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Abstract

The Nash problem asks about the existence of a correspondence between families of arcs
through singularities of complex varieties and certain types of divisorial valuations. It
has been positively settled in dimension 2 by Fernández de Bobadilla and Pe Pereira,
and it was shown to have a negative answer in all dimensions >4 by Ishii and Kollár.
In this note we discuss examples which show that the problem has a negative answer
in dimension 3 as well. These examples also bring to light the different nature of the
problem depending on whether it is formulated in the algebraic setting or in the analytic
setting.

1. Introduction

The space of arcs through the singularities of a complex variety has finitely many irreducible
components, each of which is naturally associated to a divisorial valuation of the function field
of the variety. Every valuation arising in this way is essential for the singularity, in the sense that
its center in any resolution of singularities is an irreducible component of the inverse image of the
singular locus. The Nash problem asks whether, conversely, every essential valuation corresponds
to a component of the space of arcs through the singularities. This summarizes the main content
of Nash’s influential paper [Nas95], which has circulated as a preprint since the late 1960s.

The Nash problem has attracted the attention of the mathematical community for a long time,
and the surface case has finally been settled by Fernández de Bobadilla and Pe Pereira [FP11].
However, the problem has a negative answer in general: examples of essential divisorial valuations
that do not correspond to any irreducible component of the space of arcs through the singularities
were found in all dimensions >4 by Ishii and Kollár [IK03].

The purpose of this note is to extend the class of examples to dimension 3, the only dimension
not covered by these results. To this end, we study two examples. We first consider the affine
hypersurface in A4 of equation

(x2
1 + x2

2 + x2
3)x4 + x3

1 + x3
2 + x3

3 + x5
4 + x6

4 = 0.

It turns out that this gives a counter-example to the Nash problem in the category of algebraic
varieties but not in the category of complex analytic spaces. By degenerating the above equation
to

(x2
2 + x2

3)x4 + x3
1 + x3

2 + x3
3 + x5

4 + x6
4 = 0,

we then obtain an example that works in both categories.
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T. de Fernex

In the first example we provide two arguments to show that a certain divisorial valuation
is not in the Nash correspondence: the first argument uses a lemma from Ishii and Kollár’s
paper, and the second one relies on the simple observation that such valuation is not essential
in the analytic category. The same property is then deduced for the second example by
analyzing the deformation of the corresponding family of arcs. To prove that these valuations are
essential in the appropriate categories we take into account discrepancies and factoriality. The
distinction in the nature of the two examples is a consequence of the difference between being
Q-factorial in the Zariski topology and in the analytic topology.

For clarity of exposition, we will present one example at a time. Section 7 is devoted to a
discussion of the lemma of Ishii and Kollár. In the last section we briefly compare our results to
the recent paper [Kol12].

Unless otherwise stated, we work in the category of algebraic varieties over the field of
complex numbers; the complex analytic setting will also be considered. Everything discussed
in the algebraic setting holds more generally when the ground field is any algebraically closed
field of characteristic zero.

2. The Nash problem

Let X be an algebraic variety, and let J∞(X) be the space of formal arcs on X. This space is
defined as the inverse limit of the jet schemes Jm(X) of X, and thus J∞(X) is a scheme over C.
Its Zariski topology coincides with the limit topology [Gro66, (8.2.10)]. For more details on jet
schemes and arc spaces, we refer to [DL99, EM09, Nas95].

We mainly regard J∞(X) as a topological space, consisting of C-valued arcs

J∞(X) = {φ : Spec C[[t]]→X}.

Similarly, each mth jet scheme of X, as a set, consists of C-valued m-jets

Jm(X) = {γ : Spec C[t]/(tm+1)→X}.

There are canonically defined truncation maps

πX,m : J∞(X)→ Jm(X) and πX : J∞(X)→X,

where πX = πX,0 is the projection that maps an arc φ to its base point φ(0) ∈X.
A basic property that we will use several times is that if X is smooth and T ⊂X is an

irreducible closed subset, then π−1
X (T )⊂ J∞(X) is also irreducible. This property may fail if X

is singular.
Our focus is on the set of arcs through the singular locus Xsing of X, namely, the set

π−1
X (Xsing)⊂ J∞(X).

Relevant information about this set can be derived by looking at resolutions of singularities. The
following is an overview of some general results on the structure of this set, proven in [IK03,
Theorem 2.15] and [Nas95].

By definition, a resolution of singularities of X consists of a proper birational morphism
f : Y →X from a smooth variety Y . The exceptional locus Ex(f) of f is the complement of the
largest open set on which f induces an isomorphism.

Let f : Y →X be a resolution of singularities, and let E1, . . . , Ek be the irreducible
components of f−1(Xsing). For clarity of exposition, assume that f is an isomorphism over the
regular locusXreg ofX, so that Ex(f) = f−1(Xsing). Then the induced map f∞ : J∞(Y )→ J∞(X)
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is surjective and gives a continuous bijection

(J∞(Y ) r J∞(f−1(Xsing))) 1−1−−→ (J∞(X) r J∞(Xsing)).

Unless X is smooth and f is an isomorphism, the inverse of this map is not continuous. The
Nash problem is an effort to gain some understanding of how the topology changes.

Set-theoretically, we have

f∞(π−1
Y (f−1(Xsing))) = π−1

X (Xsing).

The set π−1
Y (f−1(Xsing)) is the union of the irreducible sets π−1

Y (Ej), and hence π−1
X (Xsing) has

finitely many irreducible components C1, . . . , Cs, each equal to the closure of some f∞(π−1
Y (Ej)).

Following the terminology of [Ish05], we shall refer to them as the Nash components.
The function field Ki of a Nash component Ci is an extension of the function field of X,

and thus the generic point αi of Ci, viewed as an arc αi : SpecKi[[t]]→X, defines a valuation
valαi on X (also denoted by valCi). If for some j the component Ej has codimension 1 in Y and
f∞(π−1

Y (Ej)) is dense in Ci, then valαi is just the divisorial valuation valEj given by the order of
vanishing at the generic point of Ej . In particular, since we can pick f such that f−1(Xsing) has
pure codimension 1, it follows that all valuations associated to Nash components are divisorial.
Note that each Ci is dominated by exactly one of the π−1

Y (Ej).
In general, if f : Y →X is an arbitrary resolution of singularities, then every valuation

corresponding to a Nash component Ci of π−1
X (Xsing) must have center in Y equal to an

irreducible component of f−1(Xsing). If we call essential divisorial valuation any divisorial
valuation on X whose center on every resolution f : Y →X is an irreducible component of
f−1(Xsing), then we obtain a map

{Nash components of π−1
X (Xsing)} −→ {essential divisorial valuations on X}.

This is the Nash map (cf. [Nas95]). It is clear by construction that the Nash map is injective,
and the question is whether it is surjective.

3. The analytic setting

Resolutions of singularities play an important role in the Nash problem: first of all, to prove
that there are only finitely many families of arcs through the singular locus, and furthermore to
define the notion of essential divisorial valuation. At the time of writing of [Nas95], resolution
of singularities was not yet known to exist for complex analytic varieties, and the treatment was
restricted to algebraic varieties. The existence of resolutions in the analytic setting was however
established a few years later, and it is thus natural to formulate the Nash problem in this setting
as well.

The arc space J∞(X) of a complex analytic variety X can be defined locally: if X is
defined by the vanishing of finitely many holomorphic functions hj(x1, . . . , xn) in an open
domain U ⊂ Cn, then J∞(X) is the set of n-ples of formal power series xi(t) ∈ C[[t]] such that
(x1(0), . . . , xn(0)) ∈ U and hj(x1(t), . . . , xn(t))≡ 0 for all j. The spaces of jets Jm(X) are defined
analogously, and are analytic spaces. Just like in the algebraic case, the arc space of an analytic
variety is the inverse limit of the jet spaces, and as such inherits the limit (analytic) topology.

It follows from the local description of arc spaces that if X is a complex analytic variety and
Xan is the associated analytic space, then the arc spaces J∞(X) and J∞(Xan) are in natural
bijection, and so are their jet spaces. The projections are also compatible, and hence if we
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extend to the analytic setting the notation introduced in the algebraic setting, then, under these
bijections, we have πXan,m = πX,m and πXan = πX . Note also that (Xan)sing =Xsing.

By [Gre66], the image of π−1
Xan((Xan)sing) in every Jm(Xan) is a constructible subset, and thus

its closure has a decomposition into a union of finitely many irreducible analytic subvarieties of
Jm(Xan). Such decomposition stabilizes for m� 1, and determines, in the limit, a decomposition
of π−1

Xan((Xan)sing) into the union of finitely many closed sets (see [Nas95]). We call these sets
the Nash components of π−1

Xan((Xan)sing). This decomposition agrees with the decomposition of
π−1
X (Xsing) into Nash components described in the previous section.

Still, the Nash problem depends on the choice of the category. This has to do with the notion
of essential divisorial valuation. The issue is that there may be resolutions of singularities given
by analytic spaces that are not schemes. We will see this occurring in the first of the two examples
discussed in this paper.

Every divisorial valuation valE on X induces a divisorial valuation on Xan, which, with slight
abuse of notation, we shall still denote by valE . (The converse is also true for valuations with
zero-dimensional centers; this may be relevant if X has isolated singularities.)

If we define essential divisorial valuations on an analytic variety analogously to our definition
of essential divisorial valuations in the algebraic setting, then the set of essential divisorial
valuations on an algebraic variety X may differ from the set of essential divisorial valuations on
the associated analytic variety Xan. However, since the spaces through the singularities of X
and of Xan are in natural bijection and so are their decompositions into Nash components, the
image of the Nash map is the same regardless of whether we work in the algebraic category or
in the analytic category. The situation is summarized in the following commutative diagram.

{Nash components of π−1
X (Xsing)} � � // {essential divisorial valuations on X}

_�

��
{divisorial valuations on Xan}

{Nash components of π−1
Xan((Xan)sing)} � � // {essential divisorial valuations on Xan}

?�
OO

The existence of more resolutions in the analytic category may result, for instance, from the
difference between the notion of factoriality (or, more generally, of Q-factoriality) in the two
topologies.

Recall that a normal algebraic variety X is factorial (respectively, Q-factorial) in the Zariski
topology if every Weil divisor on X is Cartier (respectively, Q-Cartier). Since every Weil divisor
defined on a Zariski open set of X extends to a divisor on X, this notion is local in the Zariski
topology. We say that Xan is (locally) factorial (respectively, Q-factorial) in the analytic topology
if for every Euclidean open set U ⊂Xan, every Weil divisor on U is Cartier (respectively, Q-
Cartier). Differently from the algebraic case, this notion is not global, as there may be Weil
divisors on U that do not extend to Weil divisors on Xan.

The following property must be well known. We give a proof for completeness.

Lemma 3.1. Let f : Y →X be a resolution of singularities of a normal algebraic variety
(respectively, of a normal analytic threefold). Assume that Ex(f) has an irreducible component
of codimension >2 in Y . Then X is not Q-factorial in the Zariski topology (respectively, in the
analytic topology).

Proof. Let C ⊂ Y be an irreducible curve that is contracted by f but is not contained in any
codimension 1 component of Ex(f).
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If X is an algebraic variety, then we take an affine open set V ⊂ Y intersecting C, and let
H ′ ⊂ V be a general hyperplane section intersecting C. The Zariski closure of H ′ in Y produces
an effective divisor H that is not exceptional for f and satisfies H · C > 0. If f∗H were Q-Cartier,
then we would have f∗f∗H =H +G where G is an effective f -exceptional Q-divisor, and thus
0 = f∗f∗H · C =H · C +G · C > 0, a contradiction. Therefore f∗H is not Q-Cartier, and hence
X is not Q-factorial in the Zariski topology.

If X is an analytic threefold, then C is an irreducible component of Ex(f). We consider a small
portion of hypersurface H ′ ⊂ Y transverse to C, defined locally using some analytic coordinates
centered at a general point of C. If U ⊂X is a sufficiently small Euclidean open neighborhood
of the point h(C) ∈X, then the restriction of H ′ defines a divisor H on f−1(U) that is not
exceptional over U and satisfies H · C > 0, and the conclusion follows as in the algebraic case. 2

Example 3.2. A typical example of a variety that is factorial in the Zariski topology but is not
even Q-factorial in the analytic topology is given by hypersurfaces in P4 with some (but not
too many) ordinary double points. Locally analytically, any such threefold X is isomorphic to
xy = zx near a singular point P . The ideal (x, z) is not principal but its vanishing defines a
divisor locally near P , hence Xan is not factorial in the analytic topology. If we blow up this
ideal near each singular point, and glue all charts back together, we obtain a small resolution
X ′→Xan in the analytic category, hence Xan is not even Q-factorial by Lemma 3.1. On the
other hand, if the number of points is small with respect to the degree, then X is factorial in
the Zariski topology, see [CD04, Che10, Cyn01]. In particular, X ′ cannot be a scheme. The point
is that the divisor defined locally by (x, z) near P does not extend to a global divisor on X. This
particular class of examples will appear below in the discussion of the first example.

4. Some results on the Nash problem

The main approach towards the Nash problem was first proposed by Lejeune–Jalabert in [LJ80],
and relies on the study of wedges on X, namely, maps Φ : Spec C[[s, t]]→X. Wedges can be
thought of as arcs on the arc space J∞(X), by viewing t as the parameter for the arcs on
X and s as a parameter for families of arcs. The basic idea is that if Ei and Ej are two
distinct prime divisors on a resolution f : Y →X such that f∞(π−1

Y (Ei)) is contained in the
closure of f∞(π−1

Y (Ej)), then one can detect this by a wedge Φ having Φ(0, −) ∈ f∞(π−1
Y (Ei))

and Φ(s, −) ∈ f∞(π−1
Y (Ej)) for s 6= 0. The Nash problem then reduces to a lifting problem for

wedges. The existence of such wedges is a deep fact which follows by the curve selection lemma
of Reguera [Reg06] (see also [FP12]).

In dimension 2, the essential divisorial valuations are those determined by the exceptional
divisors in the minimal resolution. The Nash problem was positively answered in this case by
Fernández de Bobadilla and Pe Pereira [FP11] (we refer to their paper for a list of references on
previous results in dimension 2); the proof of this result is a beautiful interplay of topological
methods and formal settings.

Theorem 4.1 [FP11]. For any surface, the Nash map is a bijection.

In higher dimensions, the Nash problem has been positively settled in a series of cases,
see [IK03, LR12, PPP08]. In general, however, we have the following negative result.

Theorem 4.2 [IK03]. In any dimension >4 there are varieties for which the Nash map is not
surjective.
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The examples given in [IK03] are based on the following idea. An isolated singularity O ∈X is
resolved by a sequence of two blow-ups Z→ Y →X, each extracting a single divisor. The divisor
E ⊂ Z extracted by the second blow-up is not birationally ruled, and thus must be essential.
It is however covered by lines L whose normal bundles NL/E have vanishing first cohomology.
This implies that the image on Y of any arc with contact order 1 with E can be slid away from
the image of E, along the exceptional divisor F ⊂ Y of the first blow-up. Therefore the image of
π−1
Z (E) in J∞(X) lies in the closure of the image of π−1

Y (F ◦) where F ◦ := F ∩ Yreg, and hence is
not dense in any irreducible component of π−1

X (O). This means that valE is not in the image of
the Nash map.

Here we show that the Nash problem has a negative answer in dimension 3 as well.

Theorem 4.3. There are varieties of dimension 3 for which the Nash map is not surjective.

The reason why in the examples given by Ishii and Kollár one needs to assume that the
dimension is at least 4 is that surfaces that are covered by rational curves are automatically
birationally ruled. To give examples in dimension 3, we follow a strategy similar to that of Ishii
and Kollár, and consider a 3-dimensional isolated singularity O ∈X that is resolved by a sequence
of two blow-ups Z→ Y →X. Using this approach, we will construct two examples that, in spite
of being deformations of each other, present different features.

The first example works in the category of algebraic varieties but not in the analytic setting.
In this example the exceptional divisor E is covered by lines with zero first cohomology of the
normal bundle, so that its valuation is not in the Nash correspondence; the fact that the valuation
is essential follows from reasons of discrepancies of the two exceptional divisors and factoriality
(in the Zariski topology) of the first blow-up Y . The argument on discrepancies can in fact be
used to give counter-examples in any dimension >4 without relying on deep results about certain
varieties not being birationally ruled.

The second example is obtained as a degeneration of the first one, and works in both
categories. The degeneration is used to reduce to a case where Y an is factorial in the analytic
topology. The fact that the valuation associated to E is not in the Nash correspondence is
deduced from the first example, by studying the deformation of the associated family of arcs.

5. First example

Theorem 5.1. The hypersurface in A4 = Spec C[x1, x2, x3, x4] defined by the equation

(x2
1 + x2

2 + x2
3)x4 + x3

1 + x3
2 + x3

3 + x5
4 + x6

4 = 0

gives a counter-example to the Nash problem in the category of algebraic varieties but not in
the category of analytic spaces.

Proof. This hypersurface, which we shall denote by X, has an isolated singularity of multiplicity
3 at O = (0, 0, 0, 0) ∈ A4. The blow-up of the maximal ideal

f : Y = BlO X →X

extracts one exceptional divisor F , given by the equation (x2
1 + x2

2 + x2
3)x4 + x3

1 + x3
2 + x3

3 =
0 in the exceptional divisor P3 = Proj C[x1, x2, x3, x4] of BlO A4→ A4. One can check that
the point P = (0 : 0 : 0 : 1) ∈ P3 is the only singular point of F . In the local chart U =
Spec C[u1, u2, u3, x4]⊂ Bl0 A4 where ui = xi/x4, we have P = (0, 0, 0, 0), and Y is defined by

u2
1 + u2

2 + u2
3 + x2

4 + u3
1 + u3

2 + u3
3 + x3

4 = 0.
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Then Y has an ordinary double point at P , and P is the only singular point of Y . The closure of
Y ∩ U in P4 = Proj C[u0, u1, u2, u3, x4] is a cubic threefold with only one ordinary double point
as singularity, and is thus factorial in the Zariski topology (see [CD04, Cyn01]). Therefore Y is
factorial in the Zariski topology. The blow-up

g : Z = BlP Y → Y

extracts one exceptional divisor E which is a smooth quadric surface, defined by u2
1 + u2

2 + u2
3 +

x2
4 = 0, in the exceptional divisor P3 = Proj C[u1, u2, u3, x4] of BlP U → U . We claim that E gives

an example of an essential divisorial valuation on X that is not in the image of the Nash map.
We start by showing that E defines an essential divisorial valuation on X (in the category

of algebraic varieties). This will be followed by a discrepancy computation. For a prime divisor
D on a normal birational model V →X we denote by kD(X) := ordD(KV/X) the discrepancy
of D over X. Here KV/X is the relative canonical divisor, which is well defined because X is
normal and Gorenstein (being a hypersurface). Recall that the discrepancy only depends on the
valuation valD, so that if V ′→X is a different normal birational model and the proper transform
of D on V ′ is a divisor D′, then kD(X) = kD′(X). In particular, the symbol kD(X) is defined for
a prime divisor D on any normal model V birational to X.

The discrepancy of a divisor extracted by blowing up a hypersurface singularity can be
computed by blowing up the smooth ambient space and using the adjunction formula. In our
situation, we have

kF (X) = 0 and kE(X) = 1.
Bearing in mind that Z is both a resolution of X and a resolution of Y , we see that O ∈X is a
canonical singularity and Y has terminal singularities. Denoting by mO ⊂OX the maximal ideal
of O, one can check from the defining equation that

valE(mO) = 1.

Then the fact that valE is essential is a consequence of the following general lemma.

Lemma 5.2. Let X be a 3-dimensional algebraic variety having an isolated canonical singularity
at a point O. Suppose that the blow-up of X at O is Q-factorial (in the Zariski topology) and has
terminal singularities, and that the (reduced) exceptional divisor F of the blow-up is irreducible.
Then every divisorial valuation valE over X such that kE(X) = 1 and valE(mO) = 1 is an essential
valuation (in the category of algebraic varieties).

Proof. Suppose by contradiction that valE is not essential. Then there is a resolution of
singularities

p :X ′→X

such that the center C ⊂X ′ of valE is properly contained in an irreducible component of the
exceptional locus Ex(p). Since the singularity of X is canonical, every p-exceptional divisor has
nonnegative discrepancy, and therefore the relative canonical divisor KX′/X is effective. Hence,
if q : V →X is another resolution which factors through p, and r : V →X ′ is the induced map,
then KV/X =KV/X′ + r∗KX′/X >KV/X′ . This implies that kE(X) > kE(X ′). By the chain of
inequalities

1 = kE(X) > kE(X ′) > codimX′(C)− 1 > 1
we conclude that C is a curve and kE(X) = kE(X ′). Then C must be contained in some
codimension one component of Ex(p), and any such component must have discrepancy zero
over X. Since the blow-up Y := BlO X has terminal singularities, valF is the only divisorial
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valuation whose discrepancy can be zero. Therefore valF must have discrepancy zero, and C is
contained in exactly one exceptional divisor F ′ of p, equal to the proper transform of F (that is,
such that valF ′ = valF ).

The assumption that valE(mO) = 1 implies that p−1mO · OX′ = a · OX′(−F ′) where a⊂OX′
is an ideal sheaf whose vanishing locus does not contain C. After further blowing up a, we may
assume without loss of generality that a is locally principal: this reduction step is allowed because
it does not affect the fact that the center of valE is a curve contained in the proper transform
of F and in no other divisor that is exceptional over X. Then, by the universal property of the
blow-up, p factors through a morphism

h :X ′→ Y.

Note that h(C) = P . Since F ′ is the only p-exceptional divisor containing C, and h(F ′) = F ,
the curve C is not contained in any h-exceptional divisor. Therefore C is an irreducible component
of Ex(h). By Lemma 3.1, this contradicts the fact that Y is Q-factorial. We conclude that valE
is an essential valuation on X. 2

The reason why the valuation is not essential in the analytic category is that the analytic
space Y an associated to Y admits small resolutions in the analytic category (cf. Example 3.2).
Such models are proper over Xan and thus give analytic resolutions of singularities of Xan. If
Y ′→ Y an is one of these small resolutions, then the exceptional curve C ′ ⊂ Y ′ is equal to the
center of valE , and is fully contained in the proper transform of F an, which is an exceptional
component over Xan.

It remains to check that valE is not in the Nash correspondence. This is immediate from
the fact that valE is not analytically essential over Xan, since such a property implies that the
valuation cannot be in the image of the Nash map (in either category). 2

Remark 5.3. One can also see that valE is not in the Nash correspondence directly, without
passing to the analytic setting, by following the same arguments as [IK03]. We briefly recall the
argument.

Let ψ : Spec C[[t]]→ Z be any formal arc on Z with contact order 1 along E, and let

φ : Spec C[[t]]→ Y

be its image on Y . Let L⊂ E ∼= P1 × P1 be the line through ψ(0) in one of the two rulings. Since
NL/E ∼=OP1 , we have H1(L,NL/E) = 0. Thus [IK03, Lemma 4.2] (cf. Lemma 7.1 below) applies,
and the arc φ extends to a smooth wedge

Φ : Spec C[[s, t]]→ Y.

The arc φ has base at P but is not fully contained in F . Since F is a Cartier divisor, the pull-
back Φ∗F is a curve on Spec C[[s, t]]. By translating the arc {s= 0} ⊂ Spec C[[s, t]] to the generic
point of this curve, we obtain an arc on Y (over a 1-dimensional function field) with finite
order contact along F away from P , which specializes to φ. Letting F ◦ := F ∩ Yreg = F r {P},
this implies that g∞(π−1

Z (E)) is contained in the closure of π−1
Y (F ◦) in J∞(Y ), and therefore

(f ◦ g)∞(π−1
Z (E)) is contained in the closure of f∞(π−1

Y (F ◦)) in J∞(X). This proves that valE
does not correspond to any irreducible component of the space of arcs in X through O.

It should be noted that the property that g∞(π−1
Z (E)) is contained in the closure of π−1

Y (F ◦)
is a priori a stronger property than having an inclusion of (f ◦ g)∞(π−1

Z (E)) in the closure
of f∞(π−1

Y (F ◦)), and it cannot be deduced, for instance, by simply knowing that valE is not
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essential, in the analytic category, over Xan. This stronger property will be useful in the study
of the second example.

6. Second example

Theorem 6.1. The hypersurface in A4 = Spec C[x1, x2, x3, x4] defined by the equation

(x2
2 + x2

3)x4 + x3
1 + x3

2 + x3
3 + x5

4 + x6
4 = 0

gives a counter-example to the Nash problem in the categories of both algebraic varieties and
analytic spaces.

Proof. Consider the family of affine hypersurfaces in A4 = Spec C[x1, x2, x3, x4] defined by

(λx2
1 + x2

2 + x2
3)x4 + x3

1 + x3
2 + x3

3 + x5
4 + x6

4 = 0, λ ∈ C.

Let X denote the total space of the family, which we view as a scheme over A1. The hypersurface
studied in the previous section appears in this family when λ= 1; the same conclusions we
draw for X1 hold however for Xλ for every λ 6= 0. Here we focus on the central fiber X0 of the
deformation.

Consider the blow-up
f : Y = BlO X →X ,

where O = {O} × A1, and let F be its exceptional divisor. Then consider the section P =
{P} × A1 ⊂ Y, where P = (0, 0, 0, 0) in the local chart U = Spec C[u1, u2, u3, x4]⊂ BlO A4 with
ui = xi/x4, and let

g : Z = BlP Y →Y
be its blow-up, with exceptional divisor E . Since the multiplicity of Xλ at Oλ is the same for all
λ, each fiber Yλ is the blow-up of Xλ at Oλ. Similarly, the multiplicity of Yλ at Pλ is independent
of λ, and each Zλ is the blow-up of Yλ at Pλ.

For simplicity, throughout this section we shall denote

X := X0, Y := Y0, Z := Z0, F := F0, E := E0.

Then Y is defined by
u2

2 + u2
3 + x2

4 + u3
1 + u3

2 + u3
3 + x3

4 = 0
in the chart U , and P is the only singular point of Y . The exceptional divisor E extracted by
the blow-up Z = BlP Y → Y is the quadric cone of equation u2

2 + u2
3 + x2

4 = 0 and vertex at
Q= (1 : 0 : 0 : 0) in P3 = Proj C[u1, u2, u3, x4]. In the local chart V = Spec C[u1, v2, v3, v4]⊂
BlP U where vi = ui/u1 (here we set u4 = x4), we have Q= (0, 0, 0, 0), and Z is defined by

u1 + v2
2 + v2

3 + v2
4 + u1(v3

2 + v3
3 + v3

4) = 0.

This shows that Z is smooth at Q. Since there is no singular point in any of the other charts, Z
is a resolution of X. Note, in particular, that every fiber Zλ, for λ ∈ A1, is regular, and Z is flat
over A1. Therefore Z is smooth over A1.

Lemma 6.2. The valuation valE is essential both in the algebraic category and in the analytic
category.

Proof. The fact that valE is essential in the algebraic category follows by the same arguments
as in the previous section. The proof that the valuation is also essential in the analytic category
is similar, and only requires some adaptation.
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First, we claim that Y an is locally analytically factorial at P . To see this, let Y ◦ ⊂ Y an

be an arbitrary Euclidean open neighborhood of P , and let Z◦→ Y ◦ denote the restriction of
Zan→ Y an. Let D be any divisor on Y ◦, and let D′ be its proper transform in Z◦. Recall that
Ean is isomorphic to a singular quadric hypersurface in P3 and its Picard group is generated
by the hyperplane class OEan(1). The normal bundle of Ean in Z◦ is isomorphic to OEan(−1)
(this can be checked by computing the normal bundle of the exceptional divisor extracted by the
blow-up of BlO A4 at P and restricting to Z). Then OZ◦(D′ +mEan) restricts to the trivial line
bundle on Ean for some positive integer m. Since Z◦→ Y ◦ is a rational resolution, it follows by
the same arguments as in the proof of [KM92, Proposition 12.1.4] that OZ◦(D′ +mEan) restricts
to the trivial bundle on the inverse image of a small contractible neighborhood of P ∈ Y ◦. This
implies that OZ◦(D′ +mEan) is the pull-back of a line bundle on Y ◦, and therefore that D is
Cartier.

Suppose that valE is not essential over Xan. Let p :X ′→Xan be a resolution of singularities
such that the center C of valE is strictly contained in some irreducible component of the
exceptional locus Ex(p).

The computations of discrepancies are the same as in the algebraic setting, and the same
argument as in the proof of Lemma 5.2 shows that C is a curve, the proper transform F ′ of
F an is the only component of Ex(p) containing C, and writing p−1mO · OX′ = a · OX′(−F ′), C
is not contained in the vanishing locus of a (since C is actually projective, a can only vanish
at finitely many points on C). The ideal sheaf p−1mO · OX′ (viewed here as a sheaf of ideals
in the analytic topology) is finitely generated by global holomorphic functions on X ′, and so a

is finitely generated by global sections of OX′(F ′). We can thus blow up a and further resolve
the singularities. After performing this reduction, we can assume without loss of generality that
p−1mO · OX′ is an invertible sheaf. The universal property of the blow-up can be applied to our
setting and therefore p factors through an analytic map h :X ′→ Y an. Just like in the algebraic
case, C is a one-dimensional irreducible component of the exceptional locus of h. By Lemma 3.1,
this implies that Y an is not Q-factorial in the analytic topology.

We get a contradiction, and therefore valE must be essential in the analytic setting, too. 2

To prove that valE is not in the image of the Nash map, we use what we already know about
the first example, by looking at the family of arcs associated to valE as limits of families of
arcs on the nearby fibers Xλ. In order to formalize this, we work in the category of schemes. As
explained in § 3, the property of a divisorial valuation being in the image of the Nash map is
independent of the category we work in, so it suffices to study the problem in the category of
schemes.

In the following, let

F◦ := F r {P} and F ◦ := F r {P}.

Consider the images of the sets π−1
Z (E) and π−1

Y (F ◦) in J∞(X). We need to check that the first
image is contained in the closure of the latter.

The idea is simple: if, for λ 6= 0, one family of arcs is a specialization of the other family, then
the same should hold, by degeneration, on the central fiber X = X0. Specifically, we know by the
previous example that, for λ 6= 0, (fλ ◦ gλ)∞(π−1

Zλ (Eλ)) is contained in the closure of the image of
(fλ)∞(π−1

Yλ (F◦λ)). We would like to show that this property is preserved when we let λ degenerate
to 0. For this to work, we need to know that the closure of (fλ)∞(π−1

Yλ (F◦λ)) degenerates to the
closure of (f0)∞(π−1

Y (F ◦)). This is the key point that we need to prove.
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At least intuitively, there is a good reason why it should be expected. The point is that, for
every λ, we have

π−1
Xλ (Oλ) = ((fλ ◦ gλ)∞(π−1

Zλ (Eλ))) ∪ ((fλ)∞(π−1
Yλ (F◦λ))),

and even though the two sets in the right-hand side (or, more precisely, their closures)
have infinite dimension, their codimensions in J∞(Xλ) are finite. (These codimensions can be
computed in terms of the Mather discrepancies of the two divisors, see [FEI08, Theorem 3.9].)
For every λ, the codimension of (fλ ◦ gλ)∞(π−1

Zλ (Eλ)) is strictly larger than the codimension
of (fλ)∞(π−1

Yλ (F◦λ)). If, furthermore, we knew that when we let (fλ)∞(π−1
Yλ (F◦λ)) degenerate,

the codimension of each irreducible component over λ= 0 could not exceed the codimension
of a general fiber of the deformation, then we could easily conclude that the central fiber is
irreducible and must coincide with the closure of (f0)∞(π−1

Y (F ◦)), and that (f0 ◦ g0)∞(π−1
Z (E))

must be contained in it. It is however unclear to us whether such a semi-continuity property
holds in the infinite-dimensional setting.

For this reason, we reduce to working in the finite dimensional setting, by taking images at the
finite jet levels. A technical difficulty arises: due to the singularity of X, the fibers π−1

X,m(O) (where
τX,m : Jm(X)→X denotes the canonical projection) have larger than expected dimensions, and
the maps π−1

X (O)→ τ−1
X,m(O) are not dominant. So, we work over Y, which is less singular,

and use the inclusion of (gλ)∞(π−1
Zλ (Eλ)) in the closure of π−1

Yλ (F◦λ) (which holds for λ 6= 0, see
Remark 5.3). This will give us enough room to compensate for the extra dimensions in our
computations.

Closing this digression, let us consider the relative arc space J∞(X/A1) and the relative
jet spaces Jm(X/A1) of X over A1, which respectively parameterize the following commutative
diagrams.

Spec C[[t]]

��

φ // X

��

Spec C[t]/(tm+1)

��

γ // X

��
Spec C // A1 Spec C // A1

We denote the canonical projections by

πX/A1,m : J∞(X/A1)→ Jm(X/A1) and πX/A1 : J∞(X/A1)→X .

We define similar spaces and maps for Y and Z. Note that for every λ ∈ A1 there are natural
identifications J∞(X/A1)λ = J∞(Xλ) and Jm(X/A1)λ = Jm(Xλ), and similarly for Y and Z.

There is a commutative diagram

J∞(Z/A1)

πZ/A1

��

g∞ // J∞(Y/A1)

πY/A1

��

f∞ // J∞(X/A1)

πX/A1

��
Z

g // Y
g // X

where g∞ and f∞ are canonically induced by g and f , and restrict to each fiber over A1 to the
corresponding maps (gλ)∞ and (fλ)∞. We have

(π−1
Z/A1(E))λ = π−1

Zλ (Eλ) and (π−1
Y/A1(F◦))λ = π−1

Yλ (F◦λ) for all λ.
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If λ 6= 0, then (gλ)∞(π−1
Zλ (Eλ)) is contained in the closure of π−1

Yλ (F◦λ) (see Remark 5.3), and since
Z is smooth over A1, π−1

Z/A1(E) is irreducible. Therefore g∞(π−1
Z/A1(E)) is contained in the closure

of π−1
Y/A1(F◦).

Lemma 6.3. The fiber over 0 ∈ A1 of the closure of π−1
Y/A1(F◦) in J∞(Y/A1) is equal to the

closure of π−1
Y (F ◦) in J∞(Y ). That is:

(π−1
Y/A1(F◦))0 = π−1

Y (F ◦).

Proof. For short, let

Sm := πY/A1,m(π−1
Y/A1(F◦)) and Sm := πY,m(π−1

Y (F ◦))

where the closures are taken in the respective jet spaces Jm(Y/A1) and Jm(Y ). By the definition
of the inverse limit topology on arc spaces, we have

π−1
Y/A1(F◦) =

⋂
m

π−1
Y/A1,m(Sm) and π−1

Y (F ◦) =
⋂
m

π−1
Y,m(Sm).

It is therefore enough to show that for every m the fiber of Sm over 0 ∈ A1 is equal to Sm. The
inclusion Sm ⊂ (Sm)0 is clear, and we need to show the reverse inclusion.

Suppose by contradiction that Sm ( (Sm)0, and let T be an irreducible component of (Sm)0
that is not equal to Sm. Since (Sm)0 agrees with Sm over Yreg, T must be contained in the fiber
over P ∈ Y .

For λ 6= 0, the set (Sm)λ is equal to the closure of τ−1
Yλ,m(F◦λ) where τYλ,m : Jm(Yλ)→Yλ is the

canonical projection. Note that τ−1
Yλ,m(F◦λ) is an irreducible codimension 1 subset of Jm((Yλ)reg),

which is 3(m+ 1)-dimensional, hence it has dimension 3(m+ 1)− 1. Therefore (Sm)λ, for λ 6= 0,
is irreducible and has dimension 3(m+ 1)− 1. Since Sm→ A1 is a surjective morphism from a
variety, the dimension of T is at least the dimension of a general fiber over A1, and hence

dim T > 3(m+ 1)− 1.

Consider the set

π−1

Ã4,m
(T )⊂ J∞(Ã4)

where we use the notation Ã4 := BlO A4 for short. This set is contained in the fiber over P ∈ Ã4

and has codimension 6m+ 2 in J∞(Ã4). Denote by IY the ideal sheaf of Y and by mP the
maximal ideal of P in Ã4, fix n>m, and let P (n)

Y := V (IY + mn+1
P )⊂ Ã4 be the nth neighborhood

of P in Y . Since Jm(P (n)
Y ) and Jm(Y ) have the same fiber over P , we have T ⊂ Jm(P (n)

Y ). Then
π−1

Ã4,m
(T ) is contained in the contact locus

π−1

Ã4,m
(Jm(P (n)

Y )) = {α ∈ J∞(Ã4) | valα(IY + mn+1
P ) >m+ 1}.

Let C be an irreducible component of this contact locus that contains π−1

Ã4,m
(T ). Note that C

lies over P and has codimension 6m+ 2. It follows from [ELM04, Theorem A] that there is a
prime exceptional divisor D over Ã4 with center P , and a positive integer q, such that

q · (kD(Ã4) + 1) = codim(C, J∞(Ã4)) 6m+ 2

and

q · valD(IY + mn+1
P ) = valC(IY + mn+1

P ) >m+ 1.
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Therefore the divisor D has log discrepancy

aD(Ã4, P
(n)
Y ) := kD(Ã4) + 1− valD(IY + mn+1

P ) 6 1

over the pair (Ã4, P
(n)
Y ).

This is however impossible because P (n)
Y ⊂ Y and the pair (Ã4, Y ) has minimal log discrepancy

2 at P , which can be checked as follows (we refer to [Amb99] for the definition and general
properties of minimal log discrepancies). Consider the sequence of two blow-ups (Ã4)′′→ (Ã4)′→
Ã4, where the first blow-up is centered at the point P (hence the proper transform of Y is equal
to Z), and the second blow-up is centered at the point Q. The pull-back of Y on (Ã4)′′ is a
simple normal crossing divisor, and the log discrepancies of the two exceptional divisors over
(Ã4, Y ) are 2 and 4, respectively. The minimal log discrepancy is just the minimum of these two
numbers.

This completes the proof of the lemma. 2

We can now finish the proof of the theorem. We saw that the image of π−1
Z/A1(E) in J∞(Y/A1)

is contained in the closure of π−1
Y/A1(F◦). By the lemma, if we restrict this inclusion to the fiber

over 0 ∈ A1 we then obtain that the image of π−1
Z (E) in J∞(Y ) is contained in the closure of

π−1
Y (F ◦). Mapping down to J∞(X), we conclude that the image of π−1

Z (E) in J∞(X) is contained
in the closure of the image of π−1

Y (F ◦). This completes the proof that valE is not in the Nash
correspondence. 2

7. On Ishii–Kollár’s smooth wedge construction

This section is devoted to a discussion of the following lemma due to Ishii and Kollár. The
discussion given below provides a different viewpoint on this interesting property which might
lead to more general formulations being found.

While the lemma can be avoided in the proof of Theorem 5.1, it leads to a stronger property
that is used in the proof of Theorem 6.1. More precisely, in the notation of the proof of
Theorem 5.1, the lemma implies that g∞(π−1

Z (E)) is contained in the closure of π−1
Y (F ◦). This

property does not follow, formally, from the inclusion of (f ◦ g)∞(π−1
Z (E)) in the closure of

f∞(π−1
Y (F ◦)).

Lemma 7.1 [IK03, Lemma 4.2]. Let Y ⊂ An+1 be a hypersurface with an isolated singularity
at a point P , and suppose that the exceptional divisor E of the blow-up

Z = BlP Y → Y

is a reduced, irreducible hypersurface in the exceptional divisor Pn of BlP An+1→ An+1. Let
ψ : Spec C[[t]]→ Z be an arc with contact order 1 along E, and assume that there is a line
L⊂ E ⊂ Pn through ψ(0) such that H1(L,NL/E) = 0. Then the image φ : Spec C[[t]]→ Y of ψ
in Y extends to a smooth wedge Φ : Spec C[[s, t]]→ Y .

The proof given in [IK03] goes by constructing the wedge directly on Y , by lifting solutions
modulo powers of (s, t). Here we discuss an alternative approach by means of formal geometry:
the rough idea is to construct a blown-up wedge on Z in such a way that the map induced
by Z→ Y is just the contraction of a (−1)-curve to a smooth wedge. As explained below, our
approach does not allow us to prove the full strength of the lemma.

Since L∼= P1, by Birkhoff–Grothendieck’s theorem NL/E decomposes as the direct sum of line
bundles. The vanishing of the first cohomology of NL/E implies that each of these line bundles
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has degree >− 1, and the fact that NL/E injects into NL/Pn ∼=OL(1)⊕n−1 implies that all degrees
are 61. Therefore we can write the decomposition as follows:

NL/E ∼=
n−1⊕
i=2

OL(−ai) where − 1 6 ai 6 1.

In the following, we shall assume that ai > 0 for all i. This condition is satisfied in the first
example discussed in this paper; it is also satisfied whenever E is a general hypersurface of degree
n− 1 in Pn and L is a general line in E, a case which suffices to construct counter-examples to
the Nash problem in all dimensions >3.

We have NE/Z |L =OL(−1) since L is a line in Pn, and thus Ext1(NE/Z |L,NL/E) = 0, which
yields the splitting of the normal bundle

N :=NL/Z ∼=OL(−1)⊕OL(−a2)⊕ · · · ⊕ OL(−an−1).

Let N := Spec S(N ∗) denote the total space of the normal bundle N , and let L(∞)
N and L

(∞)
Z

be the formal neighborhoods of L in N and Z. The obstructions to construct an isomorphism
between the two formal neighborhoods are in the groups H1(L,N ⊗ Sd(N ∗)) for d> 2, see
[ABT09, Remark 4.6], which in our case are all trivial. We can therefore choose an isomorphism
of formal neighborhoods

τ : L(∞)
N

∼=−→ L
(∞)
Z .

The scheme L(∞)
N is covered by two affine charts

L
(∞)
N = Spf C[z][[v1, v2, . . . , vn−1]] ∪ Spf C[1/z][[v1z, v2za2 , . . . , vn−1z

an−1 ]].

Here the variable z is an affine parameter along L, and v1 (in the first chart) corresponds to the
frame induced by the first summand OL(−1). Suppose that ψ(0) has coordinate z = 0 in L. The
restriction of the arc φ to the formal neighborhood of L can be written as an n-ple of power
series

(z(t), v1(t), . . . , vn−1(t)) ∈ (C[[t]])n

where z(0) = v1(0) = · · ·= vn−1(0) = 0, and v′1(0) 6= 0. The nonvanishing of v′1(0) is a consequence
of the fact that the arc ψ has order of contact 1 with E.

Next consider the formal neighborhood L
(∞)
M of L in the total space M of the line bundle

OL(−1). We can write

L
(∞)
M = Spf C[s/t][[t]] ∪ Spf C[t/s][[s]].

Setting z = s/t and vi = vi(t), we obtain compatible maps

C[z][[v1, v2, . . . , vn−1]]→ C[s/t][[t]], C[1/z][[v1z, v2za1 , . . . , vn−1z
an−1 ]]→ C[t/s][[s]].

These are well defined because t divides vi(t) for all i. By gluing together and composing with
τ , we obtain a morphism

Ψ : L(∞)
M → Z

whose image contains every truncated jet of ψ. The fact that v′1(0) 6= 0 implies that Ψ is injective
and that pulls L back to the zero section of L(∞)

M . Note on the other hand that we have a morphism

σ : L(∞)
M → Bl(0,0) Spec C[[s, t]]→ Spec C[[s, t]]

given in the two charts of L(∞)
M by the inclusions C[[s, t]][s/t]⊂ C[s/t][[t]] and C[[s, t]][t/s]⊂

C[t/s][[s]]. Since σ(L(∞)
M ) contains all finite neighborhoods Spec C[s, t]/(s, t)k of the origin in
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Spec C[[s, t]], Ψ induces a map

Φ : Spec C[[s, t]]→ Y

which, by construction, is a smoothly embedded wedge extending the arc φ.

8. Kollár’s examples

After the first version of this paper was made public, more counter-examples in dimension 3 were
found by Kollár [Kol12]. This section was added, following a suggestion by one of the referees,
to compare our examples and technique of proof to those of Kollár.

The paper [Kol12] studies 3-dimensional cA1-type singularities, which are locally defined by

x2
1 + x2

2 + x2
3 + xm4 = 0, m> 2.

LetXm denote such a hypersurface, and let O ∈Xm be the singular point. It was shown in [Nas95]
that these singularities have at most two essential valuations, and the precise count (exactly two
essential valuations if m is odd and >5, only one otherwise) is obtained by a generalization of
Lemma 5.2. The Morse lemma with parameters is then used, in combination with an inductive
argument on the number of blow-ups resolving the singularity, to prove that, for every m> 2,
the set π−1

Xm
(O) is irreducible. It follows that Xm gives a counter-example to the Nash problem

for all odd m> 5.
Comparing our methods to those of [Kol12], the main difference lies in the proof of the

irreducibility of the family of arcs through the singularity.
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