simple
arithmetic truths, e.g. that 3 + 2 = 5, depends crucially on our perceiving the car-
dinalities of collections of concrete entities. Two theses are thus characteristic
of such empiricism. The first is

The Identity Thesis: Natural numbers are cardinalities.

By cardinality, we mean the sort of thing answering ‘how many’-questions.
Different versions of empiricism offer different accounts of what cardinalities
are – e.g. properties of sets [Kim (1981); Maddy (1990)]. Still, all maintain

The Perceptual Thesis: Cardinalities are perceivable.

Empiricists often appeal to NCR in attempting to justify this thesis. Spe-
cifically, while Kim (1981) and Maddy (1990) both appeal to subitizing
(Section 2.2), and thus presumably some version of the SNS, Yi (2018) appeals
instead to the ANS. On the presumption that the SNS and ANS are percep-
tual systems representing cardinalities, empiricists thus seek to explain how
our knowledge of basic arithmetic may be grounded in our perception of
cardinality, and thus number.
Evidently, whether this defense of mathematical empiricism is successful

depends on empirical evidence for the existence of these systems, as well as the
contents of the representations such systems deploy. As we will see, while most
Mainstream NCRs appeal to one or more of these systems in accounting for
the possession of number concepts, not all theories appeal to the same systems,
and not all agree that the representations deployed by such systems suffice to
possess number concepts (Section 3).
A second potential reason philosophers should care about NCR is closely

related to the Access Problem. Though there are different formulations of the
Access Problem, by far the most familiar are epistemic in character. Specif-
ically, whereas Benacerraf’s (1973) original formulation concerns how it is
possible to possess the sorts of mathematical knowledge we seem to have,
Field’s (1989) reformulation concerns how we can explain the reliability of
our mathematical beliefs. Yet as Hart (1991) notes, a presupposition of such
problems – and a large part of what makes them difficult to address – is the
challenge of explaining how humans can have thoughts about numbers in the
first place. However, this has been a central issue for NCR since its inception,
withWalterMcCulloch’s well-known paper “What is a number, that a manmay
know it, and a man, that he may know a number?”
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8 Philosophy of Mathematics

Though the details of McCulloch’s paper needn’t detain us, the challenge
of explaining how we can have thoughts about numbers decomposes into two
subproblems. The first is a challenge for theories of mental representation:

The Content Problem: How can thoughts have numerical content, if such a
content is partially constituted by abstracta?

Consider the thought that two is an even number, for example. Prima facie, this
thought is partially constituted by the concept TWO, which, like the numeral
‘two’ in (2), presumably denotes a number.

(2) Two is an even number.

The question is how could this thought have such a content, given what TWO
denotes? What’s needed, apparently, is a theory of content determination
which allows for such a possibility. To see why, consider the following passage
from Carey (2009a, p. 5):

I assume that there are many components to the processes that determine
conceptual content, and that these fall into two broad classes: (1) causal
mechanisms that connect a mental representation to the entities in the world
in its extension, and (2) computational processes internal to the mind that
determine how the representation functions in thought. In broad strokes,
then, I assume a dual theory of conceptual content (Block, 1986, 1987).

Here Carey assumes a causal condition on content determination whereby a
representation ϕ denotes X only if there are causal mechanisms linking ϕ to
X . Yet it seems impossible that thoughts about numbers could, in principle, be
causally related to numbers, assuming numbers are abstract.
The second subproblem would have been recognizable to Plato:

The Acquisition Problem: How is it so much as possible for humans to acquire
number concepts?

Obviously, an answer here requires an adequate answer to the Content Prob-
lem. But it also requires the specification of processes that permit humans to
acquire representations with the relevant contents. One may fruitfully view
large parts of NCR as dedicated to specifying such processes. As we’ll see,
there is broad agreement regarding many of the relevant ingredients – e.g.
cognitive systems – involved in acquiring number concepts (Section 2.3), and
also the sequence of salient developmental milestones (Section 2.4). Yet there
is substantial disagreements concerning the details. Section 3 contains a sus-
tained discussion of such disagreements; and Section 4 contains an assessment
of central logico-mathematical assumptions that dominate the field.
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Number Concepts 9

We are mindful that while The Content Problem is widely presumed to
be a philosophical issue, many philosophers of mathematics will view the
Acquisition Problem as falling outside their discipline. Fregean scruples not-
withstanding, however, the challenge of explaining how such concepts can
be acquired is a topic of enduring philosophical interest, at least since Plato.
Moreover, as we hope to make clear, the Acquisition Problem is impacted by
precisely the sorts of issues that do figure centrally in philosophy of mathemat-
ics. Such considerations, we suggest, provide ample grounds for the continued
attention of philosophers.

1.3 Ambitions and Scope of the Present Element
The primary purpose of this Element is to critically review NCR in a man-
ner that is helpful to both philosophers and NCRs. However, we do not aim
to provide a detailed exposition of the myriad experiments, data, models, and
hypotheses that pervade NCR. Instead, we focus on the broadly philosophi-
cal assumptions that underwrite such research. For one thing, there are already
multiple volumes, written or edited by first-rate cognitive scientists, which pro-
vide excellent surveys of such empirical details (see, e.g. Kadosh and Dowker
[2015]). For another, our talents, such as they are, are better suited to wrangling
the many, often underexplored, theoretical underpinnings of NCR.
We should also stress that while much of our discussion is critical, the criti-

cisms presented are intended to be constructive, not dismissive. This Element
is part of a larger, long-term project looking at those empirical sciences most
clearly relevant to how we talk and think about number, and attempting to
discern how, if at all, they may fruitfully inform foundational issues within
the philosophy of mathematics, and vice versa. Ultimately, then, our hope is
that this Element contributes to a more fruitful interdisciplinary dialog between
philosophers, NCRs, and linguists.
The remainder of the Element is organized into three sections. Section 2

cordons off a large group of influential theories of number cognition, which
we call “the Mainstream.” It does so by identifying certain commitments char-
acteristic of much NCR, including representationalism about cognition (Sec-
tion 2.1), and representationalism about concepts in particular (Section 2.2),
the existence of a pair of so-called “core systems” (Section 2.3), and a broad
consensus regarding some important developmental milestones for number
cognition (Section 2.4). In Section 3, we propose a taxonomy of Mainstream
views, based roughly on which factors they deem central to the acquisition
of number concepts, and critically review some influential theories in each
category. These include what we call ANS-dominant models (Section 3.2),
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10 Philosophy of Mathematics

nativist models (Section 3.3), hybrid models (Section 3.4), and SNS-dominant
models (Section 3.5). Finally, in Section 4, we isolate and critically assess cer-
tain philosophically relevant theoretical assumptions underlying Mainstream
NCR. These include methodological assumptions concerning the relationship
between NCR and foundational theorizing (Section 4.1), as well as various
metaphysical positions concerning natural numbers, including social construc-
tionism (Section 4.2.1), term formalism (Section 4.2.2), and the Frege–Russell
characterization (Section 4.2.3). We end the Element by distinguishing two
kinds of conceptual pluralism, and suggesting that both are plausible in light of
broadly empirical considerations (Section 4.3).

2 The Mainstream
At least since Plato, mathematical cognition in general, and numerical cogni-
tion in particular, has been a topic of central interest for philosophers. However,
it is only in the past four decades or so that it has become the subject of sustained
empirical research – most clearly in developmental psychology, cognitive
psychology, and cognitive neuroscience.
Although the field is replete with substantive, ongoing disagreements, much

contemporary number cognition research (NCR) cleaves to an array of empir-
ical and theoretical commitments, which may be thought of as constituting
a kind of Mainstream view of number cognition. In saying this, we do not
intend to suggest that all these commitments are explicitly endorsed by all, or
even most, contemporary NCRs. Rather, our talk of “the Mainstream” should
be viewed as a useful idealization – a kind of conceptual “central tendency”
implicit in much contemporary research. And like many idealizations, we take
our talk of the Mainstream to be warranted to the extent that it proves useful in
systematizing and aiding understanding.
The task of the present section is to articulate, not to defend or to critically

evaluate, the constellation of commitments which constitute the Mainstream.
Though wewill, of course, present common reasons for endorsing a given com-
mitment, and refer the reader to existing relevant research, the task of critically
evaluating Mainstream commitments is deferred until later.
For heuristic purposes, we divide Mainstream commitments into two sorts:

general commitments that are pervasive across the cognitive sciences, and those
specifically concerning the domain of number cognition. The first are inherited
from cognitive science as a broad, ongoing concern and applied specifically to
the domain of number cognition. For our purposes, the most significant of these
concern mental representation. Specifically, as we discuss below, in order to
understand Mainstream NCR is it important to appreciate (i) the widespread
commitment to representationalism as a general thesis about cognition; (ii) the
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Number Concepts 11

presumed explanatory function of representations in cognitive explanations;
and (iii) the widespread commitment to the view that concepts are a species of
mental representation.
The second, number-specific variety of commitment can be divided into

two further sorts. The first are broadly empirical commitments supported by
decades of NCR. Three such commitments will be especially significant in the
following discussion, both because they constitute a kind of broad empirical
consensus, and also because they structure ongoing research efforts:

The Core Systems Hypothesis: There are at least two evolved, cognitive sys-
tems – sometimes called the ‘small number system’ and the ‘approximate
number system’ – that humans share with many other animals, and which
underwrite processes which address numerical tasks, broadly understood.

The Developmental Timetable: Up until approximately 4 years of age, infants
and children tend to manifest a robust, stage-like pattern in the development
of numerical abilities.

The Primacy of Counting: Learning to count plays a central role in the mani-
festation of early emerging numerical abilities.

In addition to these empirical commitments, a second kind of number-specific
commitment concerns what the big questions – the central explanatory targets –
for a science of number cognition should be. Interestingly, few researchers
directly aim to explain the sorts of advanced numerical abilities manifested
by professional mathematicians. Instead the aim is to understand more basic,
mundane – or quotidian – numerical abilities routinely manifested in industrial
societies from, say, four years onwards: most centrally, counting and simple
arithmetic. In this regard, the science of number cognition is like the science of
language, which does not directly aim to explain exceptional linguistic feats –
of Keats, Flaubert, or Angelou, for example – but instead to understand the sorts
of linguistic competence possessed by almost any human being. As we’ll see,
perhaps the central explanatory target for contemporary NCR concerns how
young children come to manifest simple quotidian numerical abilities – espe-
cially those indicative of the possession of concepts denoting natural numbers
(ONE, TWO, etc.), tacit knowledge of numerical principles, such as successor,
and the concept NATURAL NUMBER as such.

2.1 Representationalism
Among the most widely shared assumptions in all of cognitive science is what’s
sometimes called the Representational Theory of Mind (RTM), or just rep-
resentationalism [Pinker (2007), Carey (2009a)]. Representationalism has,
of course, been the focus of extensive critical discussion over the past half
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12 Philosophy of Mathematics

century, and is the subject of some excellent book-length treatments [Fodor
(1990); Ramsey (2007); Shea (2018)]. Hence, we won’t belabor the details
here. Still, it is important to be clear on various aspects of contemporary
representationalism, if we are to understand extant NCR.
Most generally, representationalism is the thesis that the human mind is an

information-using system, and that our cognitive capacities can be understood
in representational terms [Egan (2012)]. The core idea is that psychological pro-
cesses, such as thinking, perceiving, language comprehension, and learning, are
causal processes involving information-bearing structures or vehicles –mental
representations – which have appropriate contents ormeanings [Shea (2018)].
The models and explanations provided by cognitive scientists quite generally,
and NCRs in particular, most often assume the existence of such processes.
Many processes studied by cognitive scientists do not correspond in any

straightforward manner to our commonsense ways of classifying cognitive
processes. For example, as we’ll see in Section 2.3, cognitive scientists have
extensively studied processes for the representation of approximate magni-
tudes, and for perceptually tracking small numbers of objects. However, if
we restrict our attention to those cognitive processes philosophers most typ-
ically discuss – those involving propositional attitudes, such as beliefs and
desires – then representationalism may be usefully presented as follows,
quoting Margolis and Laurence (2022).

According to RTM, thinking occurs in an internal system of representation.
Beliefs and desires and other propositional attitudes enter into mental pro-
cesses as internal symbols. For example, Suemight believe that Dave is taller
than Cathy, and also believe that Cathy is taller than Ben, and together these
may cause Sue to believe that Dave is taller than Ben. Her beliefs would be
constituted by mental representations that are about Dave, Cathy and Ben
and their relative heights. What makes these beliefs, as opposed to desires
or other psychological states, is that the symbols have the characteristic
causal-functional role of beliefs.

In practice, advocates of representationalism in cognitive science tend to
adopt a suite of assumptions about the representations which, by hypothesis,
underwrite cognition.
First, though the assumption won’t figure prominently in the coming discus-

sion, cognitive scientists usually adopt a computational model of cognition, and
so characterize the causal-functional roles of representations in computational
terms Harnish (2000).
Second, for explanatory reasons, almost all advocates of representational-

ism take mental representations to have internal structure. Accordingly, those
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Number Concepts 13

representations figuring in beliefs, for instance, are often presumed to be
composed of more basic representations.
Third, like all representations, mental representations are presumed to have

semantic properties – meanings, truth-conditions, denotations, or more sim-
ply “contents” when distinctions between these are unimportant. Although
there is considerable disagreement regarding which specific semantic proper-
ties mental representations possess – whether, e.g. they possess properties akin
to Fregean senses – they are widely assumed to have denotational or referential
contents. For example, it is routinely assumed that somemental representations
function like singular terms, i.e. expressions whose semantic function is to
refer to entities, while other mental representations function like predicative
expressions, in that they purport to denote properties or collections of objects.
Fourth, in addition to their semantic properties, mental representations are

assumed to possess nonsemantic properties which explain why representations
with the same contents are treated in the same ways by cognitive processes
[Shea (2018)].
Fifth, it is important to appreciate that within cognitive science, mental

representations are posited largely in the service of providing various sorts
of explanation. Specifically, a primary motivation for positing mental repre-
sentations is to causally explain empirically attested patterns in behavior and
cognition. It is ultimately on its adequacy as an approach to the provision of
such explanations that representationalism stands or falls.
One style of explanation, prominent in developmental psychology, will be

especially pertinent to our discussion in later sections, and consists in explain-
ing cognitive-behavioral differences by positing representational differences.
In particular, one seeks to explain observed contrasts in performance between
members of developmentally distinct populations – say, two year-olds and four
year-olds – by positing a representational resource, such as a concept or body
of information, that one population is assumed to lack and the other to pos-
sess. As we’ll see, such explanations are routinely invoked by NCRs to explain
differences in numerical abilities at different times in development.
Finally, it is important to appreciate that, in providing such explanations,

cognitive scientists routinely assume a familiar inventory of representational
states, including those marked by the following distinctions:

• Symbolic and Analog Representations: It is widely supposed that some
representations may be symbolic, or language-like, in that they have a com-
binatorial syntax and a compositional semantics [Fodor (1975)]. However,
it is also widely assumed that there may be analog representations of var-
ious sorts (Section 2.3). How best to characterize these is, in our view, not
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14 Philosophy of Mathematics

at all clear, and remains a point of ongoing debate [Beck (2019); Lee et al.
(2022)]. However, presumed paradigmatic (noncognitive) examples include
mercury thermometers, hand-clocks, and line drawings [Lee et al. (2022)].

• Explicit and Implicit Representational States: At least since Chomsky’s early
work, it has been widely supposed that there are both explicit and implicit
representational states. Roughly put, a representation is explicit when a state-
ment describing its content may be elicited by suitable enquiry or prompting
[Dummett (1991b)]. In contrast, when no such statements can be elicited, a
representational state is often labeled “implicit” or “tacit.” Though there is
considerable disagreement regarding how best to characterize implicit rep-
resentations (see, e.g. [Davies (2015)], what’s crucial for the purposes of
NCR is that they can participate in causal interactions, even if they are not
reportable by the agent.

• Conceptual and Nonconceptual Representations: The final distinction is
between conceptual and nonconceptual representational states. Paradigmatic
instances of the latter include states of early vision and the language faculty,
whereas paradigmatic instances of the former include propositional attitudes,
e.g. beliefs and judgments [Bermúdez and Cahen (2020)]. As we’ll see,
much of NCR assumes that number concept acquisition depends on a prior
possession of representational capacities that are nonconceptual in character.

2.2 Representationalism about Concepts
Suppose, along with the Mainstream, that some version of representationalism
is correct. Further, suppose that we are concerned with concept acquisition.
What kind of entity, quite generally, will concepts be? In what follows,
we sketch some commonplace assumptions in cognitive science, especially
developmental psychology [Carey (2009a)].
First, concepts are standardly viewed as the building blocks, or constituents,

of thoughts and other propositional attitudes [Margolis and Laurence (2022)].
According to the Mainstream, thoughts are mental representations, and con-
cepts qua constituents of thoughts, are themselvesmental representations. Here,
‘thought’ is being used not merely to indicate occurrent, conscious episodes,
but also unconscious thoughts, as well as various sorts of standing mental
states, including long-term memories and mentally represented theories [Carey
(2009a)]. By broad consensus, many of these states may never be consciously
accessible to the agent.
Second, cognitive scientists quite broadly, and NCRs in particular, tend to

suppose that concepts, as a species of mental representation, play characteris-
tic cognitive roles. Specifically, concepts are implicated in “higher” cognitive
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Number Concepts 15

capacities, such as reasoning, language comprehension, categorization, and
word learning. The explanation of why concept possession is central to reason-
ing should be clear: reasoning requires propositional attitudes, such as beliefs
or judgements, and concepts are constituents of propositional attitudes. How-
ever, the relationship between concept possession and these other capacities
may require further explanation.
Start with language comprehension. Plausibly, understanding a sentence is a

kind of propositional attitude – roughly, understanding what it says, in context.
Thus, to understand a sentence, such as (2), one must have the relevant attitude.

(2) Two is an even number.

Given representationalism about concepts, such an attitude will have the con-
cept TWO as a constituent, and understanding (2) will require possession of
TWO. Thus concepts are implicated in language comprehension.
Similar points apply to categorization judgements and word learning. Pre-

sumably, categorization judgements are a species of propositional attitude,
namely judgements regarding whether something is a member of a category.
In which case, if concepts are constituents of propositional attitudes, then to
categorize the number two as even, one must minimally possess the concepts
TWO and EVEN.
Finally, consider the case of word learning. Though this phenomenon is com-

plex, it is surely central to learning a word like ‘two’ that, by doing so, one is
in a position to understand at least some sentences in which it figures. But as
already indicated, on a representationalist account of concepts, to understand
a sentence, such as (2), one must possess the relevant corresponding concepts.
In which case, word learning likewise implicates the possession of concepts.
Following Fodor and others, we call such concepts lexical concepts, since they
are concepts corresponding to lexical items – or crudely, words [Fodor (1998)].
Though much ink has been spilt regarding the nature of lexical concepts – e.g.
regarding whether they have definitional, prototype, or theory-like structure
[Margolis and Laurence (1999)] – they won’t figure centrally here. In contrast,
issues about the connection between concepts and word learning figure very
prominently indeed.

2.3 The Core Systems Hypothesis
The previous commitments are shared quite broadly among cognitive scien-
tists. We now turn to commitments specific to NCR, starting with what we call
the Core System Hypothesis. This is the view that some rudimentary forms of
number cognition rely on core systems – cognitive systems that prototypically
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16 Philosophy of Mathematics

possess all, or at least most, of the following characteristics [Spelke (2000);
Spelke et al. (2022); Carey (2009a)]:

• Evolved: They are evolved traits produced by natural selection.
• Highly Conserved: They are shared by both human and nonhuman organ-
isms, including nonhuman primates, other mammals, and perhaps also avian
species.

• Domain Specific: They are domain specific, roughly in that they evolved to
operate on a restricted range of perceptual inputs.

• Task Specific: They are task specific, roughly in that they are designed to
solve specific kinds of problems.

• Ontogenetically Precocious: They typically operate from early infancy
onwards.

• Independent: Their operation is relatively independent of other cognitive
systems.

• Innate: They are innate, or at least not acquired via learning processes.

Although there is disagreement regarding how many core systems there are,
how they function, and what they represent, at least two core systems are fre-
quently invoked by Mainstream accounts within NCR. The first, often called
the Approximate Number System (ANS), has been claimed by some influen-
tial NCRs to represent large cardinalities, at least approximately. The second,
sometimes called the Small Number System (SNS), has been claimed by
some influential NCRs to represent small numbers of items, including things
as diverse as Elmos, sounds, and actions.
Before considering either of these systems, however, we introduce a dis-

tinction that will help avoid confusion later on: the distinction between merely
tracking a property and representing it. As we intend it, a system merely tracks
a property, in some range of environments, if states of that system causally
covary with the presence or absence of that property, in those environments.
Intuitively, there are many examples in nature where one sort of state tracks
or covaries with another without representing it. For example, changes in heart
rate causally covary with changes in physical exertion; spots of the relevant
sort covary with measles; and smoke covaries with fire. In none of these cases,
however, does one state represent the other. In our parlance, these are cases
of mere tracking. Similarly, to say that the SNS merely tracks exact cardinal-
ities up to four (in some range of environments) is to say its states causally
covary with the presence of collections having some such cardinality. Without
further assumptions, it does not imply that states of the SNS represent cardi-
nalities. Of course, some theories of representational content – most obviously
causal theories – construe the tracking relation as central to explaining repre-
sentation [Fodor (1992)]. Yet no plausible theory presumes that tracking alone
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suffices for representation. Rather, some accounts construe tracking as merely
one among a range of conditions that jointly suffice for representation. On other
views, however, tracking plays no significant role.
We stress this distinction because while there is widespread consensus within

NCR that both the ANS and SNS track broadly numerical properties, there’s
little or no agreement regarding whether they represent such properties. Thus,
in the case of the SNS, while it’s widely supposed that, across a wide array of
environments, states of the system track exact differences in cardinality up to 4,
there is a remarkable lack of consensus regarding whether such states represent
these cardinalities. Similarly, with the ANS, while almost everyone supposes
that (across many environments) the system’s states covary with approximate
cardinalities, there’s little consensus regarding which, if any, broadly numer-
ical properties the system represents (Section 3.2). With this in mind, the
forthcoming characterizations of the ANS and SNS seek both to capture the
consensus regarding their tracking behavior, and some of the disagreements
regarding what they represent. In later sections, we explore issues regarding
representation in greater detail.

2.3.1 Approximate Number System

The ANS is a primitive, prelinguistic cognitive system, also sometimes called
the number sense (Dehaene [2011]). It is distinguished from other cognitive
systems by two characteristic features: quoting Clarke and Beck (2021, p. 2),
the ANS’s “numerical discriminations are imprecise and conform to Weber’s
Law.” Intuitively, the ANS’s discriminations are “imprecise” in that instead of
tracking, say, exactly 20 objects, it instead tracks approximately 20 objects.6

Moreover, it conforms to a psychophysical principle known asWeber’s Law –
its ability to discriminate magnitudes decreases as the ratio between those mag-
nitudes approaches 1:1. Consequently, it is just as easy to distinguish 5 objects
from 10 as it is 10 objects from 20, since the ratios between the two pairs are the
same. In contrast, it is easier to discriminate 2 from 4 objects than 8 from 10,
since the ratios between the two pairs are different, even though the absolute
difference is the same. (This is known as the magnitude effect.) Similarly, it
is easier to distinguish four from eight objects than four from seven, since the
ratio is greater. (This is called the distance effect.) Figure 1 illustrates typical
stimuli testing for such effects.

6 Previous attempts to characterize the manner in which ANS is imprecise often suggest that
there is no difference between how the system responds to, say, 20 things and 19 things [Lau-
rence and Margolis (2007); Carey (2009a)]. However, more recent studies suggest that the
ANS may not be imprecise in this sense [Sanford and Halberda (2023)].
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Figure 1 Illustration of typical stimuli for ANS experiments.

As ordinarily construed, the ANS is a kind of analog magnitude system,
roughly in that states of the system represent quantities, and also that states of
the ANS involve magnitudes which are approximately proportional to what
they represent. According to one influential view, for example, ANS states
represent the approximate cardinalities of collections in virtue of instantiating
physical magnitudes of some sort – e.g. amounts of electrical charge – roughly
proportional to the cardinalities of the collections represented. Carey (2009a)
usefully illustrates this feature in terms of a system in which lines of differing
lengths represent different cardinalities.

Number Length
1
2
3
4
5
6
7
8

The important point is that within this representational system, “number is
represented by a physical magnitude that is [merely] roughly proportional to
the number of individuals in the set being enumerated” (Carey [2009a, p. 118],
our emphasis). Precisely how best to characterize the numerical contents of
these analog representations remains a point of ongoing debate. For instance,
on some views, such states represent real numbers, on others rationals, and on
some only approximate cardinalities (Section 3.2.1).
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There is plenty of empirical evidence for the existence of the ANS in both
humans and nonhuman animals, which we will not review here.7 And while
different models of the ANS exist,8 the one most frequently cited by Main-
stream theories is the accumulator model of Meck and Church (1983), the
crucial features of which Laurence and Margolis (2005, pp. 218–219) capture
with the following metaphor:

Imagine water being poured into a beaker one cupful at a time and one cupful
per item to be enumerated. The resulting water level (a continuous variable)
would provide a representation of the numerosity of the set: the higher the
water level, the more numerous the set. Moreover, with an additional beaker,
the system would have a natural mechanism for comparing the numerosities
of different sets. The set whose beaker has the higher water level is the larger
set. Similarly, the Accumulator could be augmented to support simple arith-
metic operations. Addition could be implemented by having two beakers
transfer their contents to a common store. The level in the common store
would then represent their sum.

Figure 2, taken from Gallistel and Gelman (2000), illustrates the metaphor,
where lines on the beaker represent cardinalities, which map one-to-one with
natural numbers.
Of course, no-one is seriously suggesting that the ANS uses beakers of

water to represent cardinalities. Instead, the presumption is that electrochemical
events and properties – e.g. pulses of electricity and magnitudes of stored elec-
trical charge – are doing the relevant work. However, this metaphor preserves
the crucial features of how the ANS is assumed to represent. Moreover, it pro-
vides some sense of why theorists have disagreed on what the representational
capacities of the ANS might be. If we focus on the fact that the ANS discrim-
inates cardinalities in a manner that exhibits magnitude and distance effects,
then it is natural to suppose, along with Carey, that it represents approximate
cardinalities. However, if one instead focuses on the continuous nature of the
states of the accumulator, following Gelman and Gallistel, then one may be led
to suppose that states of the ANS structurally resemble and represent real num-
bers. We will return to the question of whether the ANS plausibly represents
numbers of any kind in Section 3.
Finally, we emphasize that the accumulator is widely assumed to conform

to the same principles ensuring that count words in natural language represent
cardinality. Quoting Carey (2009a, p. 132):

7 Though see Carey (2009a) and Clarke and Beck (2021) for nice overviews.
8 See Carey (2009a).
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Figure 2 Theoretical model of the ANS.

The accumulator model instantiates the counting principles that ensure that
[count] lists also encode number. In the accumulator representations, the suc-
cessive states of the accumulator play the same role as successive number
words in the list – as mental symbols that represent numerosity. States of
the accumulator are stably ordered, gate opening is in correspondence with
individuals 1–1 in the set, the final state of the accumulator represents the
number of items in the set, there are no constraints on individuals that can
be enumerated, and individuals can be enumerated in any order.

As we’ll see, it is thanks to this supposed correspondence between ANS states
and count words that, according to some Mainstream accounts, count words
inherit their denotations from such states.

2.3.2 The Small Number System

In addition to the ANS, a second core system is widely assumed to be rele-
vant to number cognition, what we’ll call the “Small Number System” (SNS).
However, there is considerable disagreement concerning how precisely to
characterize it. Here are three prominent characterizations:
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• The Object Tracking System: A system employed by the visual system for
focusing attention on up to three or four objects at a time. It does so, thanks to
the object-indexing system [Leslie et al. (1998); (Scholl and Leslie (1999)],
which incorporates up to four symbols, or indexes, acting like pointers to the
objects attended to, based on their spatial and temporal properties.

• The Parallel Individuation System: A domain-general capacity to construct
andmanipulate mental models of objects [Simon (1997); Le Corre and Carey
(2007); Spelke et al. (2022)]. Mental models consist of distinct symbols, one
for each object represented, held briefly in working memory. Consequently,
only up to three or four objects are represented at any time.

• The Subitizing Module: An innate, domain-specific system responsible for
precisely representing cardinality properties – oneness, twoness, threeness,
and possibly fourness – without counting [Hurford (1987), Margolis and
Laurence (2008); (Margolis (2020)]. There is a small stock of representa-
tions which are causally responsive to “numerical quantities” [Margolis and
Laurence (2008); (Margolis (2020)]. For example, in the presence of a pair
of shoes, this system immediately registers the twoness of the shoes.

On all these proposals, the hypothesized system tracks small cardinalities –
its states causally covary with the number of items presented, up to three or
four. However, there is significant disagreement regarding whether cardinality
is represented. According to the first two proposals, the number of symbols
or indices merely covaries with the number of objects detected. Only the last,
subitizing module hypothesis, assumes that the SNS also represents numerical
properties as such. Regardless, on any of these views, the SNS is implicated
in the possession of at most the first three or four number concepts. Indeed,
as we’ll see, possessing number concepts beyond these appears to mark a
significant developmental milestone, one which may require transcending the
repertoire provided by the SNS or the ANS.

2.4 The Developmental Sequence
So far, we have sketched two core systems widely believed to be shared by
both humans and many nonhumans, both tracking broadly numerical proper-
ties. However, since much Mainstream NCR is concerned with how children
acquire basic conceptual capacities, there has been extensive attention to early
manifestations of the sorts of behaviors that would provide evidence of number
concept possession – especially, early counting behavior. As vanMarle (2018,
p. 233) notes:
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Because learning to count is the first step children take toward a symbolic
understanding of number, researchers often focus on this milestone as a way
to shed light on the process(es) underlying the development of the number
concept.

Inwhat follows, we briefly sketch the relevant notion of counting, the principles
commonly taken to underlie knowledge of counting, and the developmental
sequence associated with the acquisition of this ability.
Benacerraf (1965) distinguishes two forms of counting: intransitive count-

ing, or reciting count words in their canonical order, typically starting with
‘one’ or its equivalent, and transitive counting, or determining the cardinality
of a collection by establishing a one-to-one correspondence between its mem-
bers and a sequence of count words. On one natural characterization, transitive
counting is a procedure or routine for answering ‘howmany’-questions [Snyder
et al. (2018a)]. Specifically
If asked “How many Fs are there?”:

i. Isolate the Fs from the non-Fs.
ii. Establish a bijection between the Fs and an initial segment of the words

in the count list ⟨α1 . . . αn⟩ by reciting (possibly non-verbally) the words
in order, starting with α1 and correlating each F with a unique word in the
list.

iii. If αk is the final count word resulting from (ii), then answer ‘There are αk
Fs’.

Suppose, for instance, one is asked ‘Howmany Elmos are there?’. And suppose
that, in response, one is able to establish a bijection between a set of four Elmos
and English count words ‘one’, ‘two’, ‘three’, and ‘four’. Then by the third
step of the transitive count routine, one should answer the initial ‘how many’-
question with ‘There are four Elmos’.
Given the presumed centrality of transitive counting (henceforth ‘counting’),

it is unsurprising that developmentalists seek to uncover the knowledge tacitly
required to possess this ability. To that end, Gelman and Gallistel (1986; hence-
forth ‘G&G’) postulate five principles, known as the counting principles,
three of which are purportedly necessary for counting correctly. Paraphrasing
G&G, these are:

The One-to-One Principle: Each item to be counted should be counted once,
and only once.

The Stable-Ordering Principle: When counting, count words should occur in
a stable, and thus repeatable order.
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The Cardinal Principle: The final count word used in counting “represents the
number of items in the set,” i.e. its cardinality.9

Intuitively, One-to-One guarantees the second step of the count routine, by
matching each item being counted with a unique count word. Specifically, it
prevents mapping, say, two Elmos to ‘one’, or one Elmo to ‘three’ but no Elmo
to ‘two’. In contrast, Stable-Ordering ensures that multiple performances of the
counting routine on the same items will return the same answer. Specifically,
it prevents the count list from occurring in different orders, whereby on one
instance we intransitively count ‘one’, ‘two’, ‘three’, but on the next we count
‘two’, ‘three’, ‘one’. Finally, the Cardinal Principle ensures that the answer
given in the third step correctly answers the ‘how many’-question posed in the
first step.
The counting principles are often treated as a starting point for Mainstream

accounts of number concepts. One reason is that they characterize what is
presumed to be the first clear manifestation of those concepts. Since the
task is linguistically mediated – it involves the use of number words – the
comprehension and meaningful production of the relevant utterances would
seem to provide good evidence for the possession of corresponding concepts
(Section 2.2). However, we should be mindful not to assume that the first man-
ifestation of this conceptual competence implies that counting is required for
the acquisition of number concepts, since there are views – such as nativist pro-
posals – on which children come to possess number concepts by other means.
Nonetheless, as we’ll see in Section 3, some very influential views maintain
that learning to count is central to the acquisition of number concepts corre-
sponding to the first few count words. Quoting vanMarle (2018, p. 132) again,
according to these views, on learning

how to implement the counting routine, . . . [children] can determine the
cardinal value of any set. This understanding, obviously, is very powerful.
In acquiring it, children have done what it took centuries for philosophers
and mathematicians to formalize: they have come to understand the system
of positive integers (Carey, 2009).

This embodies a number of implicit philosophical assumptions, which we will
revisit in Section 4. For now, however, we sketch what the developmental time-
table – a widely accepted characterization of some of the central milestones
involved in the early manifestation of numerical competences.

9 Gelman and Gallistel (1986, p. 79).
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The earliest parts of the timetable explicitly concern counting. Beginning at
around age two, children learn to intransitively count. In doing so, they satisfy
Stable-Ordering. At around this same time, they become competent inmatching
count words one-to-one with items in collections being counted, thus satisfying
One-to-One. Thus, they appear to exhibit mastery of two of the counting prin-
ciples very early in the developmental sequence. Interestingly, it is not until
roughly two years later that children seemingly exhibit grasp of the Cardinal
Principle.
In addition to studying how children learn to count, developmentalists have

also paid extensive attention to the emergence of abilities to competently use
count words in the course of solving various sorts of tasks. This aspect of the
timetable, which occurs once children have learned to count (in)transitively,
is standardly divided into Knower-levels. Though many tasks have been used
to study this period in development, perhaps the most widely cited is Wynn’s
(1992) Give-a-Number task (Give-N task). Here, the child is asked by the
experimenter to hand over a specific number of items – e.g. one cookie,
two cookies, or five cookies. In the context of this task, children between
approximately two and four years of age exhibit a stage-like progression in
performance that has struck many NCRs as remarkable for being laborious,
piecemeal, and slow. Carey (2009a, pp. 297–298) nicely describes the early
phases of this progression:

First, children are no numeral-knowers – they cannot even reliably give one
object when asked for it. Between 24 and 30 months of age, most English-
learning children become “one”-knowers. They can reliably give one object
but hand over a random number of objects (always greater than one) when
any other numeral in their count list is used in the request. They are in this
stage for 6 to 9 months. They then become “two”-knowers (can reliably give
one or two objects; chose a random larger number for any other numeral),
and then “three”-knowers. Although it is much rarer, “four”-knowers have
also been observed.

Collectively, ‘one’-knowers, ‘two’-knowers, ‘three’-knowers, and ‘four’-
knowers are called subset-knowers, because they can reliably perform the
Give-N task for a proper subset of their count list. Interestingly, there appear to
be nomere subset-knowers for count words larger than ‘four’. Rather, at around
31

2 or 4, children become capable of performing the Give-N task for all count
words, up to the limit of their count list. For example, a child who can count up
to ten will solve the Give-N task for requests up to and including ‘ten’. Such
children are called “cardinal principle knowers” (CP-knowers), because their
behavior suggests tacit knowledge of the Cardinal Principle. As we will see
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in Section 3, however, there is considerable disagreement regarding how best
to explain this transition, and in particular what tacit knowledge CP-knowers
possess.
While much of Mainstream NCR has focused on numerical capacities man-

ifested prior to the age of four, there is also research on the subsequent
development of elementary arithmetic, such as solving basic equations like
3 + 2 = . Although we focus far less on this research here, it is important
for our purposes in Section 4 to appreciate that such developments are pre-
sumed to rely crucially on a prior capacity to count. For example, Butterworth
(2005) describes the earliest development of arithmetic as typically happening
at around age five or six in the United States, and as depending importantly
on recognizing a link between (i) count words and their symbolic counterparts,
e.g. ‘1’, ‘2’, ‘3’, and (ii) arithmetic operations like ‘+’ and counting operations,
such as enumerating the result of joining two disjoint collections.
To summarize, here’s a crude, approximate timetable for early childhood

numerical development:

Clearly, counting plays a critical role in this developmental trajectory. Indeed,
Butterworth (2005, p. 1) summarizes the development of elementary arithmetic
this way: “Development can be seen in terms of an increasingly sophisticated
understanding of [cardinality] and its implications, and in increasing skill in
manipulating [cardinalities].” As we see it, the assumption that learning to
count is a crucial precursor to acquiring other mathematical abilities is wide-
spread within NCR. Indeed, continuing the quote from vanMarle (2018, p. 132)
above: counting represents “the first symbolic mathematical knowledge that
children acquire, and it is the foundation upon which all other formal math
learning must be built.” Little wonder, then, that counting occupies a central
place within Mainstream NCR.

2.5 Some Explanatory Targets
So far we have articulated some of the central theoretical and empirical com-
mitments underwriting Mainstream NCR. However, there is another, rather
different sort of commitment that exerts a significant influence on how such
research proceeds, namely: commitments regarding which phenomena are
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deemed explanatorily most central. Specifically, by our estimation, the the fol-
lowing three ontogenetic issues are central explanatory targets – as well as
central foci for disagreement – within Mainstream NCR.

• How do children come to possess low-value number concepts? For exam-
ple, how does an anglophone child acquire concepts expressed by the words
‘one’, ‘two’, ..., ‘ten’? Assuming these concepts also correspond to those
expressed by count words in other languages, the question can be formu-
lated as: How do children acquire low-value count concepts? Moreover, on
the apparently widespread assumption that such concepts represent natural
numbers (or positive integers), the issue can be reformulated as: How do chil-
dren acquire low-value natural number concepts – ONE, TWO, THREE, and
so on?

• How do children come to possess the concept NATURAL NUMBER? In
addition to acquiring concepts which, by hypothesis, denote specific natu-
ral numbers, there is a widespread interest in the issue of when, and how,
children acquire a concept that denotes natural number, as such. Typically, it
is assumed that this happens at a relatively late stage in conceptual devel-
opment [Carey (2009a)], if indeed it happens at all [Rips et al. (2008)].
Moreover, it is almost invariably assumed to rely on the prior acquisition
of concepts denoting specific natural numbers.

• How do children acquire (tacit) representations of broadly numerical prin-
ciples?We have already mentioned Gelman and Gallistel’s (1986) counting
principles. Additionally, as we will see later, NCRs are also keen to under-
stand when and how we acquire an understanding of arithmetic principles,
such as those governing successor, as well as other principles of foundational
significance, such as those governing equinumerosity. Such principles are
often deemed central to NCR for at least two reasons. First, on certain wide-
spread assumptions, it would be in virtue of grasping such principles that
one could acquire the concept NATURAL NUMBER. Second, such princi-
ples are often taken to explain aspects of numerical behavior – e.g. children’s
coming to understand that there is no largest natural number (Section 3.5.3).

These three issues constitute the focus of much of what is to come. We start in
Section 3, by considering some of the more influential attempts to explain the
acquisition and manifestation of competence with number concepts.

3 The Acquisition Problem
When and how do children come to possess number concepts? Specifically,
how do they come to possess concepts necessary for understanding low-value
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count words? In this section, we first develop a rough taxonomy of competing
developmental hypotheses, and then discuss the main kinds of views in greater
detail, along with challenges they confront.

3.1 A Taxonomy of Developmental Hypotheses
One common way of categorizing developmental hypotheses is by the innate
cognitive resources they assume. With theories of number concept acquisition,
those resources may be divided into two kinds: innate cognitive mechanisms,
and innate number-specific representations. The options concerning both vary
from relatively austere proposals assuming no number-specific innate resources
to those assuming a rich innate endowment of number-specific cognitive
resources.
Let’s start with the most austere of extant views: those associated with

empiricism within developmental psychology [Mix and Sandhofer (2007)].
Though they differ in details, such views exhibit a characteristic signature.
First, they deny the existence of innate representations of number, numerical
properties, or number-specific cognitive mechanisms. Instead, they typically
assume just two main kinds of innate cognitive systems, namely:

• Sensory-perceptual systems underwriting vision, audition, olfaction, and
other perceptual modalities.

• Domain-general learning systems operating similarly across a broad array
of learning domains, including arithmetic, biological categories, theory of
mind, the motion of physical objects, and so on.

Following Margolis and Laurence (2013), we call this the Empiricist Base.
Within NCR, empiricists typically aim to explain the acquisition of number
concepts without recourse to innate resources other than these.
One nonempiricist hypothesis, often associated with Chomsky, is that in

addition to the sorts of mechanisms outlined above, acquiring number concepts
further requires possessing an innate language faculty, and thus knowledge
of the sorts of recursive morphosyntactic principles characteristic of transfor-
mational syntax [Chomsky (1987); Chomsky (2014)]. As we’ll see, certain
Mainstream NCRs entertain similar suggestions (Sections 3.4 and 3.5), and
most assume an innate language faculty. However, advocates of the Main-
stream frequently supplement the Empiricist Base with two further core
systems specifically relevant to number cognition: the ANS and the SNS.
Against this backdrop, major differences between Mainstream approaches

to number concept acquisition can be characterized by their responses to the
following questions:
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(Q1) Which number-relevant system(s) are centrally implicated in the acqui-
sition of number concepts?

(Q2) What sorts of representations do these systems deploy?
(Q3) Are there additional innate number-specific cognitive systems that play

a role in the development of early number cognition?

Proposals answering (Q3) negatively may be divided into three mains sorts.

ANS-Dominant Models: In addition to language, perception, and domain-
general learning, acquiring number concepts relies crucially on the operations
of ANS.

SNS-Dominant Models: In addition to language, perception, and domain-
general learning, acquiring number concepts relies crucially on the operations
of SNS.

Hybrid Models: In addition to language, perception, and domain-general
learning, acquiring number concepts relies crucially on both the SNS and
ANS’s capacities to represent number.

To be clear, most of the views considered below maintain that the various
systems mentioned play some role in number concept possession. Thus, the
distinctions proposed here are a matter of degree, not necessarily kind. Fur-
thermore, within each view, there are significant disagreements regarding what
states of the relevant systems represent. As we’ll see, this makes a significant
difference to the kinds of challenges such views confront.
Finally, those answering (Q3) affirmatively maintain that none of the afore-

mentioned views are adequate to explain the acquisition of number concepts.
Rather, as we’ll see (Section 3.3), they argue that a further system of mental
representations is needed, which provides resources for representing natural
numbers as such.
We turn now to the most prominent Mainstream views, starting with ANS-

dominant models.

3.2 ANS-Dominant Models
According to the kind of view defended by Dehaene (2011), Gallistel and
Gelman (1992, 2000), and Wynn (1992, 2018), number concepts originate in
numerical representations made available by the ANS. Thus, analog magnitude
representations form the primary cognitive foundation for all numerical knowl-
edge. Specifically, the chief contention is that, in the course of development,
children grasp the meanings of number words – and, thus, come to possess cor-
responding concepts – as a result of mapping number words to ANS states with
the appropriate contents. For example, the child acquires the meaning of ‘two’
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by mapping that word to a state of ANS with the appropriate representational
content, presumably concerning twoness. Thus, the following principle appears
central to ANS-dominant models:

The Inheritance Thesis: Count words inherit their denotations from states of
the ANS to which they are mapped.

According to this thesis, the count word ‘two’, for instance, denotes a content
also denoted by a corresponding state of the ANS, in virtue of there being a
mapping from the latter to the former.
To illustrate, consider one highly influential version of such a view, due

to Randy Gallistel and Rochel Gelman [henceforth “G&G”; Gallistel et al.
(2006)]. According to G&G, states of the ANS – specifically, of the accumu-
lator – are presumed to be continuous and to represent continuous magnitudes
analogically. Consequently, G&G assume that such states represent real num-
bers in much the same way that, say, the number line does.10 For our purposes,
the important question is how, on this assumption, such representational states
can be used to learn the meanings of the count words, or concepts they express.
On G&G’s account, since analog magnitudes already represent real num-

bers, the problem of learning count words consists in mapping those words to
the positive integers embedded within the reals. Indeed, Gelman and Gallistel
(1986) maintain that both the counting principles themselves and certain fea-
tures of natural language allow children to solve this problem. Specifically, they
claim the accumulator device in some sense “embodies” or “instantiates” the
counting principles. Thus, G&G propose that by learning the verbal count rou-
tine, children also come to tacitly recognize a correspondence between count
words and states of the ANS, thereby inferring that both represent the same
things. Crucially, because count words are discrete, natural language acts as a
kind of “filter” on which ANS states such words correspond to. Specifically,
theywill correspond to states representing the positive integers among the reals,
as Gallistel et al. (2006, p. 19) explain:

[T]he integers are picked out by language because they are the magnitudes
that represent countable quantity. Countable quantity is the only kind of
quantity that can readily be represented by a system founded on discrete
symbols, as language is.

Thus, according to G&G, it is in virtue of the discrete character of count words
that they inherit as their denotations not just any subset of the reals, but precisely
those corresponding to the natural numbers.

10 See Clarke and Beck (2021) for critical discussion of this assumption.
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What should we make of this proposal? Broadly speaking, for ANS-
dominant models to be adequate, two requirements must be satisfied:

The Representation Requirement: Some ANS states must have the same con-
tents as count words, so that count words can inherit their contents from such
states.

The Feasibility Requirement: It must be feasible for children to establish the
salient mappings in the course of development.

The problem is that no extant ANS-dominant model appears to satisfy both
requirements. Or so we’ll argue.
As noted, various accounts of the ANS make quite different assumptions

concerning the contents of ANS states. Indeed, it has been variously suggested
that these represent:

• real numbers: Gallistel and Gelman (2000); Leslie et al. (2008)
• rational numbers, including the naturals: Clarke and Beck (2021)
• approximate cardinalities: Carey (2009a,b)
• pure magnitudes: Burge (2010).

To be clear, among these, only the ANS-dominant views of Gallistel and Gel-
man (2000) adopt the Inheritance Thesis. Regardless, our contention is that
none of these views satisfy the Representation Requirement, and that some of
them also fail the Feasibility Requirement. We begin with the former.

3.2.1 The Representation Requirement

According to the Representation Requirement, count words inherit their deno-
tations from ANS states only if both denote the same things. On two of the
major extant alternatives, these denotations are numbers, in the form of the
reals or rationals. Thus, a significant problem with either suggestion is sim-
ply that numbers are not plausible denotations for count words. To see why,
consider (3a,b).

(3) a. There are two Elmos on the table.

b. Two is an even number.

These different uses of ‘two’ not only plausibly belong to different mor-
phosyntactic categories, they also clearly serve different semantic functions
(Section 4.3). Specifically, whereas ‘two’ in (3a) is an adjective or determiner
enumerating Elmos, ‘two’ in (3b) is a numeral, i.e. a name of a number, in
this case two. Thus, of these two uses, only ‘two’ in (3a) deserves the moniker
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“count word,” as only it is plausibly in the business of enumerating, semanti-
cally speaking. Furthermore, as we elaborate further in Section 4, contrastive
pairs like (4a,b) strongly suggest that count words, unlike numerals or complex
phrases like ‘the number two’, do not denote numbers.

(4) a. How many Elmos are on the table? {Two/??The (real/rational)
number two}.

b. Which number is Mary writing about? {Two/The (real/rational)
number two}.

According to the Inheritance Thesis, count words inherit their denotations from
ANS states. So, if the latter denote numbers, in the form of rationals or reals,
then so should the former. In that case, the count word ‘two’ in (4a) would be
coreferential with the numeral ‘two’ in (4b), and so we would expect (4a) and
(4b) to be equally acceptable, contrary to fact. Consequently, views on which
ANS states denote real or rational numbers are seemingly incompatible with
the Inheritance Thesis.
Indeed, in this respect, views on which states of the ANS denote approxi-

mate cardinalities come closer to respecting the semantic evidence. On many
extant analyses, ‘two’ in (4a) denotes the sort of thing answering ‘how
many’-questions, i.e. a cardinality [Moltmann (2013); Scontras (2014); Snyder
(2017)]. Furthermore, it has been suggested, notably by Kennedy and Syrett
(2022), that children assign these same entities as the denotations of count
words at the earliest stages of numerical development. Thus, if ANS states
denote cardinalities, albeit approximate ones, they would plausibly denote
entities of the right sort, given the Inheritance Thesis.
But what is an approximate cardinality? Quoting Laurence and Margolis

(2005, p. 221): “Instead of picking out 17 (and just 17), an Accumulator-based
representation indeterminately represents a range of numbers in the general
vicinity of 17.” Fleshing this out somewhat, consider (5a–c):

(5) a. Exactly seventeen women attended the conference.
b. Approximately seventeen women attended the conference.
c. Seventeen women attended the conference.

Intuitively, (5a) is true if the number of women who attended the conference
is precisely seventeen – no more, no less. In contrast, (5b) could be true if
sixteen or eighteen women attended the conference, since these fall within a
contextually given range which counts as close enough to seventeen. Now,
within the context of performing the count routine, an utterance of (5c) is far
more plausibly equivalent to (5a) than (5b). Indeed, if eighteen women actu-
ally attended the conference, then an utterance of (5c), like (5a), would be
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false, even though eighteen would be close enough to seventeen to count as
approximately seventeen.
More precisely, suppose ‘exactly’ has something like the denotation in (6a),

where ‘JαK’ represents the denotation of ‘α’, ‘n’ ranges over natural numbers,
‘S’ ranges over sets, and ‘|S |’ denotes the cardinality of S.

(6) a. JexactlyK = λn.λS. |S | = n

b. Jexactly seventeenK = λS. |S | = 17

According to (6b), ‘exactly seventeen’ is true of those sets whose cardinality is
strictly identical to 17. In contrast, suppose ‘approximately’ has the denotation
in (7a), where ‘≃’ is a context-sensitive relation holding between numbers n
and n′ just in case n is among a range of numbers which are, in a given context,
close enough to n′.

(7) a. JapproximatelyK = λn.λS. |S | ≃ n

b. Japproximately seventeenK = λS. |S | ≃ 17

According to (7b), ‘approximately seventeen’ denotes sets whose cardinality is
among a range of numbers which are, in a given context, close enough to 17,
say {16, 17, 18}.11

Seen this way, views on which states of the ANS denote approximate car-
dinalities are incompatible with the Inheritance Thesis simply because count
words do not plausibly denote approximate cardinalities. As (5a–c) demon-
strate, there is little empirical plausibility to the claim that ‘seventeen’ is
synonymous with ‘approximately seventeen’. Rather, it is far more plausible
that in the context of performing the count routine, ‘seventeen’ in (5c) denotes
collections of exactly seventeen things [Horn (1972)]. In which case, ‘seven-
teen’ could not inherit its actual denotation from some ANS state, assuming
such states denote approximate cardinalities.
Something similar can be said for views on which ANS states denote what

Burge (2010, p. 482) calls puremagnitudes: “A puremagnitude is amagnitude
not specific to any further type of magnitude such as spatial extent or size, tem-
poral duration, weight, and so forth.” That is, pure magnitudes are magnitudes
divorced from any specific dimension of measurement, but which nevertheless
permit basic arithmetic operations, such as addition, subtraction, multiplica-
tion, and division. They can also fall into ratios, in virtue of being subject to
the Eudoxus definition. Let a and b be magnitudes of the same kind, e.g. two

11 As a reviewer observes, this does not account for the fact that the ANS treats values closer to
the mean as more likely than those further away. For example, if there are approximately 100
people at the conference, where the salient range of values is {98,…,102}, then by the lights
of the ANS, it is more likely that there are 100 people than 98 or 102.
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intervals of time, and let c and d be magnitudes of the same kind, e.g. two car-
dinalities. Then according to the Eudoxus definition, for any natural numbers
n and m, a : b :: c : d if and only if three facts obtain:

(ED1) ma > nb if and only if mc > nd
(ED2) ma = nb if and only if mc = nd
(ED3) ma < nb if and only if mc < nd

Since pure magnitudes are divorced from specific dimensions of measurement,
the Eudoxus definition also applies to them, only there is no distinction to be
drawn between the kinds of magnitudes forming both sides of the proportion.
Burge (2010, p. 482) speculates that ANS states represent pure magnitudes:

I believe that it would be fruitful to use Eudoxus’ theory to understand
representational contents of the perceptually based capacity to estimate
numerosity. Such contents represent pure magnitudes as such. The magni-
tudes can fall into ratios, but they are represented in a way that is not specific
as between continuousmagnitudes and discretemagnitudes. At any rate, they
do not represent discrete pure magnitudes – the numbers.

The important contention is that ANS states represent magnitudes which fail
to distinguish between different dimensions of measurement, such as cardi-
nality and length. Yet, as noted earlier, ‘two’ in (3a) most plausibly denotes a
cardinality. Moreover, on standard accounts within linguistic semantics, what
distinguishes cardinalities, as entities, from other kinds of magnitudes is pre-
cisely that the former encodes a particular, discrete dimension of measurement,
namely cardinality [Scontras (2014); Snyder (2021a)]. As such, on the pres-
ent proposal, count words could not denote pure magnitudes, and so could not
inherit their denotations from ANS states.

3.2.2 The Feasibility Requirement

According to the Feasibility Requirement, count words inherit their denotations
from ANS states only if there is a feasible mapping from count words to ANS
states with an appropriate denotation. Here, ANS states are being individu-
ated semantically, i.e. by their semantic contents. Thus, whether the Feasibility
Requirement can be met will depend importantly on the presumed contents
of ANS states. If, for instance, each state denotes a positive integer [Clarke
and Beck (2021)], then a feasible mapping could presumably exist: just map
each count word to a corresponding positive integer representation. However,
if ANS states denote real numbers [Gallistel and Gelman (2000); Gallistel et al.
(2006)], then it it is hard to see how such a mapping could exist, in principle.
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The problem is evident: because there are infinitely many reals between any
two naturals, the prospect of establishing a mapping between a given count
word and its corresponding integer value will be infinitesimally small. Indeed,
as Galistel and Gellman themselves later note:

Learning the count words in a language, even in the presence of small
sets of objects, will not help if the hypothesis space for possible (number)
word meanings is the space of real values. Two real-valued measures of
the same entity are, in general, infinitesimally likely to be exactly equal,
and infinitesimally likely to have an integer value. Thus, the chance of a
child entertaining an integer hypothesis would be infinitesimal. [Leslie et al.
(2008, pp. 213–214)]

In light of this problem, why would G&G propose that ANS states denote real
numbers in the first place? The answer, suggested by Gallistel and Gelman
(2000), appears to be that this assumption is required to explain how the ANS
represents duration as a continuousmagnitude, as Clarke andBeck (2021, p. 12)
explain:

[G&G] reason as follows. First, because duration is a continuous magnitude,
they infer that it cannot be represented by anything discrete. Therefore, the
neural magnitude that represents duration must be continuous. Next, draw-
ing on evidence in rats (Meck and Church, 1983), they infer that numbers are
represented by neural “magnitudes indistinguishable from those which rep-
resent duration” (Gallistel and Gelman, 2000, p. 62). Thus, the ANS must
also use a continuous neural magnitude. Finally, because real numbers are
continuous, but integers are not, they conclude that the ANS must represent
real numbers rather than just integers.

However, this line of reasoning is committed to a pair of related, problem-
atic assumptions.12 The first concerns the representational vehicles which may
denote continuous magnitudes. Specifically:

Denotation-to-Vehicle: If a representational vehicle R denotes a value for
some continuous magnitude, e.g. duration, then R is itself continuous.

This appears necessary to transition from the premise that duration – what’s
purportedly denoted by neural magnitudes – is continuous to the conclusion
that the neural magnitudes representing duration – the vehicles themselves –
are also continuous. However, the assumption is subject to clear counterex-
amples [Laurence and Margolis (2005)]. For example, digital clocks, digital
thermometers, and symbols like ‘π’ and ‘

√
2’ each involve discrete symbols

12 For further critical discussion, see Laurence and Margolis (2005) and Clarke and Beck (2021).
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representing continuous magnitudes – time, temperature, and irrational num-
bers, respectively.
The second problematic assumption is the converse of the first:

Vehicle-to-Denotation: If a representational vehicle R is a continuous mag-
nitude, e.g. a spike of electrochemical activity, then what R denotes is
continuous.

This appears to be required to transition from the empirical thesis that numbers
(of some sort) are represented by continuous neural magnitudes, to the con-
clusion that the numbers so represented are reals. However, this assumption
is also subject to obvious counterexamples [Laurence and Margolis (2005)].
For example, digital computers routinely use continuous magnitudes, such as
voltage, to represent discrete values.
In summary, not only are there good reasons to deny that count words inherit

their denotations from real-valued ANS representations, there were never espe-
cially good reasons to suppose that ANS states denote real numbers to begin
with. We conclude that the Inheritance Thesis is implausible: given extant
accounts of what ANS states denote, it is empirically implausible that count
words inherit their denotations from such states.

3.3 Nativist Models
One influential response to the problems noted above is to posit an additional,
innate system specifically dedicated to representing natural numbers. Perhaps
themost well-known version of this view is due to Leslie, Gelman, andGallistel
[Leslie et al. (2008); Gelman et al. (2019)].
As Leslie et al. see it, the need to posit such a system is largely driven by

empirical considerations regarding how children learn count words. Specifi-
cally, it is assumed that the number words children learn, and the concepts
they express, denote natural numbers. Yet if ANS states represent something
other than exact integer values – e.g. approximate cardinalities, or reals other
than those corresponding to integers – then we are left without an explanation
for the apparently obvious facts that (a) the number words children learn have
exact integer values, and (b) the difference between the values denoted by adja-
cent count words is exactly one, as opposed to, say, approximately one. In that
case, what sort of learning mechanism could explain how children learn count
words?
In response, Leslie et al. (2008, p. 216) hypothesize an innate system,

which they call a “minimal learning mechanism,” purportedly satisfying four
assumptions. Quoting Leslie et al:
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(LM1) “There is at least one innately given symbol with an integer value,
namely, ONE = 1.”

(LM2) “There is an innately given recursive rule S(x) = x + ONE. The rule S
is also known as the successor function.”

(LM3) “Each realized integer symbol is given a corresponding accumulator
value. As with all such values, it is a noisy real. The difference between
the accumulator values assigned to any two successive integer symbols
is always approximately equal to the accumulator value assigned to
ONE itself.”

(LM4) “Inferencemechanisms operating on these symbols support unbounded
substitution. For any such symbol, N, N ∗ ONE = N ∗ ONE.”

For our purposes, the important principles here are (LM1) and (LM2). Leslie
et al. assume that word learning is a species of hypothesis formation and testing.
Thus, if count words denote natural numbers, then learning the meaning of,
say, ‘two’ requires possessing a system of symbols or representations in which
suitable hypotheses can be formulated – e.g. that ‘two’ denotes the number two,
or that ‘two’ denotes the successor of one.Moreover, on pain of circularity, such
hypotheses cannot be formulated solely by using words in the child’s natural
language. For example, if one aims to form a hypothesis regarding the meaning
of ‘two’, one must presumably mention – roughly, quote – the word. But the
salient hypothesis cannot use ‘two’, since that would presuppose that the child
has already learned the word in question [Fodor (1975)]. With this in mind,
Leslie et al. propose (LM1) and (LM2) as a way of furnishing learners with the
means of formulating hypotheses about the meanings of count words: symbols
which are isomorphic to, and denote, the natural numbers.13

In our view, there are good reasons for doubting the plausibility of this
proposal. One broadly philosophical objection concerns the assumption that
count words denote numbers, which, as suggested above, is independently
implausible. We return to this issue in Section 4.
Here, we focus instead on certain empirical challenges to Leslie et al.’s

innateness hypothesis. Specifically, it seems to yield a variety of inaccu-
rate predictions. Typically, innateness hypotheses are proposed to explain the
manifestation of cognitive abilities which are:

(i) Pan-cultural: They are exhibited across (almost) all cultures.
(ii) Precocious: They manifest early in development, and are acquired with

relative ease.

13 (LM3) is intended to connect the innate integer system to the ANS, and thereby explain
magnitude estimation judgments; and (LM4) is intended to permit arithmetic inference.
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For example, both properties are much in evidence for visual perception and
language. Absent any additional explanation, we would surely expect a similar
pattern for counting, if all humans possessed an innate concept ONE, along
with an innate representation of the successor function.
However, counting and count word use generally are neither pan-cultural

nor precocious. As O’Shaughnessy et al. (2021) point out, there’s considerable
cultural variation in the manifestation of counting and count word use, ranging
from societies like Canada or Scotland, where such capacities are endemic, to,
e.g. the Pirahã culture, where it is largely or entirely absent. Moreover, even
in industrial societies, learning the first few count words is a remarkably slow
and piecemeal endeavor. As vanMarle (2018, p. 136) notes:

If all children need to do is realize the correspondence between the verbal
counting system and the nonverbal system, then it is unclear why it takes
children so long to acquire the cardinal meanings of the count words and
come to grasp the counting principles.

While we find this concern compelling, there is a familiar nativist response:
the mapping problem just might be difficult, even if children possess innate
representations of number.14 Thus, Margolis (2020, p. 128) writes:

[I]t doesn’t follow that learning the meanings of the number words for small
numbers is a trivial matter. There is still a very challenging mapping problem
in which children have to determine that number words (and certain morpho-
logical features in language) pick out numerical quantities to begin with. And
once they recognize that their interpretation should focus on numerical quan-
tity, there is a further question about which numerical quantity is the right
one for a given term. This is a daunting problem.

However, we think that this response – and, for that matter, standard formula-
tions of the objection – fail to appreciate the core concern, namely the contrast
between the rate at which count words and other words are learned during
roughly the same period of development. The relevant ages – two to four years
of age – fall within a period of linguistic development known as the vocab-
ulary explosion, because children start learning words at a remarkably rapid
rate. According to one estimate, during this period children learn approximately
8–10 words per day [McMurray (2007)]. Yet analogs of the challenges that
Margolis notes plausibly exist quite generally for word learning, not just for
count words. For example, when learning ‘red’ and ‘blue’ the child will need
to work out which sort of property is denoted by each expression, namely color

14 Indeed, in the previous section we discussed a nativist view that renders the mapping problem
so hard as to render the learning of count words practically impossible.
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properties, and also which specific properties among these are denoted. But if
this is so, why should learning the first few count words, in particular, be so
slow and piecemeal, if children already possess innate symbols representing
natural number?

3.4 Hybrid Models
While ANS-dominant models seek to explain number concept acquisition pri-
marily in terms of the ANS, hybrid models instead invoke both the ANS and the
SNS. Though different versions exist, perhaps the most influential are due to
Elizabeth Spelke [Spelke (2000, 2003, 2017); Spelke et al. (2022)]. Crucially,
on her view, acquiring count concepts depends not only on the SNS and ANS,
but also on a range of further systems, including the language faculty and the
linguistic capacities it affords. Spelke’s views have evolved considerably over
the past two decades. In what follows, we focus exclusively on the most recent
published version.

3.4.1 Spelke’s Hybrid View

Spelke (2017, p. 148) summarizes her view as follows:

I propose that natural number concepts arise through the productive combi-
nation of representations from a set of innate, ancient, and developmentally
invariant cognitive systems: systems of core knowledge. In particular, nat-
ural number concepts depend on a system for representing sets and their
approximate numerical magnitudes (hereafter, the Approximate Number
System (ANS)) and a set of systems that collectively serve to represent
objects asmembers of kinds. None of these core systems is unique to humans,
but their productive combination depends on the acquisition and use of a nat-
ural language. Because both the core systems and the language faculty are
universal across humans, and because children master their native language
spontaneously, natural number concepts emerge universally, with no formal
or informal instruction. Because language is unique to humans, so is our
grasp of the natural numbers. Finally, because specific natural languages are
learned, the system of natural number concepts is neither innate nor present
in the youngest children.

This requires unpacking. Specifically, how does Spelke conceive of the ANS
and the SNS, and what role is language assumed to play in furnishing children
with count concepts? We’ll consider these issues in turn.
According to Spelke, the ANS is a system for “representing sets and their

approximate numerical magnitudes” – presumably their approximate cardinal-
ities. In contrast, Spelke construes the SNS as a parallel individuation system,
one which does not represent numerical properties, such as the number of
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entities in a visual array, but each individuated entity attended to – e.g. this
cat and that dog – up to a limit of four objects. Each entity represented is asso-
ciated with a distinct mental symbol [Hyde et al. (2017)]. More specifically, the
system generates mental indices, or object files, corresponding to each entity
represented.
As Spelke sees it, both the ANS and SNS are involved in the acquisition of

count concepts. However, it is language that seems most central to her pro-
posal. Specifically, according to Spelke (2017, p. 156), “children’s discovery
of the natural numbers depends on their mastery of the generative rules of their
language,” which they discover in four steps. The first three are intended to
explain the child’s slow and laborious mastery of the first three count words;
the last is intended to explain how children expand their numerical vocabulary
beyond ‘three’ (or its equivalent).
At the first step, children “construct a prolific and productive system of rep-

resentations of object kinds, by mastering noun phrases that, in English, are
composed of determiners and singular count nouns . . . (e.g. a cup, the cat,
your hand)” [Spelke (2017, p. 157)]. The idea appears to be that children first
master singular noun phrases (NPs), which specify entities of a given kind, by
“linking each phrase to representations from three core systems: systems for
representing cohesive, bounded objects, for representing animate agents and
their actions, and for representing visual forms.”
At the second step, “children learn natural language expressions that contain

terms for individuals of different kinds (the dog and the cat) or individuals with
different identities (Evelyn and Simon;my cup and your cup; this dog, that dog,
and the other one).” Thus, by conjoining singular NPs previously mastered,
children are able to form conjunctive NPs denoting pluralities of entities. These
may be of the same kind, as with ‘my cup and your cup’, or different, as with
‘the dog and the cat’. Importantly, Spelke assumes that conjunctive NPs are
co-denoting with numerically modified NPs – e.g. ‘my cup and your cup’ is
co-denoting with ‘two cups’, and ‘this dog, that dog, and the other one’ is co-
denoting with ‘three dogs’. Specifically, both kinds of phrases “refer to sets of
two or three distinct individuals.” In this way, Spelke proposes that children
“learn part of the meanings of the first number words.”
At the third step, children establish mappings from NPs involving the first

three count words to two sorts of mental representations: (i) “representations
of numerical magnitudes, delivered by the ANS,” and (ii) “representations of
arrays of 1–3 individual objects,” delivered by the SNS. The mapping to ANS
representations is intended to enable children to “discover that expressions
like three dogs and Rover, Fido, and Lassie refer to sets of a larger numeri-
cal magnitude than the sets picked out by expressions like two dogs or Rover
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and Fido.” Thus, Spelke seemingly assumes that the ANS is capable of com-
paring the cardinal sizes of the sets denoted by such expressions, at least for
those denoting sets of two or three objects. The explanatory role of the map-
ping from NPs to “representations of arrays of 1–3 individual objects” is less
clear. It appears intended to accommodate the numerical exactness of NPs,
such as ‘three dogs’ – a kind of exactness that is not readily explained by the
ANSs approximate representations. Hence, by virtue of establishing this pair
of mappings, Spelke proposes that:

Children can appreciate that ‘three dogs’ refers to a set that is composed of
exactly three distinct individuals and that is numerically larger than sets that
can be referred to as ‘two dogs’.

However, limits on the parallel individuation system and the ANS prevent sim-
ilar comparisons for larger sets. Thus, more is required to explain how children
expand their numerical vocabulary beyond ‘three’.
The final step in Spelke’s account proposes that children expand their numer-

ical vocabulary by applying “the grammatical rules for forming expressions
that refer to two or three individuals (this dog and that one; two dogs) so
as to form expressions that refer to two or three sets of individuals (three
cows and one more, two geese and three ducks, two groups of three puppets).”
Specifically, Spelke suggests three ways in which children may “construct rep-
resentations of larger numbers from representations of smaller ones.” The first
is through appending ‘and one more’ to a numerically modified NP, as with
‘three cows and one more’, thus forming a phrase apparently co-denoting with
‘four cows’. The second is through conjoining numerically modified NPs, as
with ‘three cows and two horses’, which, according to Spelke, “designates a set
composed of a specific number of animals: five animals.” Finally, we may use
group nouns, such as ‘group’ or ‘collection’, to collect pluralities of things into
individuated, and thus countable, entities [Landman (1989); Snyder and Sha-
piro (2022)]. To use Spelke’s example, whereas we can apparently use ‘three
horses and three cows’ to denote the same set denoted by ‘six animals’, we
can alternatively use ‘two groups of three animals’ to apparently represent this
same set.
This last example illustrates two ways of apparently referencing sets – by

conjoining numerically modified NPs or by using group nouns. According
to Spelke, these encode different arithmetic operations – addition and mul-
tiplication, respectively. In fact, Spelke intimates that in virtue of encoding
such operations, speakers may come to recognize that the natural numbers are
infinite. Quoting Spelke (2017, p. 158):
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These new expressions designate sets whose numerical magnitudes are the
sum or product of the magnitudes of the sets that compose them: From three
horses and two dogs comes three animals and two more; from three horses
and three cows comes two groups of three animals. By forming and interpret-
ing these expressions, children gain the insight that numbers can be added
and multiplied to form other numbers. Just as three can be applied to dogs,
barks, and jumps, it can be applied to numbers: three pairs, three dozen, three
hundred. And just as and one more can be added to a singular expression,
it can be added to composed numerical expressions recursively, in princi-
ple without limit. . . . As Chomsky (1987) proposed, the productive rules for
forming an infinite set of discrete, natural language expressions may underlie
the discovery of the infinite series of natural numbers.

In summary, “the productive rules of natural languages, together with the
resources of core knowledge, allow children to gain two critical insights”: (i)
numerical expressions “can be composed to express new numbers,” and (ii)
by forming complex, numerically modified NPs, “numbers can be added and
multiplied to form other numbers.”

3.4.2 Troubles for Spelke

In our view, the critical problem with Spelke’s (2017) proposal is that it mis-
characterizes the developmental target – count words that children come to
understand. To succeed, Spelke’s proposal should explain how children learn
meanings that count words actually have. However, the meanings Spelke
assigns to numerically modified NPs, such as ‘two dogs’, are simply not plau-
sible, empirically speaking. So, while Spelke’s account could perhaps explain
how agents learn the meanings of expressions in some possible language, we
maintain that it fails to explain how children learn numerical expressions in any
extant natural language, such as English.
To appreciate the point, we need to say a bit more about Spelke’s semantic

assumptions. Though these are largely implicit in her presentation, she appears
to suppose something like Chierchia’s (1998a,b) semantics for nouns. This is
illustrated in Figure 3, where ‘a’, ‘b’, and ‘c’ denote urelements, and arrows
represent the subset relation (⊆).
According to this analysis, whereas the singular noun ‘dog’ denotes urele-

ments, in the form of dogs, the plural noun ‘dogs’ denotes sets resulting from
taking the union of their unit sets.15 The question here is how this analysis may
be extended to provide a semantics similar to that plausibly assumed by Spelke.

15 Technically, in order for the semantics described below to be compositional, following Chier-
chia (1998a), one needs to assume what is sometimes called “Quine’s trick,” identifying
urelements with their unit sets.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
05

23
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009052337


42 Philosophy of Mathematics

Figure 3 A set-based semantics for nouns.

First, consider definite singular NPs, such as ‘Rover’, ‘the dog’, or ‘this
dog’. Since these denote particular objects of a given kind, according to Spelke,
such expressions are singular terms, referring directly to those entities. This is
reflected in (8), where ‘r’ represents Rover.

(8) JRover/the dog/this dogK = r

Second, consider conjunctive NPs, such as ‘Rover and Snoopy’ or ‘this dog and
that dog’. These denote sets of entities referenced by each conjunct, according
to Spelke, as suggested in (9).

(9) JRover and SnoopyK = {r, s}

Hence, the most straightforward compositional analysis would have it that
‘and’ in the expressions of interest denotes set-union, as suggested in (10).

(10) JandK = λS.λS′. S ∪ S′

Third, consider numerically modified NPs, such as ‘two dogs’. These are co-
denoting with conjunctive noun phrases, according to Spelke. Hence, ‘two
dogs’ should share a denotation with, e.g. ‘Rover and Snoopy’.

(11) Jtwo dogsK = {r, s}

Fourth, consider elliptical phrases like ‘one more (dog)’, as in ‘two dogs and
one more (dog)’. Since the latter denotes a set consisting of three dogs, accord-
ing to Spelke, the elliptical phrase presumably denotes a unit set of the same
kind denoted by the preceding NP. Combining this with the previous denota-
tions for ‘and’ and ‘two dogs’ thus results in (12), where ‘t’ represents a third
dog.

(12) Jtwo dogs and one more (dog)K = {r, s, t}

Similarly, (10) and (11) jointly predict that the conjoined numerically modified
NP ‘three dogs and three cats’ denotes a set containing three dogs and three
cats – the same set denoted by ‘six animals’, according to Spelke.

(13) Jthree dogs and three catsK = Jsix animalsK = {r, s, t,a, b, c}
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In this respect, conjoined numerically modified NPs can perhaps be seen as
encoding addition, as Spelke suggests. Finally, consider group NPs, such as
‘group of animals’. Since ‘two groups of three animals’ is co-denoting with
‘three dogs and three cats’, according to Spelke, group NPs presumably denote
sets of things described by the accompanying noun. For example, ‘group of
animals’ presumably denotes a set of animals. This, combined with Spelke’s
assumption that conjunctive phrases of the form ‘a and b’ are co-denoting with
‘two Fs’ whenever a and b are both Fs, may imply that ‘two groups of three
animals’ denotes the union of two sets consisting of three animals, thus leading
to the same denotation given in (13). In this way, numerically modified group
NPs can perhaps be similarly understood as codifying multiplication, as Spelke
suggests.
Though we think that the preceding analysis is the one most likely intended

by Spelke, it should be evident that it cannot be correct as an account of the
actual denotations of English expressions. The most significant problem con-
cerns the assumed denotations of numerically modified NPs, such as ‘two
dogs’. Contra Spelke, these cannot generally be co-denoting with conjunctive
NPs, such as ‘Rover and Snoopy’. Consider (14), for instance, where each name
refers to a different dog.

(14) Snoopy and Rover are two dogs, and so are Toby and Ulyses.

Spelke’s analysis wrongly predicts that (14) should be false in this context,
since the two conjunctive NPs would refer to different sets.
What’s gone wrong? Conceptually speaking, the problem with (11) appears

to be that it involves what Geach (1972) calls quantificatious thinking: that all
expressions occupying subject position serve the same kind of semantic func-
tion, namely referring, and that the referents of such expressions are all of the
same kind, namely sets. Yet as Frege made clear long ago, there is little empir-
ical plausibility to the claim that obviously quantificational expressions, such
as ‘nothing’ and ‘everything’, function as singular terms [Kratzer and Heim
(1998, Ch. 6)]. In terms of semantic types, the problem is that ‘two dogs’, when
occurring in subject position, has the wrong type to function this way.

(15) {Two/All/No} dogs are on the porch.

Within contemporary semantic theory, the phrases underlined in (15) are stand-
ardly assumed to have the type of generalized quantifiers, denoting sets of sets
[Barwise and Cooper (1981)]. For example, ‘two dogs’ denotes the set of pairs
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of dogs. Thus, whereas one such pair may include, say, Rover and Snoopy, it
may also include others, say, Toby and Ulyses.16

Though the above objections principally target Spelke’s assumptions regard-
ing the semantics of numerically modified NPs, they also ramify for her
ontogenetic story. Most obviously, they undermine Steps 2 and 4 of the pro-
posal. At Step 2, children are supposed to “learn part of the meanings of the first
number words,” by recognizing that numerically modified NPs, such as ‘two
dogs’, are co-denoting with conjoined NPs, such as ‘this dog and that dog’.
But since such expressions are not co-denoting, a child who underwent Step 2
would, in fact, seriously misunderstand numerically modified NPs.
A similar problem afflicts Step 4. Here, children are presumed to expand

their numerical vocabulary by applying “the grammatical rules for forming
expressions that refer to two or three individuals.” Importantly, this vocabulary
expansion succeeds in virtue of these newly formed complex NPs combining
denotations from previously understood, component NPs: “The sets to which
these noun phrases refer inherit the properties of the sets that are the refer-
ents of noun phrases containing the first three number words.” Clearly, then,
no vocabulary expansion could take place unless these component expressions
are already understood. Yet for each kind of complex phrase Spelke deems
relevant to Step 4, the component NPs are numerically modified NPs whose
meanings are supposed to be grasped at Step 2. Again, however, numerically
modified NPs are not plausibly synonymous with conjunctive NPs. Thus, with-
out some further, independent account of how understanding the latter could
lead to understanding the former, we have little reason to think that Step 4 is
achievable.
To summarize: though Spelke’s proposal offers an intriguing account of how

children come to understand count words, wemaintain that it suffers substantial
theoretical difficulties. In Section 4.2.3, we critically assess amore fundamental
assumption that, while widely adopted within the Mainstream, is prominently
illustrated by Spelke’s proposal, namely whether the denotations of number
words and number concepts are best construed in set-theoretic terms. For the
moment, however, we turn our attention to SNS-dominant models of the sort
most notably defended by Susan Carey.

3.5 SNS-Dominant Models
Whereas the previous accounts of count concept acquisition assign a pivotal
role to the ANS, SNS-dominant models instead emphasize the role of the SNS.

16 Group nouns raise an analogous issue. Specifically, given a set-based semantics, group nouns
only plausibly denote sets of sets. See Landman (1989) and Snyder and Shapiro (2022).
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Though views of this sort come in different forms, by far the most influential
is due to Carey (2000, 2009a,b), and so we focus on her proposal here. Like
Spelke, Carey assigns a central role to the language faculty. As we will see,
however, her account of the specific role language plays is quite different from
Spelke’s. In what follows, we first explain Carey’s proposal, and then discuss
some of the central difficulties it encounters.

3.5.1 Conceptual Continuity and Quinean Bootstrapping

As a preliminary, it is worth locating Carey’s proposal within the context of a
broader debate that has not figured prominently in our discussion so far, but
which is central to developmental psychology, at least since Piaget – issues
regarding the possibility of conceptual discontinuities. A long-standing anxi-
ety, both in philosophy and psychology, concerns how it is so much as possible
for an individual to learn novel concepts – to learn concepts they did not possess
at some prior time. Prima facie, we routinely perform this feat. For example,
when learning science or mathematics, students seemingly learn such concepts
as ELECTRON, QUARK, PHONEME or POLYNOMIAL.
Some nativists – most famously, in recent times, Jerry Fodor – have main-

tained that appearances are misleading – that such apparently novel concepts
are not, in fact, learned, but rather innate [Fodor (1981)]. Yet few develop-
mentalists are much inclined to accept this sort of “mad dog nativism” [Cowie
(1998)]. Rather, a specific model of concept learning has tended to prevail: one
in which we learn new concepts via processes which combine antecedently
available representations. To illustrate, consider the widespread suggestion
that concepts are acquired via a process of inductive extrapolation involving
hypothesis formation and testing [Fodor (1981)]. On such a view, for exam-
ple, acquiring BACHELOR would result from forming and then confirming a
hypothesis of something like the following form,

The concept BACHELOR applies to x if and only if (and because) x is …

where the right-hand side of the hypothesis specifies conditions under which
BACHELOR is correctly applied. Though the details of this proposal needn’t
detain us, three related demands of this view should be appreciated:

The Correctness Requirement: LearningBACHELOR requires that one already
possesses whatever concepts are needed to formulate a correct hypothesis
regarding the application of BACHELOR. For if one did not, the hypothesis
could not be formulated.
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The Non-Circularity Requirement: On pain of explanatory circularity, the con-
cept being acquired cannot also be used on the right-hand side of the
hypothesis. For example, the hypothesis could not be:
The concept BACHELOR applies to x if and only if (and because) x is a
BACHELOR.
For this would presuppose that the agent already possesses the concept whose
acquisition we seek to explain.

The Basing Requirement: The previous two requirements imply that learning
a concept C requires the prior possession of whatever other concepts are
required to accurately formulate C’s application conditions. Suppose, for
example, that the relevant hypothesis is:
The concept BACHELOR applies to x if and only if (and because) x is
UNMARRIED and x is MALE, and x is an ADULT, and x is HUMAN.
Then, the learner must antecedently possess the concepts UNMARRIED,
MALE, ADULT, and HUMAN. That is, the learner must antecedently possess
a relevant conceptual base.

There are two further implications of the aforementioned. First, if BACHE-
LOR were learned in the envisaged manner, then there’s a sense in which the
conceptual system the learner possesses prior to acquiring BACHELORwould
already provide the resources for having all those thoughts involving BACHE-
LOR. After learning BACHELOR, the agent might have a new representation
type, namely BACHELOR. But if the concepts on the right-hand side of the
hypothesis capture the application conditions for BACHELOR, then a thought
with the same content can be had by using these other concepts instead. This
is sometimes framed in terms of preserving conceptual continuity between
the conceptual systems possessed prior to and after this instance of learning.
More precisely, we can formulate the relation of continuity between successive
conceptual systems, CS1 and CS2, as follows:

(CC) CS1 and CS2 are conceptually continuous if and only if all the thoughts
expressible in CS2 are expressible using only the concepts of CS1. That
is, the expressive power of CS2 is no greater than that of CS1.

Moreover, if we further suppose that concepts are only learned via the afore-
mentioned method, then we appear committed to the following theses:

Primitive Basing: There is a base of primitive conceptual representations –
representations that do not have other representations as proper parts.

Continuity Thesis: All acquired conceptual systems are conceptually continu-
ous with the initial, primitive base system.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
05

23
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009052337


Number Concepts 47

A commitment to Primitive Basing arises because if there were no such base,
concept learning could not get off the ground. Indeed, every instance of con-
cept learning would presuppose some prior instance, ad infinitum. Moreover,
a commitment to the Continuity Thesis arises because, as indicated, the sort of
concept learning envisaged preserves continuity at each step. Thus, chaining
the above together, if all concepts are learned via the sort of constructive proc-
ess outlined, then all possible human thoughts would be expressible in a base
of primitive, unlearned concepts.
Though such a view has been defended by some very influential figures

[e.g. Macnamara (1986)], it has striking implications that many have found
implausible. With regard to mathematics, specifically, Jean Piaget famously
observes:17

[T]his would mean that a baby at birth would already possess virtually eve-
rything that Galois, Cantor, Hilbert, Bourbaki or MacLane have since been
able to realize. [Piaget and Chomsky (1980, p. 26)]

In light of this, many developmentalists have denied the Continuity Thesis,
seeking instead to provide accounts of conceptual change that allow for dis-
continuities – changes where some of the thoughts expressible in CS2 are
not expressible using only the concepts of CS1. Carey herself seems to be
developing a view of this sort by characterizing a kind of learning she calls
Quinean bootstrapping – “Quinean” because she claims to detect the general
idea in the work of W.V.O. Quine, “bootstrapping” because, as with the well-
worn metaphor of pulling oneself up by one’s bootstraps, the proposed process
enables progress in a manner which, at first glance, appears impossible. As
Carey (2000, p. 20) puts it:

The metaphor captures what is hard about the process of creating new
representational resources that are not entirely grounded in antecedent rep-
resentations.

Specifically, according to Carey, bootstrapping permits the acquisition of a
more powerful conceptual system on the basis of less powerful ones.
So what is Quinean bootstrapping, exactly? Though Carey’s characterization

is impressionistic, the following presumed features are clearly central. First, it
is intended to effect conceptual discontinuities. Second, it is supposed to be a
species of learning process. In particular, it is a computational process which
involves operations on mental representations and preserves rational relations

17 See Carey (2009a, p. 18) for further discussion.
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between inputs and outputs.Moreover, it recruits awide array of other cognitive
processes combined in various ways, including analogical mapping, deduction,
and hypothesis formation and testing.
Third, Quinean Bootstrapping is assumed to rely on the initial availability of

what Carey calls a placeholder system: a system of explicit symbols, such as
a list of words in a natural language, which initially is “at most only partially
interpreted with respect to antecedent concepts.” More specifically, the mean-
ings initially attributed to the symbols in the placeholder system, by the learner,
are exhausted by their (presumably nonsemantic) relations to each other, as
opposed to being “interpreted in terms of already existing representations”
[Carey (2009a, p. 246)].
Finally, according to Carey, Quinean bootstrapping is a kind of “modeling

process,” in that as a result of deploying the sorts of processes mentioned ear-
lier, the learner is ultimately able to assign an interpretation to symbols in the
placeholder system. According to Carey, it is by assigning such interpretations
that the learner comes to possess new concepts.

3.5.2 Bootstrapping the Count List

Broadly speaking, on Carey’s account, children acquire number concepts in
the course of learning how to count. Her proposal may be divided into three
stages, each corresponding to periods in the developmental timetable outlined
in Section 2.4.
Stage 1, occurring around two years of age, consists in the child learning the

initial placeholder system, i.e. the count routine. During this period, the child
learns to count intransitively and to satisfy the One-to-One Principle. Accord-
ing to Carey, children do not use count words to express any specific concepts
at this point. Rather, count words are merely uninterpreted, perhaps phonolog-
ically individuated, tokens. To the extent that they have any meanings for the
child, these are initially exhausted by their relations to each other. Specifically,
words in the count list “get initial interpretations as part of a placeholder struc-
ture, the count list itself, in which meaning is exhausted by the fact that the list
is ordered” [Carey (2009a, p. 19)].
Stage 2, corresponding to the subset-knower stage, consists in acquiring an

understanding of the meanings of the first four count words. According to
Carey, this results from mapping each word to a “long-term memory model” –
a representation created by the parallel individuation system and stored in long
term memory. Carey speculates that such models represent sets while also con-
taining symbols representing individuals – “{i}, {j k}, {m n o}, {w x y z}”
[Carey (2009a, p. 19)]. Moreover, she proposes that the first four count words
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have their meanings in virtue of a computational procedure for assigning count
words to sets:

The child makes a working-memory model of a particular set he or she wants
to quantify, for example {cookie cookie}. He/she then searches the models
in long-term memory to find that which can be put in 1–1 correspondence
with this working-memory model, retrieving the [count word] that has been
mapped to that model.

Thus, in the mouths of subset-knowers, the meanings of the first four number
words are determined by a computational procedure in which they participate:
a procedure ensuring that each word can be applied to any set in 1-1 corre-
spondence with an appropriate set-theoretic representation stored in long-term
memory.
Stage 3, which centers on the transition to becoming a CP-knower, involves

mastery of the Cardinal Principle (Section 2.4). To appreciate Carey’s account,
it is important to distinguish this from an initially similar principle, namely
what [Fuson (2012)] calls “The Last Word Rule”

LWR: The last count word used in the counting procedure answers the relevant
‘how many’-question posed when performing that procedure.

There is a crucial difference between these two principles. Whereas grasp-
ing the Cardinal Principle implies that the child understands the meanings
of count words, grasping LWR does not. Rather, it merely implies an abil-
ity that might be, as it were, brute mechanical – the ability to respond with
the appropriate word, in the appropriate circumstances. However, on empirical
grounds, presented in Sarnecka and Carey (2008), Carey supposes that subset-
knowers already understand LWR, and hence that grasping it cannot explain
the transition to becoming a CP-knower.
We find an analogy to Searle’s (1982) Chinese room helpful here. In this

familiar thought experiment, a non-Chinese speaker is handed cards containing
Chinese characters through a slot in a door. There are instructions in the per-
son’s native language for processing each card, producing further cards with
Chinese characters, and passing these new cards through another slot. We may
imagine that the person becomes so good at following these instructions that
they process cards in a time comparable to a native Chinese speaker, even with-
out the assistance of instructions. In that case, the two speakers might appear
behaviorally equivalent: for each input, the two speakers return the same out-
put, in a comparable time. Yet unlike the Chinese speaker, the non-Chinese
speaker does not understand what is on the cards. Rather, they are merely
following a procedure, albeit very well.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
05

23
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009052337


50 Philosophy of Mathematics

The analogy is this: In the context of counting, mastering LWR merely
enables the child to deliver responses that are appropriate. Indeed, a child grasp-
ing LWR could be very good at performing the transitive counting routine
without grasping the meanings of count words or possessing count concepts.
In contrast, according to Carey (2009a), CP-knowers are like Searle’s Chinese
speakers – when grasping the Cardinal Principle, they don’t merely respond
appropriately, they also understand the meanings of the count words, and so
possess count concepts. Inmaking this claim, Carey appears to be applying sim-
ilar considerations to those militating in favor of attributing number concepts to
subset-knowers. For instance, the standard reason for attributing the concepts
ONE, TWO, and THREE to three-knowers is that they manifest successful per-
formance on Give-N and related tasks, up to the word ‘three’. Analogously,
since CP-knowers successfully perform such tasks for all count words on their
count list, similar considerations suggest the possession of concepts for all those
count words.
Suppose with Carey (2009a) that on becoming CP-knowers, children tacitly

recognize that count words denote what Carey calls cardinal values, or col-
lections of equinumerous sets. The challenge is to explain how they come to
grasp the meanings of all words in their count list, and not just the first four. To
this end, Carey invokes bootstrapping. Specifically, she proposes that children
recognize a structural analogy between count words and the sets they denote.
Count lists are linearly ordered.18 That is, just as ordering the natural numbers
by < results in the sequence

1 < 2 < 3 < . . .

ordering count words by the relation of coming next in the count list, repre-
sented here as ‘≺’, results in a similar sequence:

‘one’ ≺ ‘two’ ≺ ‘three’ ≺ . . .

Now, consider the following relation on sets, whichwe call cardinal successor,
represented as ‘≪’.

(16) S ≪ S′ if and only if for some x < S, there’s a one-to-one
correspondence between S ∪ {x} and S′

According to (16), S′ is the cardinal successor of S just in case adding a new
object to S results in a set which is in one-to-one correspondence with S′.19

18 Generally, linear orderings are transitive (if x ≤ y and y ≤ z, then x ≤ z), antisymmetric (if
x ≤ y and y ≤ x, then x = y), and total (either x ≤ y or y ≤ x).

19 A similar definition is suggested by Frege (1884).
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Clearly, ordering sets by cardinal successor results in a linear ordering. For
example, we have

{a} ≪ {a, b} ≪ {a, b, c} ≪ . . .

This appears to be the presumed structural analogy CP-knowers tacitly recog-
nize: count words ordered by ≺ and the sets they are assumed to denote, ordered
by≪, form isomorphic structures [Cheung et al. (2017)].
Importantly, recognizing this analogy licenses what Carey (2009a, p. 289)

calls “the crucial induction”: “For any symbol in the numeral list that repre-
sents cardinal value n, the next symbol on the list represents cardinal value
n+1.” More precisely, Carey’s comments suggest the followingmetasemantic
principle governing the presumed denotations of count words.

(MP) For every count word α, there’s a unique next count word β such for any
set S in the extension of α, if an object x is not in S, then adding x to S
results in a set S′ in the extension of β.

In plain English, (MP) implies the conjunction of two claims:

The Morphosyntactic Condition: Every count word is followed by a unique
next count word.

The Semantic Condition: If a count word is true of sets containing n-many
things, the next count word is true of sets that result from adding an extra
object.

Some clarifications are in order here. First, notice that the Morphosyntactic
Condition implies that the count list is, in fact, infinite. Second, the Seman-
tic Condition guarantees that all count words in the count list are provided
an appropriate denotation, in the form of cardinal values. For example, given
that ‘four’ denotes the collection of four-membered sets, the Semantic Condi-
tion guarantees that ‘five’ denotes sets resulting from adding a new member to
those sets in the extension of ‘four’. Third, as we discuss further in Section 4,
this implies that count words denote natural numbers, if we further suppose
the Frege–Russell characterization of the naturals. Fourth, the joint effect of
the aforementioned three assumptions is that there are infinitely many count
words, each denoting a natural number, and each such that the number denoted
by the count word immediately following it is its unique cardinal successor.
Put differently, the aforementioned assumptions jointly entail:

The Successor Principle: For each natural number, there is a unique natural
number immediately following it.
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And this, of course, is precisely what the Dedekind–Peano axioms char-
acterizing successor entail. Thus, in combination with the aforementioned
assumptions, (MP) implies that natural numbers conform to those axioms.
Under the aforementioned assumptions, then, if children become CP-

Knowers as a result of learning (MP), then they should also come to tacitly
know, or at any rate be in a position to infer, the Successor Principle. Accord-
ingly, Carey (2009b, p. 251) describes the key cognitive difference between
subset-knowers and CP-knowers as follows:

[T]he difference between subset-knowers and cardinal principle-knowers is
a (tacit) appreciation of how counting implements the successor function,
precisely the induction posited in the above bootstrapping proposal.

The suggestion appears to be that in virtue of bootstrapping (MP), CP-knowers
tacitly possess knowledge of successor, a powerful consequence of which is an
ability to represent every natural number, in principle.

When the child, at around the age 3 1
2 , has mastered how the count sequence

represents number, he or she can in principle precisely represent any positive
integer. Carey (2009a, p. 328)

A similar idea is echoed in vanMarle (2018, p. 132):

With this knowledge [of the Cardinal Principle], children presumably under-
stand ... how to implement the counting routine, and in doing so, they can
determine the cardinal value of any set.

Again, the presumption is that an ability to represent the full system of
natural numbers, at least in principle, is concomitant with becoming a CP-
knower, something which only makes sense if bootstrapping (MP) implies tacit
knowledge of the Successor Principle.
Carey (2009a, p. 328) summarizes her account as follows: “I have argued

here that the numeral list representation of number is a representational
resource with power that transcends any single representational system avail-
able to prelinguistic infants.” In other words, bootstrapping (MP) allows
CP-knowers to have thoughts which are in principle inaccessible to pre-CP-
knowers, namely those involving count concepts beyond FOUR. As a result,
tacitly grasping (MP) constitutes a kind of conceptual discontinuity.

3.5.3 Troubles for Carey

Carey’s rich, provocative account of number concept acquisition has been the
focus of much discussion. Though, in Section 4, we critically assess some of its
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more general assumptions, e.g. that count words denote sets, and that natural
numbers are collections of sets, in this section, we focus on a pair of issues. The
first concerns the extent to which early CP-knowers understand the Successor
Principle. The second concerns whether Carey’s account delivers a conceptual
discontinuity in the course of bootstrapping (MP).

Do Early CP-Knowers Tacitly Know the Successor Principle? As we have
seen, Carey’s bootstrapping seemingly predicts that becoming a CP-knower is
a major milestone in mathematical development, in that it implies tacit knowl-
edge of the Successor Principle. Cheung et al. (2017, p. 23) nicely describe this
key assumption.

According to some accounts [e.g. Carey (2009a)], the transition to becoming
a CP-knower marks a profound inductive leap . . . Critically, according to
this account, this knowledge, which “turns a subset knower into a cardinal-
principle knower” is thought to reflect implicit knowledge of the successor
function (p. 673), as described by the Peano–Dedekind axioms.

If so, then one might reasonably test this prediction by attempting to deter-
mine whether early CP-knowers actually exhibit knowledge of successor. Thus,
in a series of papers, David Barner and colleagues have argued on empirical
grounds that no such knowledge exists, and hence, that there are good reasons
to reject Carey’s analysis.
By way of illustration, consider Cheung et al.’s (2017) Largest Number and

Successor probes. In each, CP-knowers are asked open-ended questions relat-
ing to the infinity of the natural numbers. An example of a Largest Number
probe would be “If I keep counting, will I ever get to the end of numbers, or
do numbers go on forever?” and an example of a Successor Probe would be
“If we thought of a really big number, could we always add to it and make it
even bigger, or is there a number so big we couldn’t add any more?” What they
found is that early CP-knowers tended to answer such questions incorrectly.
For example, they often say that there is a biggest number, or that numbers
do not go on forever. Cheung et al. (2017, p. 32) summarize their findings as
follows:

This study is the first to document the complete developmental trajectory of
successor function acquisition, and finds that it is highly protracted. Using
a stronger test of successor knowledge, we found that not until after age 6
can children both identify the values of successors within their count list and
reason about the successor function for all possible numbers.

That is, children reliably exhibit an understanding of the Successor Principle
only approximately two years after becoming CP-knowers, strongly suggesting
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that CP-knowers do not grasp the Successor Principle in virtue of bootstrapping
(MP). In fact, Carey herself concedes as much in a paper recently co-authored
with Barner [Carey and Barner (2019, p. 813)]:

[L]earning a verbal encoding of the successor function builds directly
upon counting abilities found only in CP-knowers, not just on associations
between words and magnitudes. Only by around age 5 1

2 years – 1 or 2 years
after they become CP-knowers – do children exhibit evidence of having
learned a fully recursive successor function that generates an infinite set of
numbers.

So it would appear that it cannot be in virtue of inferring (MP) that children
tacitly grasp the Successor Principle, by Carey’s own lights.
The Cheung et al. results may initially appear devastating to Carey’s pro-

posal. However, we think that there are two reasonable grounds for resistance.
The first centers on the notion of tacit (or implicit) knowledge assumed. Both
Cheung et al. and Carey frame the issue as concerning whether children have
“implicit knowledge of the successor function.” Notoriously, however, the
notion of implicit or tacit knowledge has been construed in importantly differ-
ent ways; and while there is a familiar sense in which Carey’s proposal implies
tacit knowledge of the Successor Principle, it is not plausibly the sense being
tested by the Cheung et al. studies.
As mentioned in Section 2, cognitive scientists often assume the existence

of representational states which are tacit in the following sense:

Tacit Knowledge as Occurrent: A proposition p is tacitly known – or tacitly
represented – by an agent A if there is a cognitive state of A that a) is individ-
uated by the content p; b) can participate in causal interactions; and c) cannot
be verbally reported.

Such “subpersonal” or “unconscious” states are posited in different regions of
cognitive science, e.g. the study of visual perception and language, and figure
centrally in causal explanations. However, it is far from clear that Carey is
committed to CP-knowers having tacit knowledge of the Successor Principle
in this sense. On her view, recall, what explains the target behaviors – e.g. the
ability to succeed on the Give-N task for count words greater than ‘four’ – is a
representational state encoding (MP). That is, it is this metasemantic principle
that, on her view, is plausibly tacit in the aforementioned sense. In contrast, it
would seem that the Successor Principle is tacit – or implicit – in some different
and rather weaker sense. Specifically, it would appear to be tacitly known in
the sense that given a state encoding (MP) – and given suitable background
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beliefs, and inferential capacities – the Successor Principle is inferable from
(MP). Generalizing:

Tacit Knowledge as Dispositional: A proposition p is tacitly known – or tacitly
represented – by an agent A, if, given A’s inferential capacities, p is inferable
from their other representational states.

To illustrate, although Smith has no representational state representing that
dogs do not have 20,000 legs, this is readily inferable from something that she
does represent, namely that dogs have no more than four legs. Although more
complex, the status of the Successor Principle in Carey’s theory is plausibly
analogous.20

We can now explain why the Cheung et al. study fails to test the relevant
claim. Asmade clear above, on Carey’s account, CP-knowers only tacitly know
Successor in the dispositional sense – it is inferable from (MP) and other back-
ground assumptions. Yet the evidence given by Cheung et al. more clearly tests
for tacit knowledge in the occurrent sense. Accordingly, Carey could have an
explanation of the evidence brought forth by Cheung et al: early CP-knowers
are simply yet to draw the required inference.
The second response to the Cheung et al study concerns the details of

how one formulates (MP). Specifically, Carey (2009a) provides two different
characterizations:

For any symbol in the numeral list that represents cardinal value n, the next
symbol on the list represents cardinal value n + 1. [Carey (2009a, p. 289)]

[I]f “x” is followed by “y” in the counting sequence, adding a individual to a
set with cardinal value x results in a set with cardinal value y. [Carey (2009a,
p. 327)]

Despite their similarity, there is a significant difference between these formula-
tions: whereas the former implies the existence of infinitely many count words
and corresponding cardinal values,21 the latter, as a conditional statement, does
not. In fact, this second formulation is consistent with there being no count
words, or cardinal values, at all.
More formally, we can represent Carey’s two formulations as:

20 Of course, these are not the only senses in which knowledge might be said to be “tacit.” For
extended discussion, see Ramsey (2022).

21 Provided the familiar assumption that utterances of ‘the F’ either entail or presuppose the
existence of Fs [Chierchia (1998b)].
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(IMP) For every count word α, there is another count word β immediately
following α such that if α is true of a set S and x < S, then β is true of
S ∪ {x}.

(FMP) For every count word α, if there is another count word β immediately
following α, then if α is true of a set S and x < S, then β is true of
S ∪ {x}.

Clearly, only (IMP) implies the existence of infinitely count words and cor-
responding cardinal values, in the form of sets. As such, only (IMP) is a
viable candidate for codifying the successor function, as characterized by the
Dedkekind–Peano axioms. After all, the latter jointly require the existence of
a (unique) successor for every natural number, not just those which may be the
denotations of a finite list of count words.
With this distinction in hand, a second reason Cheung et al.’s experiments

might fail to undermine Carey’s proposal is this: If (FMP) expresses the sali-
ent metasemantic principle, then there is clearly no reason to suppose that by
learning that principle, children would thereby acquire tacit knowledge of the
Successor Principle, even in the dispositional sense. Thus, a version of Carey’s
account formulated in terms of (FMP) would in no way be threatened by the
Cheung et al results.
On the other hand, such an account would also clearly fail to establish that

CP-knowers have tacit knowledge of the Successor Principle. Thus, Carey’s
account of how CP-knowers “can in principle precisely represent any positive
integer” plausibly succeeds only if children actually infer the inifinisticmetase-
mantic principle codified in (IMP). However, this proposal faces substantial
challenges.
First, independent of and prior to the empirical findings of Cheung et al.

(2017), there is no evident reason for thinking that children should infer (IMP),
rather than (FMP), given the child’s limited experience with counting. After
all, both metasemantic principles predict the same results up to the limit of the
child’s count list. Specifically, both imply that words within the count list and
their cardinal values are similarly ordered. Consequently, if one principle can
explain the transition from being a subset-knower to becoming a CP-knower,
then so can the other.
Furthermore, there are compelling, independent reasons for doubting the

veracity of (IMP). Specifically, contrary to what Carey (2009a, Ch. 9) suggests,
natural language count lists are not, in fact, infinite.22 Because number word

22 To quote Carey (2009a, pp. 335–336): “Over the next few years, the child extends the verbal
numeral list to ‘one hundred’ and then ‘one thousand,’ beginning to command the base system,
and coming to the realization that there is no highest numeral.”
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morphosyntax is not recursive, there are clear upper-limits on what number
words can be generated within any natural language [Grinstead et al. (1997)].
Consequently, the characteristic feature of (IMP) – the Morphosyntactic Con-
dition – is simply false.

The Morphosyntactic Condition: Every count word is followed by a unique
next count word.

Put in terms of a distinction familiar to philosophers of mathematics, given the
limitations on count word morphosyntax, count lists are at most potentially
infinite, as opposed to actually infinite [Schlimm (2018)]. In other words,
while it may be that for every count word α, there could be a next count word β,
it is patently not the case that for every count word α, there is a next count word
β. Yet the Dedekind-Peano axioms require that natural numbers are actually
infinite, not merely potentially infinite.23

Finally, even if children did infer (IMP) by recognizing a structural simi-
larity between natural language count words and their purported denotations,
this would imply knowledge of the Successor Principle only if natural num-
bers are identified with certain sets. As characterized by the Dedekind-Peano
axioms, successor is a relation holding between natural numbers. Thus, (IMP)
codifies that relation only if the Frege–Russell characterization of the naturals
is correct, an assumption we will criticize at length, on independent grounds,
in Section 4.2.3.

Bootstrapping and Discontinuity Our second objection targets the pro-
grammatic aspirations of Carey’s account. Recall that major motivation for
bootstrapping number concepts is that such learning requires a conceptual
discontinuity. In what follows, however, we argue for three claims:

i. The notion of a conceptual discontinuity, as Carey uses it, is equivocal
between two readings: a cumulative reading and a distributive reading.

ii. Even on the assumption that she accurately characterizes both what the
child learns, and the core systems involved in this learning process, there
are good reasons to suppose that her account fails to deliver conceptual
discontinuities in either sense.

iii. Given (i) and (ii), there is no reason to suppose that the transition to CP-
knowing involves a conceptual discontinuity.

Two notions of conceptual discontinuity. Earlier we characterized the notion
of conceptual continuity as a relation between conceptual systems:

23 For a nice explication of the distinction between potential and actual infinity, along with its
relevance to number theory, see Linnebo and Shapiro (2017).
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(CC) CS1 and CS2 are conceptually continuous if and only if all the thoughts
expressible in CS2 are expressible using only the concepts of CS1. That
is, the expressive power of CS2 is no greater than that of CS1.

Conversely, conceptual discontinuity between two systems is the failure of
continuity – i.e. where the expressive power of CS2 is greater than that of
CS1. Although such relations may obtain synchronically – e.g. between mine
and your conceptual systems at a time – diachronic relations of conceptual
continuity and discontinuity are of special interest to developmentalists, since
they concern ways in which conceptual systems may evolve over time. It
is important to see, however, that we can individuate conceptual systems in
two quite different ways that lead to importantly different sorts of diachronic
(dis)continuities.
According to the first, cumulative conception, a conceptual system is an

agent’s total conceptual resources at a time, considered jointly. Crudely, CS1
consists of all conceptual structures the agent possesses at time1, while CS2
consists of all conceptual structures possessed at time2. Thus, to say that CS2
is discontinuouswith CS1 implies that the total, collective conceptual resources
of the agent at time1 are insufficiently powerful to permit thoughts the agent
could have at time2. Plausibly, it is this notion of discontinuity figuring most
prominently in, say, the disputes between Piaget and Chomsky. For exam-
ple, when Jerry Fodor asserts the ‘impossibility of acquiring “more powerful”
structures’, he is denying this sort of discontinuity. Call this the cumulative
conception of discontinuity.
However, on an alternative conception, rather than considering CS1 as a sin-

gle system consisting of all conceptual structures jointly possesses at time1, we
instead think of CS1 as partitioned into multiple, distinct conceptual or repre-
sentational systems – parallel individuation, approximate magnitude, theory of
mind, language, and so on – at a time. To assert the existence of a conceptual
discontinuity then implies that each of the agent’s representational systems at
time1 is such that it is insufficiently powerful to permit thoughts that the agent
could have at time2. For example, the parallel individuation system might be
insufficiently powerful to represent natural number, as might the ANS. Call
this the distributive conception of discontinuity.
Below, we assess Carey’s arguments for such a discontinuity in the case of

number. For the present, however, we clarify the logical relations between
these two notions of discontinuity. First, the distributive notion is logically
weaker than the cumulative one: a cumulative discontinuity entails a distri-
butive discontinuity, but not vice versa. That is, if all representational systems
collectively comprising CS1 cannot jointly express what CS2 can, then none
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of those systems individually can, but not necessarily vice versa. Conversely,
the absence of a distributive discontinuity implies the absence of a cumulative
discontinuity as well. Specifically, CS1 will fail to be distributively discontin-
uous with CS2 only if at least one of the individual systems that comprise CS1
can express what CS2 can. Yet if a proper part of CS1 can express what CS2
can, then so can the whole CS1, of course.

Which sort of conceptual discontinuity does Carey’s account secure? The
answer, we suggest, is “Neither.” First, as evidenced from the following
passage, Carey (2011, p. 118) appears only to be arguing for a distributive
discontinuity with respect to the representation of exact cardinality:

CS2 is qualitatively different from each of the CS1s because none of the CS1s
has the capacity to represent the integers. Parallel individuation includes no
symbols for number at all, and has an upper limit of 3 or 4 on the size of
sets it represents. The set-based quantificational machinery of natural lan-
guage includes symbols for quantity (plural, some, all), and importantly
contains a symbol with content that overlaps considerably with that of the
verbal numeral “one” (namely, the singular determiner, “a”), but the singu-
lar determiner is not embeddedwithin a system of arithmetical computations.
Also, natural language set-based quantification has an upper limit on the sets’
sizes that are quantified with respect to exact cardinal values (singular, dual,
trial). Analog magnitude representations include symbols for quantity that
are embedded within a system of arithmetical computations, but they repre-
sent only approximate cardinal values; there is no representation of exactly
1, and therefore no representation of 1. Analog magnitude representations
cannot even resolve the distinction between 10 and 11 (or any two succes-
sive integers beyond its discrimination capacity), and so cannot express the
successor function. Therefore, none of the CS1s can represent 10, let alone
342,689,455.

The argument appears to be just this: since CP-knowers understand the mean-
ings of count words, they are capable of representing exact cardinalities; yet
none of the relevant individual conceptual systems available to CP-knowers –
the ANS, the language faculty, and the parallel individuation system – can
by itself represent exact cardinalities; thus, representing exact cardinalities
constitutes a distributive discontinuity.
Is this claim correct? Though we grant, for the sake of argument, that neither

the ANS nor the parallel individuation system have the resources to represent
exact cardinalities, we doubt that her claims about language are correct. Spe-
cifically, given Carey’s assumptions about what count words denote and what
the relevant semantic machinery is like, language alone seemingly provides the
resources required to do so.
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Figure 4 A set-based semantics for cardinality predicates.

Here’s why. According to Carey, there is an upper limit of three on the
cardinalities “set-based quantification” represents. By set based quantifi-
cation, Carey intends the same set-based semantics for nouns discussed in
Section 3.4.2, illustrated in Figure 3. Thus, Carey (2009a, p. 256) writes:

Linguists such as Genaro Chierchia (1988) and G. Link (1987) show how the
quantifiers of all languages, as well as the count/mass distinction, the distinc-
tion between nouns in classifier languages and nouns in languages with the
count/mass distinction, and much else, can be defined over the semi-lattice
depicted in [Figure 3], which creates all of the possible sets from a domain
of atoms or individuals. This structure makes explicit the contrast between
individuals (the bottom line) and all of the sets composed out of them. One
needs explicit symbols with the content [SET] and [INDIVIDUAL], plus
distributive and collective computations over those symbols, to capture the
meanings of natural language quantifiers, including even the singular/plural
distinction. I call this system of representation “set-based quantification.”

Apparently, then, set-based quantification includes the entire semi-lattice struc-
ture depicted in Figure 3 – the urelements, the sets of urelements, and the
relations on them. Moreover, according to Carey, these resources collectively
impose “an upper limit on the sets sizes that are quantified with respect to exact
cardinal values.”
Yet this conclusion strikes us as unfounded. Indeed, on Carey’s own assump-

tions regarding set-based quantification, there is no evident reason why it
cannot represent exact cardinalities far greater than three.24 On standard anal-
yses of numerical modifiers, including that of Link (1983) and Chierchia
(1998a,b), cardinality predicates denote collections of precisely the sorts of
entities depicted within the relevant semilattice structures. For example, a set-
based semantics will naturally provide denotations for cardinality predicates
like those depicted in Figure 4.

24 In Section 4, we reconsider Carey’s assumption that the relevant semantics is set-theoretic.
Specifically, we note the existence of alternative, mereological analyses, such as that of Link
(1983).
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These same denotations are what Carey identifies with cardinal values – col-
lections of equinumerous sets.25 Moreover, Carey clearly identifies cardinal
values with numbers: “cardinal values of sets are numbers” Carey (2009a,
p. 136). Hence, it would appear that set-based quantification alone provides
the resources for representing exact cardinal values. Furthermore, it should be
evident that there is no clear upper-limit on the cardinal values representable
within such a system. Indeed, for any number of urelements, n, the system is
capable of representing numbers up to n.
We thus conclude that, by Carey’s own lights, there is little reason to posit a

conceptual discontinuity for the case of natural number. More precisely, since
a single core system – the language faculty – would alone suffice to represent
the relevant sets, it follows that there is no distributive discontinuity in the case
of natural number. Moreover, since the absence of a distributive discontinuity
implies the absence of a cumulative discontinuity, it also follows that there is
no cumulative discontinuity. Thus Carey’s account of natural number concepts
fails to secure conceptual discontinuity in either sense.

4 Assessing the Mainstream
In the preceding sections, we made explicit the primary issues the Main-
stream seeks to address, along with various assumptions Mainstream views
typically adopt. Additionally, we outlined and critically assessed a range of
influential Mainstream accounts of how children come to possess, and manifest
competence with, number concepts. In this final section, we evaluate certain
additional, widely shared commitments of Mainstream NCR, which should be
of particular interest to philosophers of mathematics.
As we saw in Section 2, the Mainstream incurs many commitments – to

representationalism, to the existence of core systems, to a relatively detailed
ontogenetic timetable, and so on. Though each is deserving of critical atten-
tion, we focus here on commitments of most direct concern to philosophers of
mathematics, largely because, in contrast to many of the Mainstream’s other
commitments, these have received comparatively less critical scrutiny within
NCR. Specifically, we focus on three issues:

• What is the relationship between psychology and foundational theories of
arithmetic?

• What is the nature of natural numbers?
• How many kinds of number concepts do we possess?

25 Assuming Quine’s trick. See fn. 15.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
05

23
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009052337


62 Philosophy of Mathematics

Bringing these to the forewill, we hope, facilitate progress not only by pinpoint-
ing and assessing relatively neglected theoretical assumptions underlyingmuch
NCR, but also by highlighting points of contact between otherwise disparate
fields of study.

4.1 Psychology and Foundational Mathematics
Debates regarding the relationship between psychology and foundational math-
ematics are complex and long-standing – too elaborate to discuss in detail here.
Still, one important issue of direct relevance to NCR is:

The Constraint Question: To what extent should research within foundational
mathematics constrain NCR, or vice versa?

Some clarifications are in order. First, we use ‘foundational mathematics’ as
a loose catchall to include, e.g. logic, arithmetic, set theory, category theory,
and metamathematics. Second, though many notions of constraint are poten-
tially relevant here, what we principally have in mind is a relationship between
research fields such that the range of permissible hypotheses in one is restricted
by research in the other. Presumably, every field constrains every other, in this
sense, at least to the extent that they should be consistent. However, the con-
straint relations between some fields are more extensive, in that they impose
what we’ll call specific restrictions. For example, physics imposes greater
degrees of restriction on hypotheses in, say, chemistry, than it does in, say, his-
tory, since particle physics provides an account of the nature of the elements
that figure in the periodic table. Crudely, the Constraint Question is concerned
with whether the constraint relations between NCR and foundational mathe-
matics are more akin to those between physics and chemistry than between
physics and history.
So construed, there are two familiar extreme positions that may be found in

discussions of the Constraint Question:

Radical Anti-Psychologism: NCR imposes no specific restrictions on founda-
tional mathematics.

Radical Psychologism: NCR imposes substantial specific restrictions on foun-
dational mathematics.

Though few would perhaps accept either claim without further clarifications
and caveats, we suspect that the first roughly captures a prevailing view among
philosophers of mathematics. Moreover, while the second is far less prevalent
among contemporary philosophers, it is suggested in different ways by those
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who view logic and other foundational fields as part of psychology, and by
those who claim that mathematical objects are psychological entities. Indeed,
in Section 4.2 we discuss Mainstream views that appear to make this latter
claim. Here, we focus instead on an answer to the Constraint Question explicitly
defended by Susan Carey, but whichwe suspect is morewidely accepted among
NCRs.
Carey (2009b) proposes a midway between the aforementioned pair of

extremes, which focuses on the role foundational research plays in constraining
NCR. On her view, foundational results provide a specification of the number
concepts acquired throughout the course of development. That is, foundational
mathematics specifies the salient developmental target.
Carey (2009b, pp. 1–2) begins by distinguishing between two kinds of

programs: the logical program and the ontogenetic program:

Two distinct research programs should be, but often are not, distinguished.
In one, the logical program, the building blocks are conceived of as log-
ically necessary prerequisites for the capacity in question. In the case of
natural number representations these might include the capacity for carry-
ing out recursive computations, the capacity to represent sets, and various
logical capacities, such as those captured in second order predicate calculus.
. . . A second research program, the ontogenetic program, conceives of the
building blocks as specific representational systems out of which the target
representational capacity is actually built in the course of ontogenesis or his-
torical development. In the case of number representations these would be
the innate representations with numerical content (if any).

The two programs are related, but distinct, Carey explains:
The first (characterizing the logical prerequisites for natural number) leads to
analyses like those that attempt to derive the Peano–Dedekind axioms from
Zermelo–Fraenkel set theory or Frege’s proof that attempts to derive these
axioms from second order logic and the principle that if two sets can be put in
1-1 correspondence they have the same cardinal value. Such analyses seek to
uncover the structure of the concept of natural number, and certainly involve
representational capacities drawn upon in mature mathematical thought, but
nobody would suppose that in ontogenesis or historical development people
construct the concept of natural number by recapitulating such proofs.

Despite this, and crucially, the ontogenetic program depends on the logical
program, in two respects:

The ontogenetic project . . . depends upon the logical one for a characteriza-
tion of the target concept at issue (e.g., what I mean here by the concept of
natural number is characterized by the Peano–Dedekind axioms), as well as
for a characterization of the logical resources drawn upon in the construction
process.
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Thus, Carey’s view seemingly implies two commitments. First, successfully
carrying out the logical program is a prerequisite for successfully carrying out
the ontogenetic program, since the former provides not only a characterization
of the target concept(s), but also a specification of the logical resources required
to possess them. Because these are the purview of foundational theories, devel-
opmentalists have no choice but to turn to such enterprises when attempting to
specify the developmental target. To give it a label, call this methodological
orientation Foundations First (FF).
A second, perhaps less obvious implication of Carey’s view concerns the

adoption of what we call conceptual monism. Specifically, Carey’s fram-
ing of the relationship between foundational mathematics and NCR seemingly
implies that foundational research delivers a unique target concept – “the con-
cept of natural number [as] characterized by the Peano–Dedekind axioms”
(our emphasis). More generally, the presumption appears to be that each num-
ber word expresses a unique number concept – ‘one’ expresses ONE, ‘two’
expresses TWO, and so on – and that possessing these subordinate con-
cepts suffices for possessing NATURAL NUMBER. We will return to this in
Section 4.3. For now, we focus on the tenability of FF.
As we see it, FF faces three kinds of challenges. The first is to justify the

methodology, in light of its failing to generalize to other conceptual domains.
A basic assumption underlying FF appears to be that in order to specify a target
number concept, we ought to look to those sciences most relevant to under-
standing the target phenomenon: in this case, foundational mathematics. Now,
consider the concept WATER. Though it may be useful for developmentalists
to know how chemists conceptualize water, this surely isn’t required to specify
the target concept, i.e. the one acquired by children when learning to think and
talk about water. Presumably, psychology and cognitive science are not, and
should not be, hostage to chemistry in this way. But then why should things be
interestingly different with respect to foundational mathematics?
Second, in order for foundational theories to play the role assigned to them

by FF, they would need to accurately characterize the concepts children in
fact acquire, i.e. the developmental target. However, foundational theories are
usually not developed with an eye to satisfying such a demand.
For one thing, and contrary to what Carey seemingly claims, it is doubtful

that foundational theories of the natural numbers, such as the DP-axioms, “seek
to uncover the structure of the concept of natural number” – not at any rate if
concepts are mental particulars which are constituents of quotidian thoughts.
Rather, such axioms are more plausibly construed as concerning objects and
the structure they instantiate, viz. natural numbers.
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Furthermore, even if we construe foundational theories as seeking to pro-
vide theories of mathematical concepts, as opposed to mathematical entities or
structures, it is important to appreciate that such theories are often intended to
be revisionary, rather than descriptive. Appealing again to Strawson’s (2002)
distinction, foundational theories would play the role Carey assumes only if
they were engaged in descriptivemetaphysics – the entities and structures pos-
ited aim to describe how we actually think (Section 1.2). Yet they are very
typically not. To take one well-known example, consider Frege’s (1884 §57)
analysis of number, whose explicit aim is not to accurately describe our quo-
tidian number concepts, but rather to improve them: “to define a concept of
number that is useful for science.” Thus, even if we suppose that foundational
theories are theories of mathematical concepts, there’s little reason to suppose
that they seek to characterize the quotidian concepts we in fact possess.
A third challenge concerns adjudicating between competing foundational

theories. As Rips et al. (2008) observe, Carey, like most NCRs, seemingly
assumes that foundational mathematics delivers a uniquely correct answer to
the question of what kinds of things natural numbers are, namely cardinali-
ties, thanks to the foundational work of, e.g. Frege (1884) and Russell (1919).
However, this is only one among many options. Thus, Snyder et al. (2018b)
distinguish three kinds of characterizations of the naturals, each plausibly cod-
ifying a different potential application: counting, ordering, and calculating.
These are:

Cardinal Characterizations: Natural numbers are cardinalities, i.e. the sorts
of things answering ‘how many’-questions. Cardinalities might be identified
with properties or classes of equinumerous concepts [Frege (1884); Russell
(1919); Hale andWright (2001)], or sets [Maddy (1990); or tropes (Moltmann
(2013))] or theymight instead be characterized as “sui generis logical objects”
[Tennant (1997)].

Ordinal Characterizations: Natural numbers are ordinalities, i.e. the sorts of
things specifying the ordinal positions of objects within a linearly ordered
sequence. They might be identified with order-types of (finite) well-ordered
sets [Dummett (1991a)], or equivalence classes of numeral-ordering pairs
[Linnebo (2009)].

Structuralist Characterizations: Natural numbers are reified positions or
places within an ω-sequence, i.e. the kind of sequence characterized by the
Dedekind-Peano axioms [Resnik (1997); Shapiro (1997)].

Given the availability of so many characterizations, any particular choice
clearly demands some justification. However, this is very rarely offered by
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Mainstream NCRs. In our view, this highlights a significant opportunity for
interdisciplinary engagement between NCR and the philosophy of mathe-
matics. After all, deciding how best to characterize the naturals is both a
long-standing preoccupation of the latter, andmay very well impact how empir-
ical hypotheses are framed within NCR. For example, it may directly impact
assumptions regarding what is required to possess natural number concepts
[Rips et al. (2008)].

4.2 Metaphysics of Natural Number
The following question is of central interest to the philosophy of mathematics,
of course:

The Metaphysical Question: Assuming natural numbers exist, what are they
like?

However, given the empirical focus of NCR, one might reasonably expect it to
incur no commitments regarding such matters. It may come as some surprise,
then, that some Mainstream NCRs routinely adopt controversial metaphysical
positions concerning the natural numbers. In what follows, we consider three:
cultural constructionism, term formalism, and the Frege–Russell characteriza-
tion.

4.2.1 Cultural Constructionism

Cultural constructionism is the thesis that numbers depend for their exist-
ence on quite specific cognitively mediated cultural practices. Dehaene (2011,
p. 260) seemingly adopts this view when writing:

The great mathematician Leopold Kronecker was wrong when he claimed
that “God made the integers; all else is the work of man.” Even the inte-
gers are manmade. They only exist in cultures that invented the notion of
counting.

In a similar vein, Carey (2009a, p. 333) writes:

Kronecker was wrong. Neither God nor evolution gave humans natural
number. Natural number is a human construction.

To avoid confusion, Carey and Dehaene’s cultural constructionism is not
intended to be a constructivism (or intuitionism) of the sort normally associ-
ated with Brouwer or Heyting.26 Nor is it a constructivism about psychological

26 See Shapiro (2000, Ch. 7).
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processes of the sort associated with Piaget. Rather, they appear to be endors-
ing a kind of ontological dependency thesis regarding the natural numbers. In a
slogan: no natural numbers without human cognition (of the relevant sort). As
such, numbers are not discovered by human beings, but rather invented. Spe-
cifically, both Dehaene and Carey seemingly suppose that this invention – this
bringing into being – depends on the existence of counting procedures.
What should we make of this view? Given its distance from Carey and

Dehaene’s primary intellectual concerns, we’re inclined to think of its endorse-
ment is a kind of rhetorical flourish – something not intended to be central to
the overall views being defended.27 For one thing, the aforementioned quota-
tions occur in the absence of any serious argumentation. In Dehaene’s case, for
example, the claim that “the integers are manmade” occurs within the context
of claiming that “what occurs in the child’s mindwhen he suddenly understands
that there is a discrete infinity of exact numbers” depends on “a cultural inven-
tion.” However, it is clearly one thing for the child’s understanding of natural
numbers to rely upon cultural innovations, quite another to claim that numbers
are cultural inventions. To suppose otherwise involves something akin to a use-
mention confusion – to conflate the origin of numbers with that of mental states
representing numbers.
Regardless, there are independent, well-known reasons for rejecting cul-

tural constructionism. Specifically, following familiar arguments from Frege,
it seems incapable of accommodating two widely assumed properties of
mathematical truths:28

• Eternality: Mathematical truths were true before humans existed, and will
remain true if humans cease existing. This is why it is permissible to apply
mathematics not just to the present and future, but also the distant past.

• Necessity:Mathematical truths are necessary, rather than contingent. Thus, in
all conceivable ways the world could be, including those in which no cultural
practices exist, 3 + 2 would be equal to 5. This is why it is permissible to
apply mathematics to both actual and counterfactual circumstances.

But if numbers only came to exist once humans engaged in counting behav-
ior, then it is hard to see how arithmetic truths could have either property.
After all, counting procedures might never have been invented, and mathemat-
ical truths presumably held prior to their invention. Altogether, then, cultural
constructionism is rather implausible.29

27 Though this might be overly generous. After all, as a reviewer observes, the subtitle to
Dehaene’s books is ‘How the Mind Creates Mathematics’.

28 Cf. Shapiro (2000) and Linnebo (2017).
29 Though see Cole (2013) for an attempt to address similar kinds of problems.
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4.2.2 Term Formalism

A second familiar metaphysical thesis about numbers, sometimes invoked by
NCRs, is term formalism. Crudely, this is the view that natural numbers are
symbols we use to talk about or represent them. Thus, (17) is true if ‘two’,
which refers to itself, is an even number.

(17) Two is an even number.

Sometimes term formalism is explicitly endorsed in NCR. For example, Gallis-
tel (2021, p. 29) recently writes: “Numbers are symbols manipulated in accord
with the axioms of arithmetic.” He then proceeds to summarize the earlier view
of Gelman and Gallistel (1986) – itself a seminal text in NCR – which endorses
“the modern formalist view of arithmetic”:

A number, as we understand it, is a player in the game of arithmetic, defined
by the rules of that game.

Although Gelman and Galistel’s commitment to term formalism is rather
explicit, it can also be found, though perhaps less overtly, in other NCR. For
example, the preface to Dehaene (2011, p. xiii) begins:

We are surrounded by numbers. Etched on credit cards or engraved on coins,
printed on pay checks or aligned on computerized spreadsheets, numbers rule
our lives.

Similarly, while speaking of CP-knowers, Davidson et al. (2012, pp. 3–4)
suggest that items comprising a count list are numbers.

[A]lthough these children can recite higher numbers (e.g., 5 or 10), and know
that these higher words contrast in meaning… they appear to lack meanings
for the rest of the words in their count list.

The NCR literature is replete with similar comments. However, such pro-
nouncements only make sense if numbers are symbols: if what is etched on
credit cards, engraved on coins, or recited are themselves numbers.
Term formalism is well-known within philosophy primarily because of what

Weir (2022) colorfully describes as “a demolition job by a great philosopher,
Gotlob Frege.” Indeed, Frege’s (1903) polemic against term formalism has long
been widely regarded as decisive. Here, we list a couple well-known problems,
also due to Frege, as articulated by Linnebo (2017):30

30 See also Shapiro (2000).
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• Identity: According to term formalism, an arithmetic identity statement such
as ‘3 + 2 = 5’ (or ‘Three plus two equals five’) is true just in case ‘3 + 2’
is coreferential with ‘5’. However, assuming both terms refer to themselves,
this is false. Thus, term formalism is committed to an empirically unsup-
ported ambiguity in the equative copula: it expresses the familiar notion
of identity when flanked by nonmathematical terms, e.g. ‘Superman’ and
‘Clark Kent’, and an altogether different notion when featuringmathematical
terms.

• Infinity: Initially, the philosophical motivation for adopting term formalism
is metaphysical and epistemological. Specifically, how can we know that 3
+ 2 = 5 if numbers are abstract [Benacerraf (1973)]? Thus, it is tempting to
identify numbers with concretia, in the form of linguistic tokens, e.g. partic-
ular inscriptions of, e.g. ‘3 + 2’ and ‘5’. But given the truth of universally
quantified statements like ‘Every natural number has a successor’, infinitely
many numbers are required. Yet we have no good reason to suppose that infi-
nitely many concrete linguistic tokens exist. Indeed, as Frege (1884, §123)
quips: “We have neither an infinite blackboard, nor infinitely much chalk at
our disposal.” Hence, the only plausible form of term formalism is one which
posits infinitely many expression types, and types are presumably abstract.
Hence, the purported epistemic benefit of adopting term formalism – direct
perceptual access to mathematical objects – is lost.

Again, such considerations render term formalism rather implausible.

4.2.3 The Frege–Russell Characterization

A third metaphysical thesis, which we encountered in Section 1.1 and again
in Section 3.5, is known as the Frege–Russell characterization, because of
its association with Frege (1884) and Russell (1919). According to it, natural
numbers are collections of equinumerous, or bijective, sets. For example, the
number two is just the collection of all two member sets. Again, as Rips et al.
(2008) point out, this appears to the be the predominant view among NCRs. For
example, as we saw in Section 3.5.2, Carey (2009a, p. 136) adopts this view
when identifying numbers with “cardinal values.” Similarly, vanMarle (2018,
p. 131) writes: “As described by Frege (Frege, 1884/1980), formally, numbers
are a special kind of sets.”
Within NCR, the Frege–Russell characterization is often adopted as a kind

of metasemantic thesis. Specifically, NCRs often claim that count words or
concepts denote collections of sets, and thus natural numbers. For example,
speaking of the denotation of ‘two’, vanMarle (2018, p. 131) writes:
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[I]n order to learn what ‘two’ means, the child must abstract away from the
immediate perceptual features of the items in a set (color, size, shape, kind,
etc.) in order to discover that ‘two’ refers to any set made up of exactly two
individuals.

Expanding on this, Bloom and Wynn (1997, p. 512) write.

The word two in the phrase two black cats does not describe any individual
in the external world, nor does it refer to a property that any individual in
the world might possess. In this regard, it differs from the noun cats, which
is understood as describing cats, or the adjective black, which is understood
as describing a property that each of the individual cats might have. Rather
two is a predicate that applies to the set of cats. More generally, as Frege
(1893/1980) has argued, numbers are predicates of sets of individuals.

The reference here is to Frege’s (1884, §46) well-known contention that “state-
ments of number,” such as (18), are not really about objects, e.g. Elmos, but
rather Fregean concepts, such as being two in number.

(18) Those are two Elmos.

Quoting Frege (1884, §46) directly:

It should throw some light on the matter to consider number in the context
of a judgment which brings out its basic use. While looking at one and the
same external phenomenon, I can say with equal truth both “It is a copse”
and “It is five trees,” or both “Here are four companies” and “Here are 500
men”... If I say “The King’s carriage is drawn by four horses,” then I assign
the number four to the concept “horse that draws the King’s carriage.”

Speaking in Fregean terms, Frege’s claim is that to assert (18) is to assert that
a certain first-level concept – ‘is an Elmo’ — falls under a certain second-level
concept— ‘is two (in number)’. Given the Frege–Russell characterization, this
second-level concept just is the number two.
Inmore contemporary semantic parlance, second-level concepts are general-

ized quantifiers (Section 3.4.2): second-order predicates which take first-order
predicates as arguments and return a truth-value. Prototypical examples include
the underlined expressions in (19).

(19) {Every person/Nothing/Some number} is interesting.

Within Generalized Quantifier Theory [Barwise and Cooper (1981)], these
take the predicate ‘is interesting’ as argument, and return True just in case the
set of interesting things is a superset of the people, or is disjoint with everything,
or overlaps with the numbers, respectively. In the previous quote, Bloom and
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Wynn suggest that ‘two’ in ‘two black cats’ belongs to this same category: it is
a second-order predicate true of the first-order predicate ‘is a cat’. Furthermore,
and crucially, it denotes a number.
As we saw in Section 4.1, as a metaphysical thesis, the Frege–Russell char-

acterization is only one of several formal characterizations of the naturals. Our
primary concern here is with the implications of this thesis for the issue of what
number words denote. If the Frege–Russell characterization were correct, then
such entities should presumably be the referents of number words used refer-
entially – i.e. numerals. But contrary to what many NCRs suppose, there are
good reasons to doubt that such uses of number words denote these entities.
The first objection targets the semantic function of number words. Num-

ber words have nonreferential uses, as witnessed by ‘two’ in (18), as well as
referential uses, as witnessed by ‘two’ in (20).

(20) Two is an even number.

Within contemporary semantic theory, these different occurrences have differ-
ent semantic types [Snyder (2021b)]. Moreover, what an expression denotes is
determined by its semantic type, so that if different occurrences of the same
expression have different semantic types, then they must also have different
denotations. It follows that the different occurrences of ‘two’ in (18) and (20)
cannot be co-denoting. In particular, if ‘two’ in (18) denotes a collection of
sets, then, contrary to fact, ‘two’ in (20) would not refer to a number – not, at
any rate, if that number just is that collection of sets.
In more detail, we can formulate the problem based on a principle which is

widely assumed within linguistic semantics, namely:

Denotation-to-Type: For any two occurrences o1 and o2 of an expression α,
o1 and o2 have the same denotation only if o1 and o2 have the same semantic
type.

This reflects the usual explanation of compositionality – the semantic func-
tion of an expression is determined by its semantic type, and semantic types
combine so as to ensure that the denotation of the whole is a function of the
denotations of the parts. To illustrate, consider (21).

(21) a. The Elmos on the table are red (in hue).

b. Those are red Elmos (on the table).

c. Red is a primary color.
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On standard accounts, the different occurrences of ‘red’ here have different
semantic types, and thus different denotations [McNally et al. (2011)]. Specif-
ically, in (21a), ‘red’ has the type of a predicate, denoting red things; in (21b),
‘red’ has the type of a modifier, denoting subsets of red things, in this case
Elmos on the table; and in (21c), ‘red’ has the type of a name, referring to the
color red, as an entity.
Of course, as we’ve seen, number words exhibit a similar pattern of uses

[Snyder et al. (2022)]. Specifically, while ‘two’ in (20) has the type of a name,
referring to a number, as an entity, ‘two’ in (1a) has the type of a predicate,
denoting pluralities of two things, and ‘two’ in (18) has the type of a modifier,
denoting pluralities which are both two in number and, in this case, Elmos on
the table.

(1a) The Elmos on the table are two in number.

Now, here’s the argument. The different occurrences of ‘two’ above have differ-
ent semantic types. Specifically, whereas ‘two’ in (20) has the type of a name,
‘two’ in (18) has the type of a modifier, which according to Bloom and Wynn
is that of a generalized quantifier. Thus, by Denotation-to-Type, these differ-
ent occurrences cannot be co-denoting, contrary to what would be required if
numbers were collections of equinumerous sets.
A second problem targets what we call

The Identity Thesis: Natural numbers are cardinalities.

As mentioned, the Frege–Russell characterization is a cardinal characteri-
zation of the naturals. The present problem poses a challenge for all such
characterizations: the Identity Thesis generates numerous false predictions.
To see why, consider Frege’s (1884) highly influential analysis, whereby all

expressions underlined in (22a-c) are coreferential singular terms, referring to
the same number.

(22) a. Two is an even number.

b. The number two is even.

c. The number of Elmos (on the table) is two.

Yet despite its considerable influence, there is ample evidence that as a proposal
about the semantics of natural language expressions, Frege’s identification of
the natural numbers with finite cardinalities is mistaken. Specifically, the evi-
dence suggests that natural languages distinguish the sorts of things referenced
by singular terms like those in (22a,b) – numbers – from those apparently
referenced by terms like those in (22c) – cardinalities.
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Specifically, following Moltmann (2013), let’s call phrases of the form ‘the
number of Elmos’ the number of-terms, and those like ‘the number two’
explicit number-referring terms. A wealth of semantic contrasts, due mostly
to Moltmann, reveal that these are not plausibly coreferential. One kind of data
concerns predicates like ‘count’, ‘compare’, and ‘surprise’. As (23a-d) sug-
gest, even if Mary happened to count, compare, or be surprised by two Elmos,
it does not follow that she counted, compared, or was surprised by an abstract
arithmetic object.

(23) a. Mary counted the number {of Elmos/??two}.
b. Mary compared the number {of Elmos/??two} to the number of

men.
c. Mary was surprised by the number {of Elmos/??two}.
d. The bridge collapsed because of the number {of cars/??200}.

Yet this is not to be expected if ‘the number of Elmos’ and ‘the number two’
both refer to the number two. We see parallel contrasts in (24a,b).

(24) a. The number of Elmos on the table is {two/??the number two}.
b. The number Mary is writing about is {two/the number two}.

On Frege’s analysis, (24a,b) are both identity statements, equating the refer-
ents of coreferential singular terms. But since we generally expect coreferential
expressions to be acceptably substitutable within identity statements, it is dif-
ficult to see how there could be a difference in acceptability in (24a) without
there being an analogous difference in (24b). Worse, we see a similar contrast
with overt questions [Snyder (2017)].

(25) a. How many Elmos are on the table? {Two/??The number two}.
b. Which number is Mary writing about? {Two/The number two}.

Cardinalities, recall, characteristically answer ‘howmany’-questions. Thus, the
fact that ‘the number two’ is not acceptable in (25a) suggests that it cannot refer
to a cardinality.31

Based on these and similar contrasts, Moltmann (2013) and Snyder (2017)
both conclude that natural language draws an ontological distinction between
numbers and cardinalities. For our purposes, however, the crucial point is
that the Identity Thesis, when combined with other independently plausible

31 As a reviewer notes, ‘the cardinality two’ is also unacceptable in response to (25a). However,
this is plausibly for independent reasons. Unlike with ‘number’, we cannot use ‘cardinality’
as a monadic predicate applicable to numbers: ‘Two is a (prime) {number/??cardinality}’.
Thus, we cannot shift ‘cardinality’ to the semantic type of a modifier: ‘the (prime) {num-
ber/??cardinality} two’. See Snyder (2017, 2021b).
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Figure 5 A mereology-based semantics for nouns.

assumptions, implies numerous false predictions. Thus, we have excellent
reason for rejecting it.
So far we have argued on semantic grounds that the Frege–Russell charac-

terization is not plausible as an account of what natural numbers are. Still, it
might be thought that only amodest refinement of what NCR is about is needed.
Specifically, since NCR is principally concerned with our abilities to determine
and distinguish cardinalities, one might plausibly suggest that cardinalities, not
natural numbers, are the primary denotata of early numerical cognition. Thus,
one might propose the Frege–Russell characterization as an adequate account
of those entities. However, we conclude this section by sketching reasons for
doubting even this position. Specifically, there are reasons to doubt that the
denotations of number words and number concepts should be characterized
set-theoretically, at all.
Before considering our concerns regarding the aforementioned position, a

terminological observation is in order. Within NCR, ‘set’ is used in two impor-
tantly different senses. First, there’s an informal sense, roughly synonymous
with ‘collection’, ‘plurality’, or ‘group’, often used when discussing various
cognitive systems, such as the ANS or the SNS, which are said to track or rep-
resents “sets” in this sense. However, NCRs also often use the mathematical
sense of ‘set’, applicable to entities described by set theory. As emphasized in
Section 3, the latter is often adopted when characterizing NUMBER and vari-
ous concepts purportedly required to possess it, such as EQUINUMEROSITY
or SUCCESSOR. Moreover, it is this latter mathematical sense of ‘set’ that it
is used in the Frege–Russell characterization of natural number.
In light of this potential equivocation, it bears emphasizing that while NCRs

often suppose that representing cardinality requires possessing mathematical
representations, such as SET, ELEMENT, and so on, this is not the only viable
option. In fact, cardinality is just as readily represented within mereological
frameworks, such as that Link (1983), illustrated in Figure 5.
Indeed, most extant analyses of number expressions assume precisely such

a framework [Snyder (2021b)]. Hence, it is entirely possible that understand-
ing the meanings of such expressions depends only on the possession of
mereological representations – e.g. ATOM, SUM, and PARTHOOD.32

32 See Yi (2018) for yet another alternative, based on plural logic.
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A second well-known problem concerns perceptual access. The following
thesis appears widely assumed within NCR:

Cardinality Perceivability: Some cardinalities are perceivable.

The likely assumption is that without Cardinality Perceivability, it would be
hard to explain how we are can perceptually determine how many things are
in a collection, or that one collection is larger than another. However, as Yi
(2018) observes, combining this thesis with a set-theoretic characterization of
cardinalities would appear to require also endorsing

Set Perceivability: Some sets are perceivable.

Indeed, some NCRs appear to explicitly endorse such a thesis. For example,
vanMarle (2018, p. 138) writes: “[Children] are assumed to be literally building
their understanding of number through repeated experiences seeing the creation
of sets and instances of counting.” Yet seeing sets clearly presupposes Set Per-
ceivability. For our purposes, the important observation is that since abstract
objects cannot be objects of perception, presumably, Set Perceivability entails
an additional, highly controversial claim:

Impurity: Impure sets whose members are concrete are themselves concrete.33

Despite being adopted by some mathematical empiricists,34 this thesis is also
typically rejected by those who suppose, quite generally, that sets are abstract
[Yi (2018)]. In contrast, given traditional assumptions, adopting a mereo-
logical analysis invites no such controversy. Specifically, mereological sums
of concretia are traditionally assumed to be concrete. Indeed, the avoidance
of abstracta was among the original motivations for developing mereology
[Goodman and Quine (1947)].

4.3 Conceptual Pluralism
In Section 4.2, we noted that number words have different kinds of uses. Here
we argue from this observation to the conclusion that number concepts are sub-
ject to two different sorts of pluralism: what we call ‘synchronic pluralism’ and
‘diachronic pluralism’. Before doing so, however, we draw out some important
implications concerning the semantics of number words.

33 A set is “impure” if it contains urelements, i.e. members which are not sets.
34 See, e.g. Kim (1981) and Maddy (1990).
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We have already seen that number words have different kinds of uses, and
we will see next that they have many more. For example, they can function as
names referring to numbers (as entities), and they can function as predicates
predicating cardinality properties. Yet ‘two’ is not lexically ambiguous in the
way that, e.g. ‘bank’ is. That is, whereas different uses of ‘bank’ express dif-
ferent, completely unrelated meanings (one applicable to financial institutions,
another to river banks), on standard accounts within linguistic semantics, num-
ber words are polysemous, having a wide variety of different, though related,
meanings [Snyder (2021b)]. Thus, we have a kind of pluralism with respect to
the meanings of number words: there are multiple, related meanings expressed
by different occurrences of the same word. However, we maintain that this also
supports a similar kind of pluralism with respect to number concepts.

4.3.1 Synchronic Pluralism

The first kind of pluralism we defend concerns number concepts as possessed
by adults having linguistic competence with number words:

Synchronic Pluralism: Quotidian adult numerical thought is such that for each
number word in a natural language, there are multiple corresponding number
concepts.

As we see it, this is a consequence of theses that are either argued for above, or
else widely assumed within NCR. The first is

Polysemy: Different occurrences of the same number word in different syntac-
tic environments express different, related meanings.

We have already seen that number words, such as ‘two’, take on different
semantic functions, and thus denotations, in different syntactic environments.
Furthermore, in some contexts, different occurrences of number words can
serve the same semantic function – referring – while plausibly denoting dif-
ferent sorts of things – numbers and cardinalities. However, this is merely
scratching the surface. Here’s an expanded, yet still nonexhaustive, list of how
‘two’ can be used in different contexts [Snyder (2021b)]:

(26) a. Mars’ moons are two (in number). (predicative)

b. Those are (Mars’) two moons. (attributive)

c. Mars has two moons. (quantificational)

d. Mars’ moons number two (in total). (verbal complement)

e. The number of Mars’ moons is two. (specificational)
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f. Two is an even number. (numeral)

g. The number two is even. (predicative numeral)

h. Michael Jordan is roughly two meters tall. (measurement)

i. Rafael Nadal is ranked number two in the world. (ordinal)

The labels here indicate how ‘two’ is being used in the accompanying example,
i.e. how it’s functioning semantically. For example, ‘two’ in (26a) is used pred-
icatively, since it functions as a predicate, similar to ‘large’ in (27a). Similarly,
‘two’ in (26b) is used attributively, since it functions as an attributive adjective,
similar to ‘large’ in (27b).

(27) a. Mars’ moons are large (in size).

b. Those are (Mars’) large moons.

Since an expression’s function is determined by its semantic type in a given
syntactic context [Partee (1986)], many of the occurrences of ‘two’ in (26) have
different semantic types. Moreover, since the meaning of an expression is also
a function of its semantic type, (26) is witness to the fact that ‘two’ is (radically)
polysemous [Snyder (2021b)].
In light of Polysemy, there is a clear route to Synchronic Pluralism. First, it is

widely assumed that understanding a natural language expression requires the
possession of a corresponding concept, having the same content (Section 2.2).
For example, understanding (26a), where ‘two’ is used to predicate a cardinality
property, requires possessing a concept having the same content, i.e. one rep-
resenting a cardinality property. However, on standard assumptions, concepts
are at least partially individuated by their contents. Thus, the concept required
to understand ‘two’ in (26a) is distinct from the one required to understand
‘two’ in, say, (26f), where ‘two’ is being used to refer. Indeed, the concepts
differ not just in their contents, but also their representational functions: one
functions predicatively, the other referentially.
Thus, rather than supposing that there is a single concept, TWO, correspond-

ing the word ‘two’, plausibly there are at least two concepts corresponding to
the word ‘two’:

TWOnum-ref: A concept referring to the number two, as an entity. Call concepts
of this sort numerical concepts.
TWOcard-pred: A concept predicating the property of being two in number of
collections. Call concepts of this sort cardinal concepts.
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Indeed, though we won’t argue for this here, we think that understanding the
various uses of ‘two’ in (26) plausibly requires the possession of even more
concepts, including, but not limited to:

TWOcard-ref: A concept referring to the cardinality property of being two in
number, as an entity.
TWOord: A concept specifying the ordinal position of an object among a
linearly ordered class of objects.

In any case, it would appear that the polysemy of number words, along
with standard representationalist commitments, jointly entail a commitment to
Synchronic Pluralism.

4.3.2 The Complex Transition Thesis

Much of developmental NCR focuses on number cognition up to the age of
around 31

2 or 4, when children become CP-Knowers. However, development
doesn’t end here, of course. In particular, NCRmust also explain the subsequent
development of arithmetic abilities, from approximately five to eight years,
when children are exposed to basic symbolic arithmetic, and learn to manipu-
late numerical symbols, such as Arabic numerals, to solve arithmetic problems
(Section 2.4).
One obvious question concerning this period of development is whether it

requires the acquisition of novel concepts, or instead whether those concepts
possessed through learning to count suffice. Roughly put, are the concepts CP-
knowers possess in virtue of understanding count words – e.g. ‘one’, ‘two’,
and ‘three’ – the same as those required to interpret symbolic numerals in basic
arithmetic equations – e.g. ‘1 + 2 = 3’?
One potential answer here is

Simple Transition: Early CP-knowers already possess those number concepts
required to understand symbolic numerals.

On such a view, learning symbolic arithmetic does not require the acquisition
of novel concepts. Instead, it involves enhancing the child’s abilities to deploy
the same concepts already possessed at 31

2–4 years of age.
To be clear, Simple Transition is “simple” in that it minimizes the stock

of concepts required to successfully do elementary arithmetic. Specifically,
because the concept required to understand, say, the count word ‘two’ is
the same as the one required to understand the symbolic numeral ‘2’, only
one collection of number-related concepts is needed to explain the transition
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from counting to elementary arithmetic. Below, we will entertain a compet-
ing hypothesis, which is “complex” in virtue of positing distinct collections
of number-related concepts – one for understanding count words, and one for
understanding symbolic numerals.
For now, suppose Simple Transition is correct, in which case understand-

ing symbolic numerals only requires possessing count concepts. But what are
these concepts, exactly? In light of the empirical evidence, the concepts most
plausibly attributed to early counters are those like TWOcard-pred, which involve
ascribing cardinality properties to collections. To see why, consider the sorts of
achievements typically taken as evidence of concept possession. These involve
cardinality – e.g. successfully answering ‘how many’-questions, or handing
over a specific number of items. Thus, such studies do not provide evidence for
the possession of TWOnum-ref – a concept referring to the number two. Rather,
they more plausibly provide evidence for TWOcard-pred – a concept predicating
a cardinality property.
Thus, under present assumptions, learning basic arithmetic will only require

concepts used for representing cardinality. Indeed, quoting Butterworth (2005,
p. 3):

The development of arithmetic can be seen in terms of an increasingly
sophisticated understanding of [cardinality] and its implications, and in
increasing skill in manipulating [cardinalities].

The suggestion appears to be that the child associates count concepts – those
already possessed in virtue of understanding count words – with their symbolic
numeral counterparts while associating similar kinds of cardinal meanings with
basic arithmetic operations and relations, such as ‘+’ and ‘=’ (Section 2.4).
Mastering basic arithmetic is thus not a matter of acquiring new concepts, but
rather learning increasingly sophisticated ways of manipulating what the child
is already capable of representing – cardinalities.
Simple Transition has much to recommend it. Specifically, in the absence

of countervailing evidence, it provides a simple and elegant account of the
transition between counting and more sophisticated numerical competences.
However, we maintain that there are good reasons to reject it. As Frege (1884)
observed long ago, symbolic numerals, as they occur in arithmetic equations
like (28), represent numbers as objects.

(28) 3 + 2 = 5

Furthermore, these same equations can be equivalently paraphrased in English
using nonsymbolic numerals. For example:

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
05

23
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009052337


80 Philosophy of Mathematics

(29) Three plus two is five.

Yet the thought expressed by (29) most plausibly requires possession of
concepts which refer to numbers as objects, e.g. TWOnum−re f , not con-
cepts predicating cardinality properties to collections (Section 4.2.3). Rather,
understanding arithmetic equations most plausibly requires possessing number
concepts beyond those plausibly attributed to early CP-Knowers.
Thus, we have reason to instead endorse

Complex Transition: Understanding symbolic numerals requires number con-
cepts not already possessed by early CP-Knowers.

In view of this, developmental NCRmust confront a challenge that, heretofore,
has not been widely appreciated. To explain the development of number cogni-
tion, it will be necessary to explain how children acquire concepts that refer to
numbers – e.g. TWOnum−re f – as well as those ascribing cardinality properties
to collections – e.g. TWOcard−pred .

4.3.3 Diachronic Pluralism

Our view is that taken altogether, the best available empirical evidence supports

Diachronic Pluralism: At different stages in development, human beings pos-
sess different number concepts required to understand the same number
word.

In fact, we distinguish, and accept, two forms of Diachronic Pluralism. The
first is

Weak Diachronic Pluralism: At different developmental stages, humans pos-
sess different concepts required to understand different uses of the same
number word.

This follows from claims argued for above. Specifically, CP-Knowers plausibly
possess concepts that ascribe cardinalities, but lack concepts that refer to natural
numbers. Yet at some subsequent developmental stage, CP-knowers come to
possess both kinds of concepts. For example, quotidian adult thought requires
concepts for understanding both predicative and referential uses of ‘two’.
The second, perhaps more radical form of Diachronic Pluralism we

accept is
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Strong Diachronic Pluralism: At different developmental stages, humans pos-
sess different concepts required to understand the same use of the same
number word.

Specifically, we accept a form of Strong Diachronic Pluralism on which
understanding different utterances of (1a), at different stages of development,
involves different kinds of cardinal concepts.

(1a) The Elmos on the table are two in number.

Obviously, since ‘two’ serves the same (predicative) semantic function in dif-
ferent utterances of (1a), we are committed to there being distinct numerical
concepts deployed in understanding this same use of ‘two’, i.e. different token
utterances of the same utterance type.
Why accept this version of Strong Diachronic Pluralism? In our view, that’s

because it represents the best solution to an important, albeit largely unap-
preciated, puzzle resulting from attempting to align our best developmental
psychology with our best semantics for number expressions. Specifically, it
results from two independently plausible, but jointly inconsistent, theses. The
first is supported by research in developmental psychology:

Developmental Priority: CP-knowers possess cardinal concepts prior to
numerical concepts.

As we’ve argued, whereas early CP-knowers possess cardinal concepts, we
have reason to suppose that they don’t yet possess numerical concepts. After all,
while they are able to understand how number words are used to count, there’s
very little reason to suppose that they also understand how number words are
used to refer to numbers, as objects. Certainly, no such ability appears manifest
in their behavior.
The second thesis results from combining independently plausible assump-

tions about word comprehension with what is, in our view at least, the most
plausible available semantics for number words:

Semantic Priority: One cannot understand cardinal meanings of number words
without also possessing corresponding numerical concepts.

This follows from three assumptions, each of which enjoys a great deal of initial
plausibility. The first is

Meaning Comprehension: Understanding the meaning of a word in a given
context requires possessing a concept having the same content as expressed
by that word in that context.
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To illustrate, according to Meaning Comprehension, understanding (30a)
requires possessing a concept DOG, which has the same content as expressed
by ‘dog’. Similarly, understanding (30b) presumably first requires resolving
an ambiguity in ‘dish’ – is it intended to denote pottery or food? – and sec-
ondly invoking a concept having the same content as the meaning most likely
intended in the relevant context.

(30) a. Rover is a dog.

b. Mary created a new dish.

Meaning Comprehension appears to be widely assumed within Mainstream
developmental psychology. Indeed, given representationalism, it seemingly
provides a natural, if not compulsory, explanation for how we can bear the
attitude of understanding towards word meanings.
The second assumption required is

Polymorphic Comprehension: Understanding any meaning of a polymorphic
expression requires understanding its lexical meaning.

According to our best extant analyses, number words are polysemous in vir-
tue of being polymorphic, taking on a wide range of different semantic types
in different syntactic environments, thanks to a semantic phenomenon known
as type-shifting [Snyder (2021b)]. In general, the various meanings a pol-
ymorphic expression can take on are all systematically related, in virtue of
being either witness to, or else generated from, its lexical meaning, via type-
shifting [Partee (1986)]. For example, the meanings of ‘two’ noted in (26) are
all systematically related in this way, thus explaining its polysemy. So, on the
seemingly plausible assumption that one comes to represent these meanings
via type-shifting, it stands to reason that one understands anymeaning of ‘two’
only if one understands its lexical meaning specifically.
The final assumption required is

Substantivalism: The lexical meaning of a number word is that of a numeral,
referring to a number.

Although there are different kinds of polymorphic analyses of number words
available, in our view the most empirically plausible is what Snyder (2021b);
Snyder et al. (2022) call substantivalism, according to which the lexical
meaning of ‘two’ is that of the numeral in (26f).

(26f) Two is an even number.
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Together, Polymorphic Comprehension and Substantivalism entail that under-
standing any meaning of ‘two’, including cardinal meanings like the one
expressed in (26c), requires understanding the meaning of a numeral.

(26c) Mars has two moons.

Thus, given Meaning Comprehension, it follows that one cannot understand
‘two’ in (26c) without also possessing a concept having the same content as
expressed by ‘two’ in (26f). In other words, understanding cardinal meanings
requires possessing a corresponding numerical concept.
Jointly, Developmental Priority and Semantic Priority generate a puzzle:

The Developmental Puzzle: How can children understand cardinal meanings
of number words, if such understanding requires possessing numerical con-
cepts, and yet children only possess numerical concepts after possessing
cardinal concepts?

In future work, we argue that Strong Diachronic Pluralism provides the best
available solution. Roughly put, this involves distinguishing two kinds of count
concepts CP-knowers can possess:

Proto-Cardinal Concepts: TWOproto−card , applicable to collections in one-
to-one correspondence with sequences of natural language count words, such
as ⟨‘one’, ‘two’⟩.
Mature Cardinal Concepts: TWOmature−card , applicable to collections in
one-to-one correspondence with the sequence of natural numbers ⟨1, 2⟩.

We argue that early CP-knowers possess proto-cardinal concepts, and only later
come to possess mature cardinal concepts, once they possess concepts repre-
senting numbers as objects, such as TWOnum−re f . If so, then the problem with
the Developmental Puzzle is Semantic Priority. Specifically, it equivocates:
while it’s true that possessing mature cardinal concepts requires possessing
numerical concepts, possessing proto-cardinal concepts does not. Nevertheless,
possessing either kind of cardinal concept suffices for understanding cardinal
uses of number words. Or so we maintain.

4.4 Conclusion
Throughout this Element, we have sought to sketch ways in which fields as
diverse as developmental psychology, the philosophy of mathematics, and
linguistic semantics might be mutually informative regarding issues about
number cognition. We have focused here on three specific points of contact:
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the relationship between developmental psychology and foundational theo-
ries of arithmetic, the metaphysics of number, and issues regarding conceptual
monism and pluralism. Additionally, we suggested further connections in Sec-
tions 1.1 and 1.2. We hope that you find these issues as interesting as we do,
and that our discussion sparks further interdisciplinary inquiry.
But we are only scratching the surface. Taking seriously the mutual concerns

and resources of psychology, philosophy, and linguistics – and endeavoring
to bring them into alignment – will likely generate a host of further foci for
research. To illustrate, we conclude by posing some further questions arising
from the foregoing discussion of Strong Diachronic Pluralism. For heuristic
purposes, we divide them into three kinds.
The first falls squarely within the remit of developmental psychology. To

begin, note that if Strong Diachronic Pluralism is correct, then Complex Tran-
sition follows, since proto-cardinal concepts and mature cardinal concepts are
different in kind. Yet this raises a host of issues about which we currently know
almost nothing. For instance, if CP-knowers acquire proto-cardinal concepts
prior to mature cardinal concepts, how is the transition from the possession of
one to the other effected? Specifically, does the acquisition of mature cardinal
concepts depend in some important way upon the prior possession of proto-
cardinal concepts? If so, then bywhatmeans does the child succeed in acquiring
mature cardinal concepts from this prior state, given that, by hypothesis, the
possession of mature cardinal concepts requires possessing numerical con-
cepts? It would seem that, somehow, proto-cardinal concepts must not merely
furnish resources for the acquisition of mature cardinal concepts, but numerical
concepts as well. But how? Does it, for example, depend on an enhanced under-
standing of counting, or does it proceed via some other route? Does it involve a
conceptual discontinuity of some sort, or does it require only those conceptual
resources previously available to the child? Finally, is the transition rapid and
effortless, or is it laborious and hard won in the way acquiring proto-cardinal
concepts would appear to be? We simply don’t know.
A second family of questions, though relevant to developmental psychology,

fall more clearly within the remit of psycholinguistics and, perhaps, the philoso-
phies of mind and language. Broadly speaking, they concern the conceptual
requirements on word comprehension. Above, we motivated three assump-
tions jointly implying that understanding cardinal meanings of number words
requires possessing numerical concepts. However, in light of those assump-
tions, Strong Diachronic Pluralism may appear to have puzzling implications.
For example, if proto-cardinal and mature cardinal concepts have different
contents, then does this imply, perhaps implausibly, a previously unrecog-
nized ambiguity in number words? For example, is ‘two’ ambiguous between
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a proto-cardinal meaning and a mature cardinal meaning? If so, then what dif-
ferentiates those meanings, and what independent empirical support, if any, is
there for the existence of that ambiguity? Furthermore, if understanding a num-
ber word requires possessing a concept having the same content as its lexical
meaning, and yet only later CP-knowers possess such a concept, then do early
CP-knowers fail to understand cardinal meanings of number words, despite
their success on various cardinality-related tasks (Section 2.4)? If not, then
how is such understanding achievable, given that early CP-knowers cannot yet
represent numbers as objects? Again, we think these questions suggest fertile
ground for future inquiry.
A final sort of question concerns the metaphysics of number. In Section 4.2

we criticized a range of metaphysical theses found within theMainstream: term
formalism, cultural constructionism, and the Frege–Russell characterization.
However, this should not foreclose the possibility that NCRmay fruitfully con-
tribute to ongoing metaphysical debates. Specifically, since NCR is centrally
concerned with the nature and content of our actual number concepts, it appears
well-suited to contributing to a descriptivemetaphysics of number – an account
of what numbers would be like if they were accurately represented by the con-
ceptual scheme we actually have (Section 1.2). Though we are inclined to think
that NCR affords many potential resources for metaphysical speculation, as
witnessed, e.g. by extant versions of mathematical empiricism (Section 1.2),35

one avenue we are especially keen to investigate relates directly to Strong
Diachronic Pluralism. In particular, in future work we suggest that solving
the Developmental Puzzle most plausibly requires adopting a specific meta-
physics of the natural numbers: structuralism (Section 4.1). Thus, viewed as a
descriptive metaphysics of the naturals, structuralism turns out to be a kind of
by-product of an empirically plausible account of how later CP-knowers come
to represent numbers as objects, and thereby possess numerical concepts.

35 See also Maddy (2018) for related themes.
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