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ON THE IDEAL-TRIANGULARIZABILITY OF SEMIGROUPS OF
QUASINILPOTENT POSITIVE OPERATORS ON C(K)

M. T. JAHANDIDEH

ABSTRACT. Itisknown that a semigroup of quasinilpotent integral operators, with
positive lower semicontinuous kernels, on L2(X, 1), where X is a locally compact
Hausdorff-Lindelof space and p is a o-finite regular Borel measure on X, istriangular-
izable. Inthis article we use the Banach lattice version of triangularizability to establish
theideal-triangularizability of asemigroup of positive quasinilpotent integral operators
on C(K) where K is acompact Hausdorff space.

1. Introduction. By Proposition V.6.1 of [6], each quasinilpotent positive opera-
tor T on Cy(X), where X is a locally compact Hausdorff space, is decomposable and
by Theorem 3.14 of [2], T is ideal-triangularizable. It is, therefore, interesting to ask
whether or not a semigroup of quasinilpotent positive operators on Co(X) is decompos-
able or ideal-triangularizable. Some partial answersare givenin [2]. In Section 3 we use
similar techniques to those used in [1] to prove the decomposability of a semigroup of
guasinilpotent integral operators on Cy(X), whose kernels are positive and lower semi-
continuous. Then, in Section 4, we prove some facts, concerning the compression of an
integral operator, and use Theorem 3.13 of [2], to establish the ideal-triangul arizability
of a semigroup of quasinilpotent integral operators on C(K ), where K is a compact
Hausdorff space and the kernel of each operator in the semigroup is positive and lower
semi-continuous.

2. Preliminaries. Inwhat follows X isalocally compact Hausdorff-Lindel 6f space.
By an operator on Cy(X) we mean a bounded linear transformation on Co(X).

We assume familiarity with basic results concerning the Banach lattice Co(X). When
K is a compact space we know that Co(K ) = C(K ) and J is a closed ideal of C(K) if
and only if there exists a closed subset Kq of K such that

J={f ec(K):f(t) =0foralt e Ko}.

(e.g. see[6, Example 111.1.1]).

By S we always mean a semigroup of operators on Co(X) and by 1lat(S) we mean the
collection of all closed ideals of Co(X) which areinvariant under S. We say that S is de-
composableif there exists anon-trivial J € llat(S). S is said to beideal-triangularizable
if 1lat(S) contains anontrivial maximal chain.
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If 31,3, € llat(S) and if J; C J,, by the compression of an element T € S to J,/J;
we mean an operator T: J/J1 — Jo/J1 defined by

T(F+3)=TE+J, Vel

The collection of all compressions of operatorsin S to J/J; will be denoted by S.

Let 1 be a o-finite, regular Borel measure on X. By the Lindelof property we may
assumethat 1 (U) > O for every non-empty open subset U of X (cf. [1, Section 3]). Now
suppose U is a non-empty open subset of X and consider the restriction u|y of u to U.
Since every open subset W, of U is an open subset of X we also have

pluWo) = u(Wy) >0

for every non-empty open subset W, of U.

If Sisaclosed subset of X then we know that Sis also a Lindeldf space as well as
alocally compact Hausdorff space. Consider the restriction p|s of u to S and suppose
11|s > 0. Once again we may assume that

K |S(Ws) >0

for every non-empty open subset W; of S.
SupposeKt: Xx X — Cisap x u -measurablefunction suchthat for each f € Co(X)
the function Tf defined by

(THK) = / Kr(x.y) f(y) du(y),
belongsto Cyp(X). Then T is called an integral operator on Co(X) by way of u.

REMARK. According to [3, Section 12] there are suitable conditions under which
certain class of operatorson C(X) can berepresented asintegral operators. Asan example
it is known that each locally compact and locally continuous operator on C(X) can be
represented as an integral operator by way of aregular measure (cf. [3, Theorem 12.2]).
However, it is not known whether or not we can find a unique regular measure, by way
of which, asemigroup of such operators can be represented as an integral.

3. A decomposability theorem. In this section we establish a decomposability
theorem for a certain semigroup of quasinilpotent positive integral operators on Cy(X).

LEMMA 3.1. Suppose U is a non-empty open subset of X. Then there exists a mea-
surable subset G of U of nonzero finite measure such that for any integral operator T on
Co(X) with a non-negative kernel K+:

IT] = ku(G).

provided Kt(x,y) > k > 0on E x U for some non-empty measurable subset E of X.
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PrOOF. Since X is o-finite and p(U) > 0 we can choose a measurable subset A
of U with 0 < p(A) < oo. Letf = xa and apply the techniques used in the proof of
Lusin's Theorem (cf. [4, Theorem 2.23]) to find afunction g in C.(X) with the following
properties:

(i) 9(x) > 0Vvx e X,

(i) p(B) < u(A)/2,whereB={xe X:g(x) Zf(x)}, and
(i) [Igllo0 <[]0 = L
Since C(X) C Co(X) we have

Tg0) = [ Kr(x V) du(y) = [ Kr(x Y)g(y) du(y)-

Soforx € E,
To0 > k{ [ g du(y) * [, oy du(y)}.

where Ay ={y e A:g(y) =f(y) =1} and A, = {y € A: g(y) Zf(y)}. Since A, C B,
1(A2) < u(B) < u(A)/2. Hence pu(Ar) = pu(A) — w(A2) > u(A)/2 > 0, and

Tg09 > k{u(A) + [, a(y)du(y)} > ku(Ar) X €E.
as fp, 9(y) du(y) > 0, and hence Tg(x) > ku(A) for all x € E. Therefore;
ITgllo0 = sup{Ta(x) : x € X} > sup{Tg(x) : x € E} > ku(Ay).
So with G = A; we obtain
ITIl = sup{lIThll : [[hlleo < 1} > ki(G). .

LEMMA 3.2. SupposeT isanintegral operator on Cp(X) with a non-negative kernel
Kr. If Kr(X,y) > k > 0 on a rectangle U x U, where U is a non-empty open subset
of X, then there exists a measurable subset G of U of nonzero finite measure such that
r(T) > ku(G), wherer(T) refersto the spectral radiusof T.

PROOF. Use Lemma 3.1 to find a measurable subset G with the stated properties
givenin that Lemma.
Let K denote the kernel of T". Then for x,y € U,

KOO Y) = [Kr(x t)Kr(tr t2) - Kr(th-1,y) dty -~ dta-a

n e = KN n—1
Z Juxuxexu K'dtidtz - - - dtaq = K'u(U)" .
Therefore
T > Ku(U)™ (@) > Ku(G)",
which means || T"[|¥/" > ku(G) for al n, and hencer(T) > ku(G). .

LEmMmA 3.3. If T is a quasinilpotent integral operator on Cy(X) with non-negative,
lower semicontinuous kernel Kr, then Kr(x, x) = 0 for all x € X.
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PROOF. Suppose not and choose any Xo with Kt(Xg, Xo) = 2k > 0. Lower semicon-
tinuity implies there is an open set U such that Kr(x,y) > k for al (x,y) € U x U.
Now apply Lemma 3.2 to obtain a subset G of U of nonzero finite measure such that
r(T) > ku(G), which contradicts the fact that T is quasinilpotent. ]

SupposeS isasemigroup of quasinilpotent integral operators on Co(X) suchthat every
operator in S has a non-negative, lower semicontinuous kernel. By using Lemma 2.3
and an argument similar to the proof of [1, Theorem 3.4] we can show that there exists
an open set V of finite measure such that the subspace

J={f € Co(X): f =00onX\V}.

isinvariant under S. Since Co(X) isaBanach lattice and since Jisaclosedideal of Cy(X),
we conclude that S is decomposable. We summarize this observation in the following
theorem and use the procedure given in the proof of [1, Theorem 3.4] to give a sketch of
its proof.

THEOREM 3.4. Let S be a semigroup of quasinilpotent integral operators on Co(X)
by way of 1, such that every operator in S has a non-negative, lower semicontinuous
kernel. Then S is decomposable.

SKETCH OF Proor. If S = {0}, with any open subset V of X, the closed ideal
J={f € Co(X): f(t) = 0foral t € X\ V}isinvariant under S. Otherwise choose
T € S, with T(xo, Yo) > 0 for some (Xo. o) € X x X, and use the lower semicontinuity
of itskernel and Lemma 3.3 to find two open subsets Uy and V; of X with the following
properties:

(i) UoNVo =0,

(i) Ks(y.X) =0whenever S€ S and (x,y) € Up X Vp,
(III) Xo € Ug andyo € V.
Now for each x € U define

W, = {t e X: Kg(t.X) = Oforall Se S}

and observethat it is aclosed subset of X that includes V. We distinguish two cases:
(1) u(X\ W) =0for every x € Uo. In this case put V = Up and observe that

Ks(x.y) =0 V(x,y) € (X\V)xV,

whenever Se S.
(2) p(X\ W) # 0for somex € Ug. In this case cut Uy down and relabel if necessary,
to assumethis x isxg. Put vV = X'\ W, and show that

Ks(x.y) =0 V(xy) € Wy, x (X\ W),

whenever Se S.
In each case verify that the closed ideal

J={f € Co(X) : f(t) =Oforalt e X\ V}

isinvariant under S. "
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4. An ideal-triangularizability theorem. Under suitable conditions, we can say
more about asemigroup S, of quasinilpotent integral operators on Cy(X), each of whose
members has a non-negative lower semicontinuous kernel. To do this we need the
following lemmas.

LEMMA 4.1. Let X be alocally compact normal space and let 1 be a finite regular
Borel measureon X. Let Xo bea nonempty compact subset of X and let hg € C(Xp). Then,
given k > O there existsa closed subset A of B = X'\ Xp and a continuous extension h of
hg to X such that the following hold:

@ p(B\A) <x.
(b) h(x) =0for all x € A.
(©) |h()| < ||ho|| for all x € X.

PROOF. First use Tietze Extension Theorem [4, Theorem 20.4] to find a continuous
extension g of hp to X such that ||g||oo = ||hol|~ for @l x € X. Then use the regularity
of u to find a compact subset A of B with (B \ A) < . Thiscan be done as p is also
a finite measure. Since X is a Hausdorff space A is a closed subset of X. Now use the
normality of X and the fact that A X, = ) to find a continuousfunctionf on X such that
f(A) = {0}, f(Xo) = {1},and 0 < f(x) < 1for al x € X. Finally defineh = fg. Thenhis
acontinuous function on X,

h(y) =f(y)a(y) = 1-ho(y) = ho(y) foraly e Xo,
h(t) =f(t)g(t) =0-g(t) =0 foralteA,

and
1G9l =£(0) 19091 < 9] < Mol forall x € X. .

LEMMA 4.2. Assume all the conditions of Lemma 4.1 and let K be a bounded inte-
grable function on X x X. Then given ¢ > 0, there exists a continuous extension h of hy
to X such that

\./X K (x, )h(t) dus(t) — /XO K (X, tho(t) du(t)\ <e
for all x € X.

PrROOF. Putx = ¢/(M||hol|~), where M is abound for K, and use Lemma4.1 to find
a continuous extension h of hy to X with the stated properties givenin Lemmad4.1. Then

/X K(x. t)h(t) du(t) = /Xo K(x, t)h(t) dp(t) + /A K(x, t)h(t) du(t) + /B\A K (x, t)h(t) du(t)
= /X KO Dho(t) du(®) + /B ” K (x. Hh(t) dyu(t).
for any x € X, and hence

KO OhO ) — [ Kex D@ du(®] < [ KO- O] du(t)
M [ hollo/s(B \ A) < kM|, = €.

IN
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foral x e X. "
The following lemmais known and was implicitly used in [5]. For completenesswe
state and prove it here.

LEMMA 4.3. Let K be a compact Hausdorff space and let J be a closed ideal in
C(K)). Then the quotient C(K') /J can be canonically identified with C(K o) where K is
a suitable closed subset of K .

ProOOF. Since Jisaclosed ideal of C(K ), there exists a closed, and hence compact,
subset K of K such that

J={f e C(K):f(t) =0foral t € Ko}.

Define p: C(Ko) — C(K))/J by p(fo) = f +J, where f is a continuous extension of fo
to K. Tietze's Extension Theorem and the structure of J imply that p is well defined,
and it can be easily verified that p islinear, one-to-one, onto, and p~1(f +J) = fo, where
fo = f|Ko.

We show that || o(fo)|| = || fo||- First observethat for eachf € C(K)andg € J

sup{|(f +@)()| : x e K } :sup{{|(f +9))| 1 xe K\ Ko U{[f(9|: x € Ko}}.

and hence || fo|.o < || f + || for al g € J. This showsthat || fol| < || +J||. On the
other hand, if we use Tietze's Extension Theorem to find a continuous extension h of fg
to K with ||h||« = || fol|0, then

[ +3] = [h+J]| < [h[eo = [ follo-

Thus p is an isometric isomorphism from C(K o) to C(K ) /J. "

LEMMA 4.4. Suppose K is a compact Hausdorff space and . is a regular Borel
measure on K . Let T be an integral operator on C(K') with a bounded kernel Kr. If
J € llat(T), then the operator T: C(K ) /J — C(K ) /J can be identified with an integral
operator.

ProoF. Suppose K is aclosed, and hence a compact, subset of K such that
J={f e C(K):f(t) =0forall t € Ko}.

Since K isaBorel subset of K , the restriction o of i to K iswell defined. Since Kt
is also bounded and measurable on Ky x K, we can define To on C(K ) by

Tofo(y) = /K Kr(y.0fo) duo) 'y € Ko.

Weclaimthat T = p*l'fp, wherepisasinLemma4.3, and hence T can beidentified with
the kernel operator To. To prove the claim, let fo € C(Ko). Then p~1Tp(fo) = (Tf)|k,,
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where f is any continuous extension of fo to K. Let e > 0 and use Lemma 4.2, with
X =K, Xy = Ky, and hy = fo, to find an extension h of fy to K such that

e Kr(y- 0RO du(®) — [ Kr(%-D 0 du(0)] <.
for al y € K. Since
(THIk,(Y) = (Th)[k,(Y) = /K Kr(y. h(t) du(t)

and
Tofo(y) = [ Kr(y:0To(®) duo(®) = f_Kr(y.1)fo(t) du(®).
for eachy € Ko, ||[p~1Tp(fo) — To(fo)||lso < €, and hence p~1Tp = Ty, asdesired. =
LEMMA 4.5. Assumeall the conditionsof Lemma 4.4. Then T|; can beidentified with
an integral operator.

ProOF. Let K beasin the Proof of Lemma4.4. Put U = K \ Ko, then U islocally
compact and J isisomorphic to Co(U). Infact 7: 3 — Co(U) defined by 7(f) = f|y isan
isometric isomorphism. Now for each g € Co(U) we have

7T|yr g = 7T|5f = (Tf)|u,

wheref € Jissuchthat f|y = g. But Tf(x) = 0, for al x € Ko, and, for eachx € U,
TH = [ Kre 0@ du®) = [ Kr(x g duu ).

where uy istherestriction of 1 to U, hence T|; can beidentified with anintegral operator
on Co(U). "
We are now ready to state and prove the main result of this paper.

THEOREM 4.6. Let K be a compact Hausdorff space and let 1. be a regular Borel
measureon K . Suppose S is a semigroup of quasinilpotent integral operatorson C(K)
by way of 11, each of whose member s has a non-negative bounded |ower -semicontinuous
kernel. Then S isideal-triangularizable.

ProoF. By Theorem 3.4, S is decomposable. Let J;, J, € Ilat(S) with J; € J» and
dim(J2/J1) > 2. Let S bethe compressionof S to C(K ) /J;. By Lemma4.4,each T € S
can beidentified with an integral operator on C(K o) by way of the regular Borel measure
1]k ., Where K is a closed subset of K such that

J={f eC(K):f(t) = 0forall t € Ko}.

By Lemmad.5, sinceJ,/J; € llatS for each T € S, each |y, 5,y can beidentified with
anon-negative integral operator on Co(Uo) by way of the regular Borel measure |y,
where Up = K \ Koo and K is a closed subset of K such that

J2/ 31 = {fo € C(Ko) : fo(t) = Oforall t € Kgo}.
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Since, for each T € S, the compression of 'I'/|32 of T|y, t0 J /1 is 'T'|(J2/Jl), and since for
such T, 'T'|( 3,/3,) IS aquasinilpotent operator, the semigroup

SJZ = {-’I\-l(Jz/Jl) . i- c S}

can be identified with a semigroup of quasinilpotent integral operators on Co(Uo) each
of whose members has a nonnegative lower-semicontinuous kernel. Therefore; S;, is
decomposable by Theorem 3.4. This shows that S is compressionally decomposable.
Therefore S is ideal-triangularizable by Theorem 3.13 of [2]. .
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