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QUASIGRAPHS 

NORMAN D. LANE, PETER SCHERK AND JEAN M. TURGEON 

1. Introduction. In the study of direct differential geometry, families of 
oriented arcs and curves have been employed extensively to define the dif
ferentiability of an arc at a point in various kinds of planes; cf. [2]. In [6], 
P. Scherk used lines in the projective plane; in [3] and [4], N. D. Lane and 
P. Scherk used circles in the conformai plane; conic-sections in the projective 
plane were employed in [5] and [7] by N. D. Lane and K. D. Singh; in [1], 
M. Gupta and N. D. Lane used the graphs of polynomials of degree at most n 
in the affine plane. For non-linear differentiability, the families of curves which 
were employed sometimes contained degenerate curves such as isolated points, 
pairs of lines, rays and even lines and rays counted with a multiplicity greater 
than one. These different investigations on direct differentiability, order and 
characteristic followed surprisingly similar patterns and led naturally to a 
search for a general theory of differentiability which would include, as partic
ular cases, the linear, circular, conic-sectional and polynomial theories. In the 
present paper, the authors introduce structures called quasigraphs which 
appear to form a suitable basis for such a general theory. 

A quasigraph in the unit disk G consists, roughly speaking, of a finite graph 
[K] in G, together with a decomposition of G\[JK"] into two distinct open sets 
K1 and K~l. By means of an isotopy of G, we then obtain a family 21 of quasi
graphs. If Q G [Ki] H [K2] for two distinct quasigraphs Kx and K2 in 21, we 
require Q G [K] for all K in 21. If Q G [XJ C\ [K2], then Kx and K2 can 
intersect at Q, or support at Q, or do neither, depending on the number 4, 3, 
or ^ 2 of non-void sets Ki±l C\ K2

±l C\ N, where N is a small neighbourhood 
of Q. 

Our first theorem asserts that if there are two distinct quasigraphs in 21 
which support (intersect) at Q, then any two quasigraphs in 21 will support 
(intersect) at Q. This property of the families 21 will be needed for the definition 
of differentiability and the introduction of the characteristic of a point of 
an arc. 

Suppose any two quasigraphs of 21 support (intersect) at Q. Let N be a small 
neighbourhood of Q. Consider h distinct quasigraphs Ki, . . . , Kh in 21. Then 
exactly h + 1 (exactly 2h) of the 2h sets K^1 P\ . . . C\ Kh

±l C\ N are non-
void; h ^ 2 (Theorem 2 (Theorem 3)). 

Our final Theorem 4 asserts that our construction of quasigraphs is equiva
lent to their definition by means of certain equivalence classes of sets of oriented 
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Jordan curves and arcs. It is these classes of sets which constitute the imme
diate generalization of the examples mentioned at the beginning of this 
introduction. 

We wish to thank Dr. Ralph Park for many valuable suggestions. 

2. Basic definitions. 

2.1. Our domain is the closed unit disk G in the Euclidean plane. A Jordan arc 
(curve) is the homeomorphic image in G of a closed interval (of the circle). 

2.1.1. We consider a finite set of points called vertices and of "edges" in G. 
An edge is either a Jordan curve, possibly with one point removed, or the rela
tive interior of a Jordan arc. Any two edges shall be disjoint and no edge shall 
meet bdG or contain a vertex. Every endpoint of an edge shall be a vertex. 

A loop is an edge whose closure contains at most one vertex. No vertex in 
int G shall be the endpoint of precisely two edges (loops counted twice). One 
or both of the sets of vertices and edges may be void. 

2.1.2. Given any such set of vertices and edges in G, we shall denote by [K] 
the set of all those points that either are vertices or lie on edges. 

Let K1 and K~l be any open sets which partition G\[K]. Thus every con
nected component of G\[i£] lies entirely in K1 or K~l. Then we call the ordered 
triple ([K], K1, K~l) a quasigraph and denote it by K. In particular, we call 

(0, G, 0) and (0, 0, G) 

the void quasigraphs. 
We have 

(2.1.1) G = [K] U KlKJ K-1 

and 
[K] = &K1 r\ ^K-K 

We say K decomposes G if both K1 and K~l are non-void. It decomposes G at 
a point Q if 

K1 H N ?* 0 and K~l C\ N ^ 0 

for every neighbourhood N of Q. 
If K = ([K], K\ K-1) is a quasigraph, so is L = ([K], K~\ Kl). We call K 

and L opposite quasigraphs. 
Obviously if K decomposes G dit one point of an edge E, then it will do so at 

every point of E. We then call E odd. Any non-odd edge is called even. Then K 
decomposes G at a vertex P if and only if P is the endpoint of at least one odd 
edge. A vertex is the endpoint of an even number of odd edges, counting odd 
loops twice. 
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2.2. The open sets K1 and K~l being disjoint, we have 

(2.2.1) K~«r\K~a = 0 

and 

(2.2.2) Wr\ int 1F^ = 0; a = ± 1 . 

By (2.2.1) and (2.1.1), 

& CK«KJ [K]. 

Finally, since [X] C ^ w F ^ , (2.1.1) implies 

G = Z Î U Z ^ , 
i.e. 

&K<* C i£"a. 
Hence 

tfK" = int &Ka C int X~«, 
i.e. 

G = KaVJ int K-«) a = ± 1 . 

2.3. Define 

(2.3.1) [ X ] = I i n F ^ = bd K1 r\ bd X- 1 

and 

(2.3.2) Ka = intX«; a = ± 1 . 

Then [X] is the union of the closures of the odd edges of K. In particular, 
[K] C [K]. Also we have 

(2.3.3) K<* C Ka C (#« U [X]). 

2.4. By (2.3.1) and (2.3.2), [K] is closed while K1 and i?"1 are open. Since 
every point of G belongs to one and only one of the three sets [K], K1, K~l, 
the triple K = ([K], K1, K~l) is a quasigraph and our notation is justified. 
We shall K the reduced quasigraph of K. 

K decomposes G at Q if and only if K does. 
Let K and L be reduced quasigraphs, [K] = [L]. Then i? and L are equal 

or opposite. 

2.5. Every edge of K is odd and is the union of vertices and odd edges of K. 
Conversely, every odd edge of K is contained in some edge of K. 

The set of vertices of K is a (possibly improper) subset of the set of vertices 
of K. More precisely, a vertex of K in int G is a vertex of K if and only if it is 
an endpoint of an even number greater than two of odd edges, odd loops being 
counted twice. 

Starting with K instead of K, we can construct K. Obviously, K = K. 

2.6. K-1 = ^K1 or, equivalently, K1 = ^K~l = [K] U K\ 
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Proof. By (2.2.2), K1 C\ K~l = 0. Hence S.'XC ^K}. 
Conversely, by (2JU) and (2.3.2), \K] U K1 C KK Taking the comple

ments, we obtain ^K1 C K~l. 

2.7. Let K be any quasigraph and S be any open set in G. If [K] P\ 5 ^ 0, then 
SHE" * 0,a = ± 1 . 

Proof. Let P £ [K] C\ S. Let E denote an odd edge of K through P or with 
the endpoint P. Since 5 is open, E P\ S contains an interior point Q of E. Thus 
Q £ Sr\ECSn [K]. 

Choose any small neighbourhood N C S of Q. Since E is odd, N C\ Ka ^ 0 
for a = dbl. This proves our assertion. 

2.8. Let K and L be reduced quasigraphs such that [K] and [L] are homeomor-
phic and [K] C [L]. Then [K] = [L]. 

Proof. Every vertex of K is one of L. Since K and L have the same finite 
number of vertices, every vertex of L is also one of K. Let Qi, . . . , Qn denote 
these vertices. Let/^[g*J be the number of edges of i£[of L] connecting 0t 

and Qjf i, j = 1, 2, . . . , n. Every edge of K connecting Qt and Qj is one of L. 
Hencefij ^ gtj for all i,j. Since K and L are homeomorphic, ^tjftj = ^ijgij-
Hence fij = gtj for all i,j. Thus every edge of L connecting Q{ and Qj is also 
an edge of K. A similar argument shows that K and L have the same loops 
without vertices. Thus [K] = [L]. 

Since K and L are reduced, they can have only the same or opposite orienta
tions. Thus K and L are either identical or opposite quasigraphs. 

3. The metric space of the quasigraphs. 

3.1. Let K be a quasigraph. Then [K], *£K1 and ^K~ l are compact sets. 
We provide the collection of all the non-void compact subsets of G with its 
Hausdorff metric <5 and define the distance d between two non-void quasi
graphs K and Kf by 

d(K, K') = h(^K\ ^K'i) + b{^K~\ VK'-i). 

Thus d(K, K') = 0 if and only if K = Kf. This defines a metric in the space 
of the non-void quasigraphs. 

We complete this metric by postulating that each of the two void quasi
graphs has the distance 4 from every other quasigraph. 

3.2. If K and K' are two non-void quasigraphs, then 

6([K],[K1) ûd(K,K'). 

Proof. Let p denote the ordinary Euclidean distance between two points of 
G. If P is any point of G and A is any non-empty compact subset of G, we write 

*(P,A) = m i n p ( P , (2). 
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Let P' 6 [K'l UP' e [K], then 

c(P', [K]) = 0 è d(K, K'). 

Let P' e K". Since [K] C ^K", we readily verify 

*{P', [K]) = a(P', VK«). 

The right hand term is not greater than 

B^K'-^K") è d(K,K'). 
Thus 

<T(P', [K]) ^ d(K, K') for all P' G [K']. 

Symmetrically, <r(P, [K'}) ^ d(K, K'), for all P Ç [K\. Hence 

Ô([K],[K']) èd(K,K'). 

3.3. We study a family of quasigraphs 

\KS\S e / = (o, i)} 

where i£5 depends continuously on 5. Note that ^?Ks
a must then also be con

tinuous in the sense of the ô-metric; a = dbl. By 3.2, so is [Ks]. 
The continuity of our family implies that either no Ks is void or every Ks 

is void. 

3.4. If P e K«, then P £ Kffor all t near s. 

Proof. Let P £ Ks
a. Since P g ^K", the distance <T(P, ^K?) from P to 

the compact set ^K? is positive. By 3.3, a(P, ^Kf) varies continuously with 
t and this distance remains positive for every t close to s. Hence P £ Kt

a for 
all such t. 

3.5. Le/ J be an open sub segment of I = (0, 1). If P (? U s ç j [ ^ J , ^e» //^re 
is an a = ± 1 5WCÂ JÀa/ P G i£/* /or a// s £ J. 

Proof. Let /« = {s G / | P G i£s
a} ; a = ± 1 . Then / i and /_ i are disjoint, 

J = J i U J_i and, by 3.4, J i and J_i are open. Since J is connected, one of J\ 
and J-i is void. 

3.5.1. COROLLARY. Let sx < s2. Then 

(3.5.1) (K,* Pi X,,-1) U ( ^ . r 1 U O C U [K,]. 
Sl<S<S2 

Proof. Let P e Ks« C\ Ks~<*. Suppose P g U , K , < , 2 [ ^ J -
 T h e n , by 3.5, 

P £ K« C ^Ks-« for all 5 G (slt s2). Hence P G ^Ks-« = KS2<* U [K8t], 
a contradiction. 

3.5.2. Obviously, (3.5.1) can be improved to 

(K»1 nK,-1) w (KS1-
Xr\K»1) c u [K,]\ n IK8]\ 

S1<S<S2 S£ I 

cf. 4.4. 
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4. Certain families of quasigraphs. 

4.1 . Let I = (0, 1). In the following, we s tudy families 21 = {Ks\s Ç 1} of 
quasigraphs with the following proper ty : there exists a quasigraph K and a 
continuous map F : G X / —> G such tha t , for each s, F\GXs is a homeo-
morphism satisfying F([K] X s) = [Ks] and F(Kl X s) = Ks

l (hence 
F(K~l X s) = Kg'1, and 21 is generated by an isotopy). T h u s F is an open 
mapping. 

If J = [s, t] is a closed subinterval of / , and R is an interior point of G, then 
[F\GXJ\~1(R) is readily seen to be a Jordan arc whcne endpoints lie in int 
(G X {s}) and int (G X {t}) and which does not meet the boundary of G X / 
elsewhere (cf. 4.7 ff). 

More conditions on 2Ï will be added in 4.4 and 6.3. 

4.1.1. F\GXs maps each edge of K onto an edge of Ks and each vertex of K 
onto one of Ks. Loops are mapped onto loops. T h e par i ty of an edge is pre
served (cf. 2.1). 

4.1.2. If E is an edge of K and Q (E G, pu t Es = F(Ey s), Qs = F(Q, s), etc. 

4.2. With 21, //ze reduced family 

» = {£,|* e i,K,e 21} 

satisfies 4 .1 . 

Proof. Let X be the reduced quasigraph of i£. Since FIGXS *S a homeomor-
phism, the definitions of 2.3 — 2.6 yield 

[Ks] = YJ^KT1  

= F(Kl X s) r\ F(K~l X s) 
= F(K^X sU^FiK^1 X s) 
= FiiK^nK1^) X s) 

= niR] x 5) 
and 

Ks
a = int Kj 

= int F(j£« X )̂ 
= int /?(X* X 5) 

= ^ ( i n t X ^ X s) 

= F(K« X s). 

4.3. i£ s 15 continuous in the topology of the metric 3.1. 

Proof. Let s £ I. Choose a closed subinterval J oi I which contains s. In the 
compact set ^ i £ a X / , F is uniformly cont inuous; a — ± 1 . Let e > 0. Then 
there exists an 77 > 0 such tha t , in part icular , 

(4.3.1) p ( F ( x , 5 i ) , F(* f 52)) < e/2 

for all (x, Si), (x, s2) in ^Ka X / such tha t \s\ — s2| < 77. 
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Let \si — s2\ < v and yi Ç ^fKsl
a. Thus yx = F(x, sx) for some x G ^K". 

P u t y2 = F(x, si). Thus ;y2 € # X 2
a and, by (4.3.1), P{yl} y2) < e/2. Thus ^ 

lies in the e/2-neighbourhood of ^K^. As this applies to any yx Ç ^K^, we 
obtain t ha t ^Ksl

a lies in the e/2-neighbourhood of ^K^. Symmetrically, 
^KS2

a lies in the e/2-neighbourhood of ^Ksl
a. Hence 

ô(^Ksl
a

} ^KS2
a) < e/2, a = dbl. 

Therefore d(Ksl, KS2) < e. In particular, d(2£s, Kt) < e for all / close to 5. 

4.3.1. By 4.2, Ks is also continuous in the topology of 3.1. 

4.3.2. Let E be an edge of K and let Es denote the corresponding edge of Ks. 
Then, F\ËXI being continuous, our argument shows tha t the closure Ës of Es 

depends continuously on 5. 

4.4. Let M = Dszi [Ks] and M = H ^ / t ^ J - We assume: 

4.4.1. H s ?* t, then Ks 9+ Kt and 

[Ks] H [Kt] = M. 

T h u s % is a simple arc in the space of the quasigraphs. 

4.4.2. Ei ther [Ks] = M for all s £ I or, iî s 9* t, then Ks 9* Kt and 

[£,] n [£j = M. 

T h e following example shows tha t 4.4.1 does not imply 4.4.2. Let 

Ei = {(x, 0 ) | - 1 < x < 0 } , £ 2 = { (* ,0) |0 < x < 1}, 

£3 = {(0, y) |0 < y < 1} ; V = (0, 0) . X shall have the edges £ x , E2 , £3 and 
vertices F , ( - 1 , 0 ) , (0, 1) and (1, 0 ) . K1 = {(x, y) £ G\x < 0 or y < 0} ; 
i ^ - 1 = {(x, y) Ç G|x > 0, y > 0}. Define i£ s by sliding V on the x-axis from 
(~~è> 0) to (^ ,0) , moving EztS parallel to itself, expanding E\tS and shrinking 

4.4.3. By 2.8, either [Ks] = M for all s £ I or [Ks] 9+ M for all s Ç J. 

4.5. Suppose a vertex of Ks lies in int G and is the endpoint of three edges or 
more. Then it lies in M. In particular, every vertex of Ks in int G belongs to M. 
Every vertex of Ks on bd G which is the endpoint of two edges or more is fixed. 
(In these s ta tements , loops are counted twice.) 

Proof. Let Q be a vertex of K which is in int G and the endpoint of a t least 
three edges of K. Suppose Qs d M. Choose a neighbourhood N of Qs so small 
t h a t (i) its closure does not meet M or any edge of Ks which has not Qs as an 
endpoint, (ii) this closure does not contain any other vertex of Ks, and (iii) 
^nfN meets every loop of Ks with the vertex Qs. 

Let / > s. Thus Qt 9^ Qs. Choose t so close to 5 t ha t Qu Ç N for all u with 
s < u^ t. Let to denote the smallest parameter value >s for which Qt0 lies on 
the circle Ct about Qs through Qt. 
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For each edge of Ks with the endpoint Qs, we consider the first point in which 
this edge meets Ct, (in the case of a loop, wre consider the two points with this 
proper ty closest to Qs). These points divide Ct into a finite number of open 
arcs. As QtQ g M, one of them, say the arc A u contains QH. Let Pl,t and P2,t 

denote the endpoints of A t and let Es
l,t and Es

2,t be the edges (or the loop) of 
Ks through Pl,t and P2,\ respectively. Since there are only finitely many 
edges ending in Qs, we may choose t such t ha t 

£,i .« = £ , i . ' = £ , i and Es
2<u = Es

2>1 = E2 

for infinitely many u > s and converging to s. 
If Es

l = Es
2, then this edge is a loop. 

T h e arc A t and the subarcs of Es
l and Es

2 with the endpoints Qs and Pl,t 

and P2tt respectively, const i tute the boundary of a region R C N. The arc 
{Qu\s < u < tQ} lies in Ct and connects Qs with Qt0 G bd R wi thout meeting 
Eg1 or Es

2\ hence it lies in R. 
Choose an edge £ s

3 with the endpoint Qs and distinct from E^ and Es
2. 

Choose Ps £ Es
z close to Qs. If u > s is sufficiently close to s, Eu

z will be close 
to Es

z. T h e point Pu Ç Eu
z will be close to Ps and hence outside R, while 

Qu G R. Hence the subarc of EJ with the endpoints Pu and Çw must meet bd R. 
As Ât has a positive distance from Es

d, we have £M
3 f~\ A t = $. Hence EJ 

would have to meet either Es
l or Es

2; a contradict ion. 
The proof of the last assertion follows similar lines. 

4.6. Let Es be an edge of Ks and Qs G ES\M. Then there exists a neighbourhood 
Nr of Qs and an interval [si, s2] containing s in its interior such that 

N'C U Et. 
Z € [ S 1 . S 2 ] 

Proof. Since M is compact , there is a neighbourhood Ns of Qs such tha t 
Ns r\ M = 0. T h u s each point Q' of Ns lies on not more than one [Kt]. In 
part icular , every Qf G Ns lies on not more than one Et. 

Since F is continuous, N = F~1(NS) is open in G X / . Let Es = /*X^» 5 ) -
Let Qs = F(<2, 5). T h u s (<2, 5) Ç TV = F~l(Ns). 

Let yl be a closed subarc of E with the endpoints P i and P 2 containing Q in 
its relative interior such tha t A X s ÇL N. Hence there are Si, s2 such t ha t 
si < 5 < s2 and S = 4̂ X |>i, 52] C iV. T h u s F ( 5 ) C ^V, and 

At = F(A Xt) CEtn Ns for *i ^ * g 52, 

As 5 is compact and F is a continuous bijection of S onto F(S), F\s : S —» P ( 5 ) 
is a homeomorphism. In part icular F( int 5 ) is a non-void open set containing 
Qs. Every point of this set lies on some Et; Si ^ / ^ s2. T h u s any neighbour
hood N' C F(int S) will satisfy our theorem. 

4.7. Let E be an edge of K. T h e preceding remarks enable us to s tudy the 
restriction of F to E X I. We first collect some preliminary observations. 
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4.7.1. If R £ Et for all t G i", then (F\GXJ)~
l{R) is a Jordan arc in E X J 

for every closed subinterval J of I (cf. 4.1). 

4.7.2. Let B be a connected component of M which contains a vertex Vs of 
Ks. Thus F is a vertex of K and every Vt is a vertex of Kt. As Vt G M for all 
/, F r moves continuously in B. In particular, Vt £ B for all / G / . 

(If F s G bd G, then F, G B C\ bd G C M C\ bd G and since each com
ponent of M Pi bd G is a point, we obtain V* = Vs for all t £ I.) 

4.7.3. Suppose the connected component B oi M contains no vertex of Ks. 
By 4.7.2, B contains no vertex of Kt for any t. Hence B will lie on some edge 
D{t) of Kt. For every edge E of K} the set of parameter values / such that 
D(t) = Etis open. Hence there is an edge E such that D(t) = Et for all t G / ; 
thus B C Et for all t G J. 

4.7.4. From 4.7.2 and 4.7.3, we obtain the following result. Let B be any con
nected component of M\ B C\ Ës 7̂  0. Then B C\ Ët ^ 0 for all t G / . 

4.8. Let E again denote an edge of K. Suppose Ë is defined by the homeo-
morphism T : I —> Ë. Then 

U Ê, = F(E X J) 

is given by the continuous function 

/(M) = F(r(x),0; x e /,* € /. 
Each restriction/|7x« is a homeomorphism of I onto £, . 

Let s G J; ES\M 9e 0. Being open in £ s , the set ES\M is the union of at 
most countably many disjoint open subarcs. Let A(s) be one of them. Thus 
A (s) has a parametric representation 

(4.8.1) A(s) = {/(M)|p(s) < X <p ' ( s )} f 

where 0 ^ p(s) < p'(s) ^ 1. The arc A (s) has the end points 

R(s)=f(p(s),s) and R'(s) =f(p'(s),s). 

They are either end points of Es; i.e. vertices, or interior points of Es, belonging 
to M (cf. 4.5). 

If R(s) & M, it is a vertex of Ks on bd G; if R(s) = Rs = F(R, s), then put 
R(t) = Rt for all / G / . Thus R(t) depends continuously on t. In this case, 
define p(t) = 0 for all /. Then 2?(*) = /(p(*), 0 for all / G / . 

Let R(s) and i?'(s) be in M. Let 13 and Bf denote the connected components 
of M containing R(s) and Rf (s) respectively. 

Let 

V{t) = / ( 0 , 0 and V'{t) = / ( ! , / ) 

be the end points of £*. 
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Suppose B * B'. By 4.7.4, 

S Pi £ , ^ 0 ^ B' r\ E, for all t € I. 
Define 

( p(t) = max {X € 7|f(X, /) € - B P i £ ( j , 
(4.8.2) <p'(0 = min {X € J|/(X, 0 G 5 ' H Ë,}, 

{R(t)=f(P(t),t), R'(t)=f(P'(t),t). 

We wish to show that R(t) depends continuously on t. Let /0 G / . 
(i) Let JR(^O) T6 V(t0). Let i?0 = /(Xo, *o) be an accumulation point of i?(/) 

as / tends to /0. As i?o G -S, we have 0 ^ X0 ^ p(^o). We may assume that 
B O £«o contains more than one point. Let Q be any interior point of this arc. 
As £ , depends continuously on t, we have Q G Ë , for all / sufficiently close to 
/o. Hence i?0 lies in the closed subarc of Ët0 bounded by Q and R(to). As this 
holds true for every choice of Q, we have R0 = R(to). 

(ii) Let R(t0) = V(t0). Define R0 as before. As 

we obtain again i?0 = R(t0). 
Now let 

^4(0 = { / ( M ) | P ( 0 < X < P ' ( 0 } 

denote the open subarc of Et bounded by R(t) and R'(/). If A (u) were to con
tain a point i?" of M for some w, then R" would lie on Ëu between R(u) and 
Rf (u). Thus R" would belong to a component B" of M distinct from B and B'. 
By 4.7.4, 5 " H Et ^ 0 for all / £ J. By the continuity of Ë,, the order in 
which Ë , meets B, B", B' remains fixed as t ranges through / . Choosing t = s 
yields a contradiction. Thus A(i) C\ M = 0 for all /. As the end points of A (t) 
lie in M, A (t) is a connected component of E\M. With Eu R(t), R'(t), A (t) 
depends continuously on t. 

These results remain valid if B = B'. In this case, Ës and thus all Et meet 
only the one component B of M. 

The case that R(s) G M but R(s') $ M is similarly dealt with. 

4.9. Let Ps G ES\M. Then there exists a continuous function X : / —> / sz^/z 

i>(0 =/(X(/ ) , / ) G £ i W 

/or all t G I and P (s) = Ps. 

Proof. Let ^4(s), defined by (4.8.1), be the connected component of ES\M 
which contains Ps. Then 

Ps = /(Xo, s) 

for some X0 G (p(s), p'CO). Let J be defined by 

Xo = (1 - É)P(S) + &>'(*). 
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Then 0 < £ < 1 and 

Ht) = (l - i)P(t) + &/(/), o < t < i, 

has the required properties. 

4.9.1. The set 

U A(u) 

contains no point of M. By 4.6, it is open. Each point of this set lies on exactly 
one of the arcs 

Q = [Pit) =f(\(t),t)\\(t) = (l - f)p(0 + &>'(/)}, 

0 < £ < 1. Thus this set is homeomorphic to I X / . 

4.9.2. Let 0 < s < * < 1. Then the set 

U A(u) 
s<u<t 

is again homeomorphic to / X / . 

4.10. (i) Let s < t. Let p(u) > 0 for s ^ u ^ t. Then 

(4.10.1) R{u) = R(s) for s Su S t. 

(ii) Let s < t. Assume (4.10.1). Let N be a neighbourhood of R(s) in G. Then 

(4.10.2) Nr\A(u)7±0 fors Su St-

Proof, (i) Suppose the set 

{u\s Su S t\R{u) ^ R(s)} 

is not void. Let Vo denote its infimum. As R(u) is continuous, we have 

R(vQ) = R(s) and s S v0 < t. 

There are parameter values V\ arbitrarily close to ô such that 

(4.10.3) Rfa) 9*R(vo). 

Let B denote the connected component of M which contains R(s). Since 
p(u) > 0 for' s S u S t, 4.7.4 and (4.8.2) imply that 

R(u) e Eur\B îors S u S t. 

Choose a closed neighbourhood TV of R(s) such that N Pi [Kvo] C EVQ. If u is 
close enough to */0, no edge ^ Eu of Ku can meet N. Thusi^(^o) G Eu. Choose 
Vi according to (4.10.3) and sufficiently close to v0. Then for vo S u S Vu both 
R(v0) and R(vi) lie on Eu. For every such u, if v increases from v0 to V\, R(v) 
moves continuously from R(v0) on Eu to R(v\). So the functions aQ(u) and 
ai(u) are well defined by 

R(vo) =/(o"o(w), w) and R(vi) = f(<ri(u),u) for v0 S u S Vi. 
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By (4.8.2) and (4.10.3), we have 

ci(i>o) < PM = fro(vo) a n d ^ofai) < p(vi) = «ri(»i). 

Since o-0 and ci are continuous and cro(w) 9e v\{u) for all w, this yields a con
tradiction. 

(ii) Let Dt denote the following subarc of CV 

(4.10.4) Dt = {f(\(u)}u)\s Sue t;\(u) = (1 - $)p(«) + ÉP'(W)}; 

(cf. 4.9.1). It suffices to show that D^ C N if J is sufficiently small. 
Suppose this assertion is false. Then there exists a sequence of positive 

numbers £ converging to zero and for each £ a parameter u, s ^ u ^ t, such 
that 

P(«) = / ( ( l - { ) p ( « ) + {p'(«),«) g iV. 

Let Wo be an accumulation point of the u's. Since p(v) and pf (v) are con
tinuous, the parameter values (1 — £)p(w) + fp'(w) have the accumulation 
point p(uo). Since/ is continuous, the points P(u) converge to 

/(p(«o), ^o) = -R(wo) G A7", 

a contradiction. 

5. Global decompositions. 

5.1. Let Ps 6 ES\M. Construct the arc 

(5.1.1) {P(u)\u e i} 

with P(s) = Ps and P{u) Ç EU\M for all u, according to 4.9. Let s < s', 
POO G £,«. rfte» 

(5.1.2) P(w) Ç i?5« /or a// w > 5, 

(5.1.3) P(w) € Ks~
a for all u < s. 

Proof. The arc {P(t)\t > s} does not meet [Ks]. Hence it lies entirely in Ks
a. 

Let A(s) denote the connected component of ES\M containing P(s). By 
4.9.1, the set 

(5.1.4) [J A(t) 

is homeomorphic to / X / , the homemorphism being given by the parameters t 
and £ of 4.9. In particular, A(s) C Es decomposes (5.1.4) into two subsets, 
one in Ks

a, the other in Ks~
a (cf. 2.7). 

5.2. Let Ps Ç Et\M. Construct the arc (5.1.1). Let t 7e s. Then Ps = 
P(s) e Kt

aif and only if P(t) £ Ks~
a. 

Proof. Suppose 5 < / and P(s) £ Kt
a. Choose u < s. Then by 3.5, 

P(u) e K8
a, and, by 5.1, P(t) ç £ p » . 
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5.3. If t and u lie on the same side of s in I = (0, 1), then 

(5.3.1) [Ks] P Kt« = [Ks] P Ku«, a = ± 1 . 

In particular, 

[Ks] f\K? = [Ks] r\Ku«, a = ± 1 (cf. 4.2). 

Proof. We may assume that 0 < / < W < ^ < 1 and [Ks] P Kt
a ^ 0. Let 

P e [Ks] P Kt<*. Then P g [Kt] and hence P ? I and P ? [i£J, for all 
u 9e s (cf. 4.4.1). We can now apply 3.5 with / = (0, s) and conclude that 
P £ Kt

a if and only if P £ i£M
a. Since P was chosen arbitrarily in [Ks] P i£,«, 

this proves (5.3.1). 

5.4. We note: 

5.4.i. [Ks] p #,« = [KS] P [Ks] p #,« 

= [£j p [xj P KU« 

= [KS] p xw« 

is independent of t; t £ (0, s) or t £ (s, 1). 

5.4.2. [ £ j p [ x j = [ £ j p [ x j p [Kt] 
= [KS] p M 

is independent of t; t 9e s (cf. 4.4.1). 

5.4.3. By 5.4.2 and 4.4.2, 

([KS] p [Kt])\[Kt] = ( [ £ j p [ f^]) \ ( [ i? j n [£,]) 

= [KS] P Af\jQf 
is independent of t; t 9e s. 

5.5. Let 0 < u < s < v < 1. Then by (5.3.1) 

(5.5.1) [#j = ([Ku] n KSI) w ([xj P * ,-*) w ([xj P [KS]) 
= ([Ku] p is:,1 P i^1) u ([xj P is:,-1 n x,-1) u M 
c (î ,1 P f̂ 1) u (x,-1

 P x,-1) u M. 

Afore generally, if 0 < t0 < h < . . . < th < 1, //̂ ?z 

[x<0] c (i^1 n ... n ;w) u (i^-1
 P ... P f^-1) w M. 

/w particular, 

(5.5.2) [£<0] C CS^1 Pi . . . H Kth') \J (Ktl~
1 ^ . . . n Kth-') U M. 

5.6. 1*^ 0<u<s<v<l. Then 

(5.6.1) [i?j c (Ru1 P ^r1) w (i?*-1 P z;) w it?. 
Proof. Let Ps G [i? J\Af. Assume at first that Ps 6 int G. Construct the arc 

(5.1.1). Suppose P(s) £ Ku
a. Applying consecutively 5.1, 5.2 and again 5.1, 
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we obtain P(v) € Ku
a, P(u) € Kv~

a, P(s) 6 Kv~
a. This yields (5.6.1) if 

Ps e int G. 
If P/ € bd G H [XS]\M, choose P s € int G H [KS]\M close to P s ' . Thus 

ps e KV-" r\ KU". 

As this applies to every such Ps, we obtain 

p; G K£^f\ K£_r\ [K.]\M 

c &,-« r\ KU- r\ [KS]\M 

= (KV-° \J [%,]) r\ (KU« \J [KU]) n [iU\M 
c KV- r\ KU\ 

5.6.1. From (5.6.1) and (3.5.1), we obtain 

U [Ks] = ( i ^ 1 C\ K-1) U (^M-1 H K,1) U JGT, for M < v. 
u<s<v 

5.7. From (5.5.2) and (5.6.1), we obtain the following results. 

5.7.1. If 0 < h < . . . < tn < 1, then 

(5.7.i) [Kti] c ( n £«/n n ^r1) u ( n i V 1 ^ n J^-1) u M; 

i = 2, . . . , h — 1. In the cases z = 1 and i = A, we interpret (5.7.1) by means 
of (5.5.2). Thus (5.7.1) remains valid for i = 1 and i = h if we define 

n i?,;
a = n £,/" = G. 

i = l j=h+l 

5.7.2. COROLLARY. If KO, KI, . . . , i£^ are distinct quasigraphs of 91, ^en //zere 
a w / a * = = t l ; i = l , . . . , A swc/̂  /Aa/ 

(5.7.2) [£0] C ( Q £ " ' ) U ( Q £«""') U JGT. 

5.7.3. If Ko, Ki, . . . , iÊft are distinct quasigraphs of 21 awd 

[Xo] n i^1 n ... n £*«* ̂  0, 
/ftew (5.7.2) holds. 

Proof. By 5.7.2, there exist ($1, . . . , /3h such that 

[Ko]c ( n £ *) u ( n ^ r * ) u ^ 
Thus any point P G [i?o]W lies either in nLi -K/* or in HÎ=i i£f ^ Let 
P 6 [£0] H Pi1=i^zai'. Suppose, for instance, that P G O L i ^ / * . Then 

pen (£r n £/•'). 
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In particular, Rt
ai C\ Rf* ̂  0; i = 1, . . . , h. Hence at = fit\ i = 1, . . . , h. 

5.7.4. Let 

[Ko] n n £"' ^ 0. 

Applying 2.7 to S = H *=ii?*aS we obtain 

n i?r ni?0
a 7* 0, « = ±i. 

5.8. / / 0 < ^ K M ^ < 1 , /Aew 

Kt«r\Ku-«cK°r\Kv-«t a = ±i. 
Proof. H w lies between w and 1, then by (5.5.1) 

Hence [Kw] has no point in Kt
a C\ Ku~

a. 
Let P £ Kt«r\ Ku~

a. Thus P g [#«,]. Since P G #tTa , 3.5 yields P G XuT* 
for all w with w g w < 1. Hence P £ Kt

a C\ Kv~
a. Thus we obtain 

A similar argument yields 

Kt«r\Kv-« cK«r\Kv-« 

and hence 

Kt"C\ Ku~« C # , a n Kr*. 

5.8.1. .Le£ ^ < u < t. Then 

Rs
l H KS C J?,1. 

Proof. By 5.6, no point of [Ru] is in X,1 H Kt
l and thus 

(5.8.1) i?,1 r\ Kt1 = (Ks1 r\ Rt
l r\ Ru

l) u {Rs
l r\ Rt

l r\ Ru-1). 
But, by 5.8, Rs

l C\ Ru~
l C Rs

l C\ Rr\ so that 

R,1 r\ Ru-1 n R? c Rsl c\ Rr1 n i?,1 = 0. 
Hence (5.8.1) becomes 

Rs
l r\ Rt1 = i?,1 n x,1 n Ru\ 

This proves our assertion. 

5.9. Let 0 < h < . . . < th < 1. Then at most 2h of the sets 

(5.9.1) nRt"\ <*!,...,«» = i , - i 

are non-void. 
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We may assume that [Kt] 5e M for one and therefore for every /. We wish 
to show that only the 2h sets 

(5.9.2) r\Kt°n nRt-
a, ; = 0,1, ...,/*, a = 1,-1 

1 i+1 

can be non-void (cf. 5.7.1). 
The cases h < 3 are trivial. Let h = 3. We have to show that 

(5.9.3) Kti
a r\ Kt2~« H Kt« = 0 for a = =±=1. 

Replacing in 5.8 5 and t by ti, u by h and v by /3, we obtain 

Rt«r^Kt2-«cKt«r\Ktz-«. 

This implies (5.9.3). 
Suppose h > 3. Let T be one of the sets (5.9.1) which does not belong to the 

sets (5.9.2). Then there are three indices Xi, X2, X3 such that 1 ^ Xi < X2 < 
X3 ^ h and axx = — a\2 = a\z. But then 

rct a MnL"%nL% 

1 2 3 

By our discussion of the case h = 3, T must be void. Hence only the 2h sets 
(5.9.2) may be non-void. 

6. Local decompositions. 

6.1. Two quasigraphs K\ and K% support [intersect] each other at Q if exactly 
one [none] of the four open sets 

K^1 r\ K2^ H N 

is void for every sufficiently small neighbourhood N of Q. Thus Q £ [Ki] O 
[K2] in either case and [K\] C\ N 9^ [K2] (^ N for every small neighbourhood 
TV of Q. 

Note that 

(6.1.1) Kf* r\ K2
a* n N 9* 0 ^ K"1 n K2

a* r\ N ̂  0. 

More generally, 

h h 

(6.1.2) n K;J n N ^ 0 <=> n £/"' n # ^ 0, A ̂  2; 
1 1 

cf. (2.3.3). 

6.2. Suppose Q £ [i£J P\ [K2] and K\ and K2 neither support nor intersect 
each other at Q. Then either 

(6.2.1) Kfr\N = 0, i.e. N C ^ r a 
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for some i Ç {1, 2}, a £ {1, — 1}, or 

(6.2.2) [Ki] r\N = [K2] r\ N 

for every small neighbourhood N of Q. 

In the first case, at least one of the quasigraphs does not decompose G at Q. 
In the second, K\ and K2 may both decompose G at Q, but they do so in the 
same way or in opposite ways. 

Proof. By our assumption, at least two of the four open sets 

K"i r\ K2
a* C\ N 

are void. Suppose 

Kf* r\ K£* r\ N = 0, 
Kx

yi n K?* r\N = 0. 

Then only two cases are essentially different: either 

(6.2.3) 7i = ft and 72 = - f t 

or 

(6.2.4) 71 = - f t and 72 = - f t . 

If (6.2.3) holds, we may assume that 

Kr1 n K21 r\ N = 0 and i^-1 n i^-1 n N = 0. 
Then 

tfr1 n iv c înt ([x2] niv) = 0 
and thus 

Kr1 C\N = 0 and ^ r ^ H iV = 0 
or 

N c ^ r 1 = Ki1. 

This yields (6.2.1); cf. 2.6. 
From now on we may assume that both Ki and K2 decompose G at Q. Then 

(6.2.4) holds and we may assume that, for some a £ {1, —1}, 

(6.2.5) Kf C\K2
l\J N = 0 

and 

(6.2.6) Kr° n K<rl r\ N = 0. 
By (6.2.5), 

Kf n Z 7 n iv = 0 and K^nK2
ir\N = 0 

and thus, by 2.6, 

Kfr\N CK2~
ir\N and i ^ 1 H TV C ^ r a n N. 
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Taking the relative closure on each side, we obtain 

(6.2.7) K?r\ N C^Pr\N 

and 

(6.2.8) ~K7 n N c Krar\ N. 
Similarly, from (6.2.6), 

(6.2.9) ¥Fa r\ N c £Fr\ N 
and 

(6.2.10) K^r\ N CR?(^N. 

Hence, by (6.2.7) and (6.2.9), 

[K{\ r\N = (K?r^ N) n (Kra r\ N) 

c (ZF1 r\N)n (Jû r\N) = [K2] n N 

and similarly, by (6.2.8) and (6.2.10), 

[K2] nNc [Ri] n N . 

This yields (6.2.2). 

6.3. The theorems which will be proved in this section are not valid without 
an additional restriction. We consider the following example. 

After a homeomorphism, G may be assumed to be the square 

I2 = {(x,y)\0 ^ ^ l . O ^ y g l ) . 
Let 

M = {(*, £)|0 ^x S 1},D, = {(s,y)\0 <y < 1}, 
Ks = MKJDS\J {(s,0), (5,1)}, 
^ s 1 = {(x, y) £ I2\x > s, y > | or x < s, y < %}, 
Ks'1 = {(x,y) G P\x > s, y < | o r x < s, y > J}. 

Put K = Ki/2. Then 31 = {Ks\s £ /} satisfies the requirements of § 4. Note: 
(i) The vertex Qs = (s, J) of Ks is not fixed, 

(ii) The quasigraphs K\^ and Ki/8 [J?i/4 and X3/4] decompose P at (J, \) 
in the same way [in opposite ways], 

(iii) Ki/2 and i?i /4 intersect each other at ( | , J). 

6.3.1. For the rest of Section 6 we make the following 

Assumption. If Qs Ç jfit, then Qs is a vertex either of every or of no Kt. 

6.3.2. Let R(s) 6 J0". 77*ew ^(w) = 2?(s) /or all u £ I (cf. 4.8). 

Proof, (i) If p(w) > 0 for all u £ / , this assertion follows from 4.10 (i). 
(ii) Suppose p(s) > 0, p(/) = 0 and e.g. s < t. Put 

/0 = inf {w|s S u ^ t; p(u) = 0}. 
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Since p is continuous, we have 

(6.3.1) p(*0) = 0; thus s < t0 ^ L 

We have p(i>) > 0 for 5 ^ » < *0. Hence by 4.10(i), R(v) = R(s). As R(v) 
depends continuously on v, this yields R(to) = R(s) G Af. 

By (6.3.1), R(t0) is a vertex of Kt0. Thus by 6.3.1, R(t0) = i?(s) would also 
be a vertex of i£s. This contradicts our assumption that p(s) > 0. Hence this 
case can not occur. 

(iii) If p(s) = 0 and p(t) > 0, then R(t) G M and we come back to the 
second case. 

(iv) Finally let p(u) = 0 for all u £ I. Thus R(u) is a vertex of i£w for all u. 
On the other hand, our assumption R{s) G Af implies, on account of 6.3.1, 
that R(s) also is a vertex of i£w, i.e. an endpoint of Ëu for every u. Since £M 

and R(u) depend continuously on u, this yields once more our assertion. 

6.3.3. Let s < t, R(s) G M. Let N be a neighbourhood of R(s) in G. Then 
N r\ A(u) ^ 0 for s S u ^ t. 

This remark follows at once from 6.3.2 and 4.10 (ii). 

The proof of 4.10 (ii) shows that the arc (4.10.4) lies in TV if J > 0 is small. 

6.3.4. By the proof of 6.3.2, p(s) is either always positive or always zero. 
Thus R(s) is either always or never a vertex; 0 < s < 1. 

6.4. Let 0 < s < t < 1; Q8 £ $t; a € { 1 , - 1 } . Suppose 

K«nKt-
ar\N T* 0 

for every neighbourhood N of Qs. Then there exists an edge E of K such that 
Qs £ Ëu and Eu C\ Ks

a C\ Kt~
a C\ N j£ 0 for all u e (s, t). 

Proof. By 3.5.1, there is a v = vN G (s, t) such that 

[KV] n Rs
a r\ Rt-

a r\ N ^ 0. 

Thus there is an edge E = E(N) of K such that 

(6.4.1) EV r\ KS« r\ Rt-« r\N ^ 0. 

This holds true for every choice of N. As K has only a finite number of edges, 
there is an edge E of K such that (6.4.1) applies to all neighbourhoods N and a 
suitable v = vN G (5, /). Let v0 be an accumulation point of vN as the radius of 
TV tends to zero. Then Qs Ç Ëvo. If Qs is not a vertex, assumption 6.3.1 implies 
that Qs G Eu for all u G / . If Qs = F{Q, s) is a vertex and Q is an end point 
of E, then Qs = Qu is an end point of Eu for all u G / . Thus Çs G £M for all 
w G J. 

Using the notation of 4.8, let 

Qs = /(cr(w), «), M G / . 
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By 4.7.1, a : I —> / is continuous. Suppose Qs is not a vertex. Since a(u) ^ 
0, 1, there is an e > 0 such t ha t 

e < a(u) < 1 — € for all u £ [s, i\. 

Making e smaller if necessary, we may assume t h a t 

(6.4.2) B(u) = f((a(u) - e, a(u) + e), u) C N for all w £ [s, / ] . 

The closed subset 

Ëu\B(u) = / ( [ 0 , *(«) - c], «) U / ( [ > ( « ) + 6, 1], w) 

has a positive distance from Qs for every u £ [s, J]. Hence there is a neighbour
hood N' C N of Ç, such t h a t 

iV7 H Êu\B(u) = 0 for all u 6 [5, / ] . 

Applying (6.4.1) with iV7 instead of N} we obtain 

5(w) n Rs
a n Kt-

a nNf ^ 0. 
By (6.4.2), there is therefore a point 

pv e B(V) r\ Ks
a n Kt~

a n iv. 
Let 4̂ (z;) denote the connected component of E\M containing Pv. One of the 
end points of A (v), say the point R(v) either lies on Ev between Pv and Qs or 
is equal to Qs. At any ra te , R(v) € M C\ B(v) C M C\ N (cf. (6.4.2)). 

As N is a neighbourhood of R(v), we obtain, from 6.3.3 t h a t 

N C\A{u) 9±® 

both for s < u < v and for v < u < t. 
T h e case t ha t Qs is a vertex is even simpler. 

6.5. Suppose Ks and Kt support each other at Qs. Then there exists a neighbour
hood N of Qs and an a G {1, — 1} such that 

Ks
ar\Krar\N = 0. 

Proof. Let s < t. Since Ks and Kt suppor t each other a t Qs, every neighbour
hood N of Qs contains points Ps £ [KS]\M. Construct the arc {P(u)\u £ /} 
according to 4.9. By the proof of 4.10 (ii), Ps can be chosen in such a way t h a t 
the subarc [P(u)\s — e < u < t + e; e > 0} lies entirely in N. 

Suppose P(s) e Kf- Then , by 5.2, P{t) £ Ks~
a. As [Ks] H Kt° H N is not 

void, 2.7 implies 

Ks±
inKt«r\N * 0. 

Similarly, 

[Kt] r\ Ks~« r\ N * 0 implies 

Ks-aC\Kx^C\N y* 0. 
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This yields 

i ? / p Rt p N * 0 for p = ± 1 . 

6.6. I d O < K K l ) 0 < K w < l . ^ f t Ç I ; a f ( I - 1 } . i ^ # 
&e a 5wa// neighbourhood of Qs. Then 

Ks
ar\Kv'

ar\N 9± 0 «=> Kt°niKu-*nN 9* 0. 
Proof. Obviously, our assertion can be reduced to the special case 

0 < ^ K « < K 1 . 

By (6.1.1), it suffices to consider the quasigraphs of the reduced family 21. 
Suppose R« P Kv~

a P N = 0. Thus, by 5.8, 

Kt
a
 P KU-« p N c K« p KV-« P N = 0. 

Conversely, suppose ^ s
a H Â^-" P iV ^ 0. Choose w £ (/, u) C (s, *>)• 

Then, by 6.4, there is a point Pw G [i?J such that Pw £ i?/* P Kv-
a P TV. 

Since Pw $ M, we have Pw g [i?r] for r £ [5, *] U [w, v] C (0, w) U (w, 1), 
and thus, by 3.5, 

pw e Kt«r\Ku-«r\N * 0. 

6.7. We first prove a lemma. 

6.7.1. If Ks and Kt neither intersect nor support each other at Qs £ M, then 
both decompose G in the same way at Qs. 

Proof. Let N denote a small neighbourhood of Qs. Obviously, N C Ks~
a is 

impossible. On account of 6.2, we may therefore assume 

[KS] p N = [Kt] p N. 

Thus either 

Ks
inN = Kt

lC\N and Ks~
l P N = Kt~

l P N 
or 

(6.7.1) K^nN = Kr^N and Ks~
l P N = Kt

l P N. 

In the first case, Ks and Kt decompose G in the same way at Qs. We have to 
show that (6.7.1) cannot occur. 

Let a G {1, - 1 } . By (6.7.1), we have Ks
a P Kra P TV ̂  0. Hence by 6.4, 

there is an edge E oî K such that 

(6.7.2) Q.eEu and £M P i?,« P i ? r a P ^ ^ 0 

for all u with s < u < t. Choose w fixed. 
The point set 

(6.7.3) [Ks]r\N = MC\N 
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consists of the intersection of N with one or several edges EJ of Ks such t ha t 
Qs G ËJ. T o each of them corresponds an edge Eu' of Ku such t ha t EJ C\ N C 
Eu C\ N (cf. (6.7.3)). Making N smaller, we may assume 

Eu' C\N = Es
f C\N CM. 

By (6.7.2), Eur\ N (t M. T h u s the edge Eu is dist inct from the edges EÙ. 
As Qs Ç Eu, Qs must be a vertex of Ku. Hence Qs also is a vertex of Ks (cf. 
6.3.1). But this vertex would be the end point of more edges of Ku than of Ks, 
which is impossible. 

6.7.2. We note the following corollary of 6.5 and 6.7.1: 
Let Qs Ç M. Let N be a neighbourhood of Qs in G. Then 

KJ*r\Kfr\N 7* Q for 0 = d=l. 

6.7.3. From 6.6 and 6.7.2 we finally obtain 

T H E O R E M 1. If two given quasigraphs of an il-faniily intersect each other 
[support each other; both decompose G in the same way] at Qs £ M, then so do any 
two quasigraphs of that family. 

6.8. Let s 9e t\ s, t Ç I and Qs Ç M. Then Ks and Kt intersect each other at Qs 

if and only if 

(6.8.1) [R8]r\%:t°r\N 9*0, a = ± 1 , 

for every neighbourhood N of Qs. 

Proof. By 2.7, the condition (6.8.1) is sufficient. Conversely, suppose Ks and 
Kt intersect a t Qs. We may assume s < t. Let u < s. Then , by 6.7, Ku and Kt 

intersect a t Qs and, by 6.4, there is, for each a G { 1 , - 1 } and edge Es of Ks 

such t h a t 

Esr\Kt«r\Ku-<*n N y* 0 

and Qs G Ës. This implies (6.8.1). 

6.9. Let s 9e t; Qs £ M. Then Ks and Kt support each other at Qs if and only if 
the following conditions are satisfied: 

(6.9.1) [Ks]r\N ?± [Kt~\r\N, 

(6.9.2) [Ks] H N C Kt« \J M and [K J H N C Ks~
a W M 

for some a G {1, — 1}. 

Proof, (i) Suppose Ks and Kt suppor t a t Qs. Then (6.9.1) follows from our 
definitions. Also, from 6.8, there are a, j8 Ç {1, — 1} such tha t 

[Ks]r\ N CKfVJ M and [Kt] H N C X / U M. 

Hence, by 2.7, 

i ^ n i ^ n i v ^ o and ^,± ini^/n^^0. 
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By 6.5, one of the two sets K8
l HKt^n N and Ks~

l H i?,1 H TV must be 
void. Hence p = —a. 

(ii) Conversely, assume (6.9.1) and (6.9.2). Then 6.7.1, 6.2 and (6.9.1) 
imply that Ks and Kt either support or intersect at Qs. Since (6.9.2) excludes 
(6.8.1), they cannot intersect. 

6.10. THEOREM 2. Suppose any two quasigraphs of 21 support each other at Qs. 
Let 0 < t\ < ti < • - • < th < 1. Then for every small neighbourhood N of Qs, 
exactly h + 1 of the 2h open sets 

(6.10.1) Kt±
i n • • • n Kth^ r\ N 

are non-void ; h ^ 2. 

Proof. By (6.1.2), we may replace 21 by 21. The case h = 2 is the definition 
of support for a pair of quasigraphs. 

Suppose that h > 2 and our statement has been proved up to h — 1. Then 
exactly h of the 2h~l open sets 

Ktl^n...^Kth_±ir\N 

are non-void. Let P Ç [Kth] H N\M. Then P g [i£r] for r G [/i, ^ - J so that, 
by 3.5, there is an a Ç {1, —1} for which 

p e Ktl«n...nKth_«r\N. 
Thus, by 6.9, 

[Kth] r\ N\M c Rtl* r\... r\ Rth_°. 
By 2.7, Kth divides Ktl

a C\ . . . C\ Kth_x
a C\ N into two non-void open sets, so 

that at least h + 1 of the sets (6.10.1) are non-void. Now suppose Kth also 
divides 

Ktlei r\ Kt2K n . . . n Kth_^ r\ N 
into two parts. Then 

0 * RtlK n . . . n Rth_s»-i n Rth^ r\ N C Rtl
pi n i ^ 1 n N. 

However, Ktl
a Pi . K ^ 1 H i V ^ 0 . Hence /5i = a, since Ktl and i£f/l support 

each other at Qs. Similarly, fit = a, i = 1, 2, . . . , h — 1. Thus J ? u divides 
exactly one of the h non-void sets determined by Ktl, . . . , Kth_l. This leads to 
exactly h + 1 non-void sets. 

6.10.1. Suppose Ks-
ar\K?r\ N = 0 for 0 < 5 < t < 1 and a Ç {1, - 1 } . 

Then the h + 1 non-void sets obtained in 6.10 are 

DKt;r\ n Kt~
ar\N, * = o,i A. 

.7=1 4 = < + l 

Here, 

(6.10.2) n * „ " = H tf.f = G, 

cf. 5.7.I. 
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6.11. THEOREM 3. Suppose any two quasigraphs of 3Ï intersect each other at Qs. 
Let 0 < h < h < . . . < th < 1 ; h ^ 2. Then exactly 2h of the 2h open sets 

C\Ktx
ai, a, = ± 1 

i 

are non-void, and every neighbourhood of Qs contains points of each of these 
2h sets. 

Proof. By 5.9, it suffices to show that at least 2h of the open sets 

nKtl
air^N, at= ±i, 

i 

are non-void. 
The case h = 2 is the definition of intersection for a pair of quasigraphs. 
Suppose h > 2 and let N be a neighbourhood of Qs. Suppose our statement 

has been proved up to h — 1. Then exactly 2 (h — 1) of the 2h~1 open sets 

Ktl^r\...nKth_^nN 
are non-void. By 6.8, there are points 

P1 e [Kth] n Rth_s r\ N and P-1 e [Kth] n £^ -1 n N. 
Then P1 , P " 1 g M and P1 , P " 1 2 [Kr] for r Ç [/lt t^]. Hence P 1 G X / and 
P _ 1 G -Kr-1 for all r Ç [̂ i, ^_J and thus the two sets 

£tl« n . . . n j ? ^ ^ n .¥, « = ±1, 
are non-void; by 2.7, both are divided into two parts by Kth. This proves our 
theorem. 

6.11.1. The 2h non-void sets obtained in 6.11 are the sets 

HKtj
an n Ktr*, i = 0, 1, ...,h- 1, « = ± 1 ; 

cf. (6.10.2). 

7. Quasicurves. 

7.1. An alternative way of introducing quasigraphs begins with quasicurves. 
A quasicurve H m G is a. finite collection of Jordan arcs which meet the frontier 
of G at most at their endpoints, of Jordan curves which meet this frontier in at 
most one point, and of single points. Two or more of these components of H 
may be identical. A component A has component multiplicity m = m(H, A) if 
H has m components identical with A. Thus 

(7.1.1) H = X) m(H,A)A 
A 

is a finite, possibly void, formal sum of components. This definition will be 
refined later. 

https://doi.org/10.4153/CJM-1977-001-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-001-4


QUASIGRAPHS 25 

As before [H] will denote the set of all the points incident with a t least one 
component of H, and [A] the set of points of the component A. 

If ju components of H pass through a point P, then we count P with the 
point multiplicity /x in H. More precisely, if H is given by (7.1.1), P has the 
point multiplicity 

n(P,P) = £ m(if,^). 
P6U] 

7.2. If the component A oî H decomposes G into two distinct regions, we call 
A a decomposing component and denote the regions by A1 and A~l. If 4̂ is 
non-decomposing, we define either 

.41 = G\A, A'1 = 0 
or 

A1 = 0, . 4 - 1 = G\A. 

The ordered pair of the open sets (A1, A"1) is an orientation of ^4. From now 
on, a component is always oriented. 

Two components A and J3 are equal [opposite] if [A] = [5] and 
A* = 0*|>4a = 0-«]; a = ± 1 . 

Condition 7.2.1. Two distinct decomposing components of i f shall have only 
a finite number of points in common. 

By this condition, no two opposite decomposing components can occur in a 
given quasicurve. 

Condition 7.2.2. The intersection of any two components of H shall be the 
union of a finite number of points and arcs. 

7.3. Assume tha t H has the components Au • • • , An, each Ai wri t ten as 
often as its multiplicity in (7.1.1) indicates. Thus , for i — 1, . . . , n, each point 
of int G\H lies in exactly one of the sets A ^ 
We then define 

Hl= U HA?* 
II a , = l 1=1 

and i 

H-'= u rW\ 
n a t = - i i=\ 
i 

T h u s the point sets [H], Hl, H~l are mutual ly disjoint, 

G = [H] U ffi U i / - 1 

and 
[#] = ^(H^n ^(H-1). 

The ordered pair ( i l1 , i J _ 1 ) is an orientation oî H. If the orientations of the 
Ai's are arbitrari ly chosen, / / is capable of exactly two orientations. 
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If H is void, we can introduce two orientat ions of H, namely either H1 = G 
and H-1 = 0 or H~l = G and H1 = 0. 

T h e "global" decomposition of G by i f and the decomposition of G by i f a t a 
point Q are defined as in 2.1.2. G is decomposed by H a t Q if and only if Q lies 
on a t least one decomposing component of odd multiplicity of H. 

T h e results of Section 2.2 also apply to quasicurves. 

7.4. Two distinct quasicurves H and Hf can yield the same decomposition 
of G. We call H and Hf equivalent and write H = H' if 

H1 = H'1 and H~l = Hf~\ 

If two quasicurves are equivalent , they are incident with the same point set. 
However, they may consists of different sets of components and their points 
may have different multiplicities. 

Let H = [H'\H' = H) denote the set of all the quasicurves which are 
equivalent to H. T h u s 

H = H' ^>H = H'. 

Since H = H' if and only if [H] = [if '] and H« = H'«, a = ± 1 , we may 
identify H with the ordered triplet 

If H is the void quasicurve and H~l = 0[if1 = 0], then H contains no 
quasicurve except H itself and we have 

H = (0, G, 0) [H = (0, 0, G)]. 

H H decomposes G at Q and Hf = H, then H' also decomposes G a t Q. We 
then define H to decompose G a t Q. 

7.5. We call a point P G int G a vertex of H if, for every i f G if, P is the 
end point of a component of H, or P is the intersection of two or more dist inct 
components of H, or P is an isolated point of H. 

Every point of [H] r\ bd G is also called a vertex of if. 

7.6. The number of vertices of H is finite. 

Proof. Let i f Ç if. Since i f has only a finite number of components , only 
finitely many vertices are not intersections of components . 

Let A and A' be any two components of H. By 7.2.2, [̂ 4] Pi [Af] consists 
of a finite number of points and arcs. If such arcs exist, 7.2.1 implies t h a t a t 
least one of the two components A and A', say A, is non-decomposing. Delet ing 
the relative interior of these arcs from A, we replace A by a finite set of com
ponents , each of which has only a finite number of points in common with A'. 
This yields a new quasicurve of H. I te ra t ing this process, we arrive a t a quas i 
curve of H such t ha t the number of the intersections of its components is finite. 

T h e proof of 7.6 yields the following corollary. 

https://doi.org/10.4153/CJM-1977-001-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-001-4


QUASIGRAPHS 27 

7.6.1. H contains a quasicurve in which any two components have only a finite 
number of points in common. 

7.7. Let F denote the set of vertices of H. Then [ZT| \Fis the union of a finite 
number of connected sets, the edges of H. Thus the edges and vertices of H are 
independent of the choice of H in H and every point of [H] which is not a 
vertex lies on exactly one edge. Each edge has zero or one or two vertices as 
end points. Being a connected subset of a Jordan arc or curve, an edge also is 
a Jordan arc or curve. 

By 7.5, no vertex of H is the common endpoint of exactly two edges. 
Let H be a quasicurve in H and E an edge of H. We call E odd if it is par t of 

a decomposing component of odd multiplicity of H. Otherwise, E is even. 

7.8. T H E O R E M 4. H is a quasigraph. Conversely, every quasigraph can be ob
tained as an equivalence class of quasicurves. 

Proof. By 7.3, Hl and H~l consti tute a parti t ion of G\[H] such tha t every 
connected component of G\[H] lies entirely in H1 or entirely in H~l. As noted 
in 7.7, an edge of H satisfies the definition of an edge of a quasigraph. By 7.6 
and 7.7, the number of vertices and edges is finite. Hence all the requirements 
of 2.1 are satisfied. 

Conversely, let K = ([K], K1, K*1) be any quasigraph. We wish to con-
construct a quasicurve H such tha t K = H, i.e. [K] = [H], K1 = H1 

and K-1 = H-K 
T h e non-decomposing components of H shall consist of the isolated vertices 

of K and of those edges of K which are not adjacent to both K1 and K~l. Each 
such vertex or edge is contained in the closure of Ka for exactly one 
a £ {1, —1}. Removing it from K and transferring its points to Ka, we obtain 
a new quasigraph. In a finite number of steps we obtain a quasigraph 
L = ([X], L1, L~l) such tha t every point of [Z] is adjacent to both Z 1 and L~1. 

T o construct the decomposing components of H, we first note t ha t both L1 

and L~l have a finite number of connected components. Let C be one of them, 
say C C La. We count the connected components of the boundary of C as 
decomposing components of H. Each of these components consists of a finite 
number of vertices and edges. Transferring the points of C and of the edges 
of its boundary to L~a, we obtain a new quasigraph L' such tha t G\[L'] has 
fewer connected components. After a finite number of such steps, all the de
composing components of H have been constructed. 
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