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Abstract

For any positive integers k1, k2 and any set A ⊆ N, let Rk1,k2 (A, n) be the number of solutions of the equation
n = k1a1 + k2a2 with a1, a2 ∈ A. Let g be a fixed integer. We prove that if k1 and k2 are two integers with 2 ≤
k1 < k2 and (k1, k2) = 1, then there does not exist any set A ⊆ N such that Rk1,k2 (A, n) − Rk1,k2 (N \ A, n) = g
for all sufficiently large integers n, and if 1 = k1 < k2, then there exists a set A such that Rk1,k2 (A, n) −
Rk1,k2 (N \ A, n) = 1 for all positive integers n.
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1. Introduction

Let N be the set of all nonnegative integers. For a set A ⊆ N, let R1(A, n), R2(A, n) and
R3(A, n) denote the number of solutions of a1 + a2 = n, a1, a2 ∈ A; a1 + a2 = n, a1,
a2 ∈ A, a1 < a2 and a1 + a2 = n, a1, a2 ∈ A, a1 ≤ a2, respectively. For i = 1, 2, 3,
Sárközy asked whether there exist two sets A and B with |(A ∪ B) \ (A ∩ B)| = +∞
such that Ri(A, n) = Ri(B, n) for all sufficiently large integers n. We call this problem
the Sárközy problem. In 2002, Dombi [2] proved that the answer is negative for i = 1
and positive for i = 2. For i = 3, Chen and Wang [1] proved that the answer is also
positive. In 2004, Lev [3] provided a new proof by using generating functions. Later,
Sándor [5] determined the partitions of N into two sets with the same representation
functions by using generating functions. In 2008, Tang [6] provided a simple proof by
using the characteristic function.

In 2012, Yang and Chen [7] first considered the Sárközy problem with weighted
representation functions. For any positive integers k1, . . . , kt and any set A ⊆ N, let
Rk1,...,kt (A, n) be the number of solutions of the equation n = k1a1 + · · · + ktat with
a1, . . . , at ∈ A. They posed the following question.
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[2] Weighted representation functions 13

PROBLEM 1.1 [7, Problem 1]. Does there exist a set A ⊆ N such that Rk1,...,kt (A, n) =
Rk1,...,kt (N \ A, n) for all n ≥ n0?

They answered this question for t = 2 and proved the following results.

THEOREM 1.2 [7, Theorem 1]. If k1 and k2 are two integers with k2 > k1 ≥ 2 and
(k1, k2) = 1, then there does not exist any set A ⊆ N such that Rk1,k2 (A, n) = Rk1,k2

(N \ A, n) for all sufficiently large integers n.

THEOREM 1.3 [7, Theorem 2]. If k is an integer with k > 1, then there exists a set
A ⊆ N such that

R1,k(A, n) = R1,k(N \ A, n) (1.1)

for all integers n ≥ 1.
Furthermore, if 0 ∈ A, then (1.1) holds for all integers n ≥ 1 if and only if

A = {0}
⋃( ∞⋃

i=0

[(k + 1)k2i, (k + 1)k2i+1 − 1]
)
,

where [x, y] = {n : n ∈ Z, x ≤ n ≤ y}.

Later, Li and Ma [4] proved the same results by using generating functions.
Let g be a fixed integer. In this paper, we consider whether there exists a set A ⊆ N

such that Rk1,k2 (A, n) − Rk1,k2 (N \ A, n) = g for all n ≥ n0. First, we answer this problem
in the negative if k1 and k2 are two integers with 2 ≤ k1 < k2 and (k1, k2) = 1.

THEOREM 1.4. Let g be a fixed integer. If k1 and k2 are two integers with 2 ≤ k1 < k2
and (k1, k2) = 1, then there does not exist any set A ⊆ N such that

Rk1,k2 (A, n) − Rk1,k2 (N \ A, n) = g

for all sufficiently large integers n.

Similar to Theorem 1.3, we seek a set A ⊆ N such that R1,k(A, n) − R1,k(N \ A, n) = g
for all integers n ≥ 1. In fact, if |g| > 1, then such a set A does not exist by the simple
observation that 0 ≤ R1,k(A, n) ≤ 1 and 0 ≤ R1,k(N \ A, n) ≤ 1 for all positive integers
n < k. So we only need to consider the case g = 1.

THEOREM 1.5. If k is an integer with k > 1, then there exists a set A ⊆ N such that

R1,k(A, n) − R1,k(N \ A, n) = 1 (1.2)

for all integers n ≥ 1.
Furthermore, (1.2) holds for all integers n ≥ 1 if and only if

A = {0}
⋃( ∞⋃

i=0

[k2i, k2i+1 − 1]
)
.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972723001053
Downloaded from https://www.cambridge.org/core. IP address: 18.117.102.61, on 15 Oct 2024 at 13:14:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972723001053
https://www.cambridge.org/core


14 S.-S. Li, Y.-Q. Shan and X.-H. Yan [3]

2. Proofs

LEMMA 2.1. Let k1 < k2 be two positive integers, {a(n)}+∞n=−∞ be a sequence of integers
with a(n) = 0 for n < 0 and A ⊆ N. Then the equality

Rk1,k2 (A, n) − Rk1,k2 (N \ A, n) = a(n) (2.1)

holds for all nonnegative integers n if and only if

χA

([ n
k1

])
+ χA

([ n
k2

])
= 1 +

k1−1∑
j=0

(a(n − j) − a(n − k2 − j))

holds for all nonnegative integers n, where χA(i) is the characteristic function of A,
that is, χA(i) = 1 if i ∈ A and χA(i) = 0 if i � A.

PROOF. Let f (x) be the generating function associated with A, that is,

f (x) =
∑
a∈A

xa =

∞∑
i=0

χA(i)xi.

Then,
∞∑

n=0

(Rk1,k2 (A, n) − Rk1,k2 (N \ A, n))xn

= f (xk1 ) f (xk2 ) −
( 1
1 − xk1

− f (xk1 )
)( 1

1 − xk2
− f (xk2 )

)

=
f (xk1 )

1 − xk2
+

f (xk2 )
1 − xk1

− 1
(1 − xk1 )(1 − xk2 )

.

Let

p(x) =
∞∑

n=0

a(n)xn.

It follows that (2.1) holds for all nonnegative integers n if and only if

f (xk1 )
1 − xk2

+
f (xk2 )

1 − xk1
− 1

(1 − xk1 )(1 − xk2 )
= p(x),

that is,

f (xk1 )
1 − xk1

1 − x
+ f (xk2 )

1 − xk2

1 − x
=

1
1 − x

+ (1 − xk2 )
1 − xk1

1 − x
p(x). (2.2)

Note that

f (xk1 )
1 − xk1

1 − x
= (1 + x + · · · + xk1−1)

∞∑
n=0

χA(n)xk1n =

∞∑
n=0

χA

([ n
k1

])
xn,
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[4] Weighted representation functions 15

f (xk2 )
1 − xk2

1 − x
= (1 + x + · · · + xk2−1)

∞∑
n=0

χA(n)xk2n =

∞∑
n=0

χA

([ n
k2

])
xn,

1
1 − x

=

∞∑
n=0

xn

and

(1 − xk2 )
1 − xk1

1 − x
p(x) = (1 − xk2 )(1 + x + · · · + xk1−1)

∞∑
n=0

a(n)xn

=

∞∑
n=0

( k1−1∑
j=0

(a(n − j) − a(n − k2 − j))
)
xn.

It follows from (2.2) that for all nonnegative integers n,

χA

([ n
k1

])
+ χA

([ n
k2

])
= 1 +

k1−1∑
j=0

(a(n − j) − a(n − k2 − j)).

This completes the proof of Lemma 2.1. �

LEMMA 2.2. Let n0 be a positive integer and k1 < k2 be two positive integers with
(k1, k2) = 1 and A ⊆ N be a set with

χA

([ i
k1

])
+ χA

([ i
k2

])
= 1 for all i ≥ k1 + k2 + n0. (2.3)

If n ≥ k1 + k2 + n0 and χA(n) + χA(n + 1) = 1, then k2 | n + 1.

PROOF. Since χA(n) + χA(n + 1) = 1, it follows that

χA

([ (n + 1)k1 − 1
k1

])
+ χA

([ (n + 1)k1

k1

])
= χA(n) + χA(n + 1) = 1. (2.4)

By (2.3),

χA

([ (n + 1)k1 − 1
k1

])
+ χA

([ (n + 1)k1 − 1
k2

])
= 1

and

χA

([ (n + 1)k1

k1

])
+ χA

([ (n + 1)k1

k2

])
= 1.

It follows from (2.4) that

χA

([ (n + 1)k1 − 1
k2

])
+ χA

([ (n + 1)k1

k2

])
= 1.

Let t and r be integers with

(n + 1)k1 = tk2 + r, 0 ≤ r ≤ k2 − 1.
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16 S.-S. Li, Y.-Q. Shan and X.-H. Yan [5]

If r ≥ 1, then

1 = χA

([ (n + 1)k1 − 1
k2

])
+ χA

([ (n + 1)k1

k2

])
= 2χA(t),

which is a contradiction. Hence, r = 0 and (n + 1)k1 = tk2. Noting that (k1, k2) = 1, we
have k2 | n + 1. This completes the proof of Lemma 2.2. �

PROOF OF THEOREM 1.4. Let g be an integer and let k1, k2 be integers with
2 ≤ k1 < k2 and (k1, k2) = 1. Suppose that

Rk1,k2 (A, n) − Rk1,k2 (N \ A, n) = g (2.5)

for all integers n ≥ n0. Let {a(n)}+∞n=−∞ be a sequence of integers with a(n) = 0 for n < 0
and a(n) = g for all integers n ≥ n0. It follows from Lemma 2.1 that for all integers
i ≥ k1 + k2 + n0,

χA

([ i
k1

])
+ χA

([ i
k2

])
= 1. (2.6)

If A is a finite set, then Rk1,k2 (A, n) = 0 for all sufficiently large integers n, and Rk1,k2

(N \ A, n) cannot be a fixed constant as n→ +∞, which implies that (2.5) cannot hold.
So A is an infinite set. Similarly, N \ A is also an infinite set.

Since 2 ≤ k1 < k2, it follows that there exists an integer t > 1 such that k2 < kt
1.

Note that both A and N \ A are infinite sets. So there exists an integer n = kα1 kβ2h − 1 >
(k1 + k2 + n0)t+1 such that n ∈ A and n + 1 � A, where α and β are nonnegative integers
and h is a positive integer with (h, k1k2) = 1. It follows from (2.6) and Lemma 2.2 that
k2 | n + 1 and β ≥ 1. Since

(k1 + k2 + n0)t+1 < n < kα1 kβ2h < kt(α+β)
1 h,

it follows that kα+β1 > k1 + k2 + n0 or h > k1 + k2 + n0. Hence, for any 0 ≤ i ≤ β,

kα+i
1 kβ−i

2 h ≥ kα+β1 h > k1 + k2 + n0. (2.7)

By (2.6),

χA

([kα+1
1 kβ2h

k1

])
+ χA

([kα+1
1 kβ2h

k2

])
= 1 (2.8)

and

χA

([kα+1
1 kβ2h − k1

k1

])
+ χA

([kα+1
1 kβ2h − k1

k2

])
= 1. (2.9)

Since kα1 kβ2h = n + 1 � A and kα1 kβ2h − 1 = n ∈ A, it follows from (2.8) and (2.9) that

χA(kα+1
1 kβ−1

2 h − 1) + χA(kα+1
1 kβ−1

2 h) = 1.
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[6] Weighted representation functions 17

By Lemma 2.2, k2 | kα+1
1 kβ−1

2 h and so β ≥ 2. Continuing this procedure yields

χA(kα+β1 h − 1) + χA(kα+β1 h) = 1.

By (2.7) and Lemma 2.2, we also have k2 | kα+β1 h, which is impossible. Hence, there
does not exist any set A ⊆ N such that (2.5) holds for all sufficiently large integers n.
This completes the proof of Theorem 1.4. �

PROOF OF THEOREM 1.5. Suppose that there is a set A such that

R1,k(A, n) − R1,k(N \ A, n) = 1 (2.10)

for all integers n ≥ 1. Then 0 ∈ A and (2.10) holds for all integers n ≥ 0. Let {a(n)}+∞n=−∞
be a sequence of integers with a(n) = 0 for n < 0 and a(n) = 1 for n ≥ 0. By
Lemma 2.1,

R1,k(A, n) − R1,k(N \ A, n) = a(n)

for all nonnegative integers n if and only if

χA(n) + χA

([n
k

])
= 1 + a(n) − a(n − k)

for all nonnegative integers n, that is,

χA(n) + χA(0) = 2 for 0 ≤ n ≤ k − 1,

χA(n) + χA

([n
k

])
= 1 for n ≥ k.

Thus,

A = {0}
⋃( ∞⋃

i=0

[k2i, k2i+1 − 1]
)
. �
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