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Asymptotics

This chapter discusses some basic consequences of the notion of asymptotic

simplicity introduced in Chapter 7. As already mentioned, the main motivation

behind this definition is to provide a characterisation of a broad class of

spacetimes in which universal structures can be identified. Once this has been

done, the idea is to use these structures to define in a rigorous manner concepts

of physical interest.

The characterisation of the gravitational field through the analysis of its

asymptotic behaviour has a long tradition dating back to the early works by

Bondi et al. (1962), Sachs (1962b) and Newman and Penrose (1962). These

studies culminated in the identification of gravitational radiation as a real

physical phenomenon. The developments of this classical theory have been

treated extensively in the literature; see, for example, Geroch (1976), Penrose and

Rindler (1986), Stewart (1991) and Frauendiener (2004). The readers interested

in the historic development of this idea are referred to Kennefick (2007).

Despite the important insights provided by the classical theory of asymptotics

of general relativity, this approach has the weakness of being, to some extent,

formal. More precisely, it relies on a number of assumptions about the nature

of solutions to the Einstein field equations – say, for example, the regularity

of the conformal boundary – which are hard to verify for a suitably large class

of spacetimes. This point is key: the theory of asymptotics of the gravitational

field comes fully into life when combined with the (conformal) field equations

and methods of the theory of partial differential equations. This remark does

not disown the fundamental insights into the behaviour of the gravitational field

that formal asymptotic analyses have produced, but rather insists on the need

to carry the subject further.

Arguably, the most important consequence of asymptotic simplicity is the

set of results collectively known as peeling – that is, a detailed description

of the asymptotic behaviour of the gravitational field expressed in terms of the

components of the Weyl tensor. The peeling behaviour is the main subject of this
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chapter. The basic assumptions behind the peeling results are the main subject

of Chapter 20. Complementary to the discussion of the peeling behaviour, this

chapter contains a detailed discussion of a gauge prescription for the analysis of

the structure of the gravitational field at the conformal boundary of Minkowski-

like spacetimes, the so-called NP gauge. The chapter concludes with a brief

overview of other aspects of the theory of the asymptotics of the gravitational

field which are sligthly outside the main focus of this book: the Bondi mass, the

BMS group and the so-called Newman-Penrose constants.

10.1 Basic set up: general structure of the conformal boundary

In what follows let (M̃, g̃) be an asymptotically simple spacetime in the sense of

Definition 7.1 and let (M, g,Ξ) denote an associated conformal extension. As in

Section 7.1, let I denote part of the conformal boundary characterised by the

requirements

Ξ = 0, dΞ �= 0. (10.1)

Much of the analysis of the present chapter is based on the evaluation of the

various conformal field equations at I . In what follows, the notation � will be

used to indicate that a certain equality holds at I . In terms of this notation, the

conditions in (10.1) can be rewritten as

Ξ � 0, dΞ �� 0.

The basic observation concerning the set I is that its causal nature is

determined by the sign of the cosmological constant λ. This result follows from

a direct inspection of the conformal Einstein field equations; see, for example,

Equations (8.26a)–(8.26e) in Section 8.2.5. One has that:

Theorem 10.1 (causal nature of the conformal boundary) Suppose that

the Friedrich scalar s is finite at I and that T = o(Ξ−4). Then I is a null,

spacelike or timelike hypersurface, respectively, depending on whether λ = 0,

λ < 0 or λ > 0.

Proof The normal to the hypersurface I is given by∇aΞ. From Equation (8.24)

one directly has that

∇aΞ∇aΞ � −1

3
λ, (10.2)

as by hypothesis Ξ4T → 0 if Ξ → 0 and s is finite at I .

A discussion of the order symbols o and O used in the previous and other

results of this chapter can be found in the Appendix to Chapter 11.

Remark. Spacetimes with λ = 0 will be said to be Minkowski-like, those with

λ < 0 de Sitter-like and those with λ > 0 anti-de Sitter-like.
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224 Asymptotics

The regularity of s at I can be rephrased in terms of a sufficiently rapid decay

of the physical energy-momentum tensor T̃ab. Using the conformal field Equation

(8.13) it follows that a sufficient condition for ∇a∇bΞ and s to be finite at I is

that T{ab} = o(Ξ−3). In this case one concludes that

∇a∇bΞ � sgab. (10.3)

It follows from the transformation formulae of the energy-momentum tensor,

Equation (9.2), that if T{ab} = o(Ξ−3), then, in fact, T̃{ab} = O(Ξ3); see also the

discussion in Stewart (1991). If, in addition, one has that R is finite at I , then

expression (10.3) reduces to

∇a∇bΞ � 1

4
∇c∇cΞgab.

The spinorial version of the above expression is

∇A(A′∇B′)BΞ � 0. (10.4)

The latter is usually known as the asymptotic Einstein condition ; see, for

example, Penrose and Rindler (1986).

10.1.1 Topology of the conformal boundary

As will be seen in Chapter 15, there exists considerable freedom in the

specification of the topology of de Sitter-like spacetimes. By contrast, the case

of a vanishing cosmological constant is much more restrictive:

Theorem 10.2 (topology of I for asymptotically Minkowskian space-

times) Let (M̃, g̃) denote an asymptotically simple spacetime with λ = 0 and let

(M, g,Ξ) denote a conformal extension thereof. Then I consists of two disjoint

components I − and I +, each one having the topology of R× S2.

A discussion of the proof of the above theorem goes beyond the scope of this

book. The interested reader is referred to Newman (1989) for a proof and for a

discussion on pitfalls in earlier arguments in Penrose (1965) and Geroch (1971b,

1976); see also Hawking and Ellis (1973). Remarkably, this result depends on

the satisfactory resolution of the so-called Poincaré conjecture; see, for example,

Gowers (2008) for an introduction to this (now solved) classical problem in

mathematics. Vacuum spacetimes with a vanishing cosmological constant and a

conformal infinity with sections which are toroidal, that is, having the topology

of R × S × S have been considered in the literature; see Schmidt (1996). Note

that as a consequence of Theorem 10.2 these spacetimes must exhibit some type

of pathology – and, in particular, they cannot be asymptotically simple.

The behaviour of points in the conformal extension of an asymptotically simple

spacetime for which both Ξ = 0 and dΞ = 0 will be analysed from various

perspectives in Chapters 16, 18 and 20.

https://doi.org/10.1017/9781009291347.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.013
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10.1.2 Further properties of the case λ = 0

In this section let λ = 0 throughout so that the asymptotically simple spacetime

(M̃, g̃) has a null conformal boundary. For ease of the exposition, attention is

restricted to the vacuum case.

As a consequence of Theorem 10.1 the physical spacetime manifold M̃ must

lie either towards the past or the future of I – intuitively, this assertion seems

natural; however, a detailed argument requires the ideas of the discussion on

Lorentzian causality in Chapter 14. Consistent with the discussion of conformal

extensions of exact solutions in Chapter 6, I + (i.e. future null infinity) will

denote the set on which null geodesics attain a future endpoint while I − (i.e.

past null infinity) corresponds to the set of past endpoints of null geodesics. A

null hypersurface has the property of being generated by null geodesics; that is,

each p ∈ I ± lies on exactly one null geodesic which is everywhere tangent

to I ±. Accordingly, each of I + and I − can be regarded as the union of

these generators (or rays). Complementary to the latter is the notion of a

cut of null infinity , that is, a two-dimensional surface C which intersects each

generator exactly once. As a result of Theorem 10.2 one has that C ≈ S2.

The subsequent discussion will, for simplicity, be restricted to I + – an

analogous discussion follows, mutatis mutandis, for I −. By definition, the

normal to I + is given by dΞ. As g�(dΞ,dΞ) � 0, it follows that the vector

N ≡ −g�(dΞ, ·) satisfies 〈dΞ,N 〉 = 0 and, thus, is tangent to I + – and, in

particular, to its null generators.

As I + is a hypersurface of M, there exists an embedding ϕ : I + → M. Let

q ≡ ϕ∗g denote the metric induced on I + by g. The metric q is degenerate. To

see this, write dΞ in coordinates adapted to I +; it follows that ϕ∗(dΞ) = 0 so

that ϕ∗(N �) = 0. Thus, from N � = g(N , ·) one concludes that q(N , ·) = 0 as

claimed – observe that asN is tangent to I +, it follows that it has a well-defined

pull-back.

To analyse the behaviour of the metric q along the generators of I + consider

the Lie derivative £Nq. To compute it start from

£Ngab = N c∇cgab +∇cNagcb +∇cNbgac

= ∇bNa +∇aNb = 2∇aNb,

as ∇a∇bΞ = −∇aNb = −∇bNa. Hence, using Equation (10.3) it follows that

£Nq = −sq. (10.5)

The trace-free part of £Nq is called the shear tensor ς of the congruence

of generators of I + – it describes the tendency of a sphere of points in the

congruence to be deformed into an ellipsoid with the same volume. As Equation

(10.5) is pure trace, it follows that ς = 0. Thus, the congruence of generators of

I + is shear free. This result is a consequence of the conformal field equations via

Equation (10.3) so that from the conformal invariance of the equations it follows
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that the shear-freeness of the congruence of generators is a property independent

of the particular choice of conformal factor.

The conformal gauge freedom inherent in the construction of a conformal

extension can be exploited to gain further insight into the structure of null

infinity. Given a conformal extension (M, g,Ξ) consider ϑ > 0 and define a

conformally related metric g′ via g′ = ϑ2g. The transformation rule of the

Friedrich scalar s – see Equation (8.29b) – yields that

s′ � ϑ−1s− ϑ−2N c∇cϑ.

Thus, if initially s �= 0, one can always find a further conformal representation

(M, g′,Ξ′) for which s′ = 0 if one imposes the condition

N c∇cϑ = ϑs. (10.6)

Notice that the above equation can be rewritten as £N ϑ = ϑs, and, accordingly,

it can be read as an ordinary differential equation along the generators of null

infinity. It is important to observe that once condition (10.6) has been imposed,

one is still left with the freedom of specifying a further rescaling g′′ = κ2g′ such

that £N ′ κ = 0.

The conformal gauge implied by condition (10.6) yields, together with

Equation (10.5), that

£N ′q′ = 0; (10.7)

that is, the intrinsic metric of I + is Lie dragged along the generators of null

infinity. Each of the cuts C of null infinity inherits from the metric q on I +

a metric k which is non-degenerate. As a consequence of Equation (10.7), if

one considers any other cut C ′, one obtains the same induced metric k. Now,

any metric on a two-dimensional surface which is topologically S2 is conformal

to the standard metric of S2, σ – this fact is a consequence of the so-called

Riemann mapping theorem ; see, for example, Krantz (2006), chapter 4.

Hence, one can write k = θ2σ for some conformal factor θ > 0 on S2. Under

a further conformal gauge transformation g′′ = κ2g′ such that £N ′ κ = 0 (see

the previous paragraph), one can then always assume that the gauge has been

chosen so that k = σ. Under these circumstances the conformal gauge freedom

is reduced to a function κ such that κ � 1.

10.2 Peeling properties

One of the most important results of the theory of asymptotics of the

gravitational field is the so-called Peeling theorem – a precise prescription

of the decay of the Weyl tensor of an asymptotically simple spacetime. The

Peeling theorem is based on the important observation that the Weyl tensor of

an asymptotically simple spacetime must vanish on I . As will be seen in the
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following, this observation follows in a quite straight forward manner if λ �= 0.

A more subtle argument is required if λ = 0.

In what follows, let ΨABCD denote the Weyl spinor, and recall that ΨABCD =

ΞφABCD. The subsequent analysis is best carried out with the spinorial

conformal Einstein field equations expressed with respect to a spin dyad {εAA};
see Section 8.3.2. In this formulation of the field equations the fields are scalars.

Hence, they can readily be evaluated at the conformal boundary without the need

of pull-backs. One has the following:

Theorem 10.3 (vanishing of the Weyl tensor at I ) Assume that ΨABCD

is smooth at I . If λ �= 0 and the physical Cotton tensor satisfies Ỹabc = o(Ξ−1)

at I , then ΨABCD = 0 at I . If λ = 0, the same conclusion follows if Ỹabc =

o(Ξ−1) and ∇dỸabc = o(Ξ−1).

Proof (case λ �= 0) The starting point of the analysis is the Bianchi equation

∇Q
A′φABCQ + TBCAA′ = 0;

compare the spinorial conformal Einstein Equation (8.37b). Now, recalling that

φABCD = Ξ−1ΨABCD and TBCAA′ = Ξ−1ỸBCAA′ it follows that

∇Q
A′ΞΨABCQ − Ξ∇Q

A′ΨABCQ = ΞỸBCAA′ . (10.8)

Hence, using Ỹabc = o(Ξ−1) one finds that ∇Q
A′Ξ ΨABCQ � 0. Contracting

with ∇DA′Ξ one obtains

∇DA′Ξ∇Q
A′

Ξ ΨQ
ABC � 0. (10.9)

Now, using Equation (10.2) one has

∇DA′Ξ∇Q
A′

Ξ =
1

2
∇PP ′Ξ∇PP ′

Ξ εDQ � −3

2
λ εDQ.

Substituting the latter in (10.9) one finds that λΨABCD�0. Hence, ΨABCD = 0

on I .

Proof (case λ = 0) Again, one has that

∇AA′
Ξ ΨABCD � 0. (10.10)

In this case, however, ∇AA′
Ξ is the spinorial counterpart of a null vector. Hence,

there exists a spinor ιA such that

∇AA′
Ξ = ιAῑA

′
. (10.11)

It follows from Equation (10.10) that there exists a scalar field ψ such that

ΨABCD � ψιAιBιCιD. (10.12)

https://doi.org/10.1017/9781009291347.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.013


228 Asymptotics

In order to extract further information consider Equation (10.8) – which is also

valid in the case λ = 0 – and apply ∇EE′ to both sides. The assumptions on

ỸCDBB′ imply that

∇EE′∇Q
B′ΞΨABCQ +∇Q

B′Ξ∇EE′ΨABCQ −∇EE′Ξ∇Q
B′ΨABCQ � 0.

Symmetrising on E′ and B′ , and using the asymptotic Einstein condition (10.4)

one concludes that

∇Q
(B′Ξ∇E′)EΨABCQ −∇E(E′Ξ∇Q

B′)ΨABCQ � 0. (10.13)

Now, using identity (3.6) to interchange the indices E and Q one obtains

∇Q
(B′Ξ∇E′)QΨABCE −∇Q(E′Ξ∇Q

B′)ΨABCE

− εEQεST
(
∇Q

(B′Ξ∇E′)SΨABCT +∇S(E′Ξ∇Q
B′)ΨABCT

)
� 0,

which in view of Equation (10.13) reduces to

∇Q
(B′Ξ∇E′)QΨABCE � 0.

Using the decomposition (10.11) in this last equation one obtains

ιQῑ(B′∇E′)QΨABCE � 0.

Contracting the latter with ῑB
′
and observing that ῑE′ �= 0, one concludes that

ιQῑB
′∇QB′ΨABCE � 0. (10.14)

Thus,

ιQ∇QE′ΨABCE � α ῑE′ζABCE

for some scalar α and a spinor ζABCE �= 0. Substituting back into (10.14) one

concludes that α = 0 so that one has

ιQ∇QE′ΨABCE � 0. (10.15)

In order to bring this last result into a more convenient form one completes the

spinor ιA to a spin basis {εAA} = {oA, ιA} with oAι
A = 1 so that ιA = δ1

A and

oA = δ0
A. Thus, contracting Equation (10.15) with ōE

′
and substituting (10.12)

into Equation (10.15) one obtains

ιQōE
′∇QE′(ψιAιBιCιE) = ∇10′(ψιAιBιCιE) � 0. (10.16)

The above expression is to be regarded as a differential equation for ψ over the

cuts of I +. To conclude the argument one makes use of the formalism of the

ð and ð̄ operators as discussed in the Appendix to this chapter. Accordingly,

in what follows it is assumed that one has a conformal representation for which

the cuts are metric unit spheres S2. Contracting (10.16) with oAoBoCoE one

obtains

ð̄ψ � 0.
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Now, from ψ = ΨABCDoAoBoCoD it follows that ψ has spin-weight 2. Hence,

using Lemma 10.1 in the Appendix to this chapter it follows that ψ � 0 and

thus ΨABCD vanishes at I .

Remark. The above result strongly depends on the fact that for an asymptoti-

cally simple spacetime with λ = 0 one has that I ≈ R× S2. For the spacetimes

with toroidal null infinities considered in Schmidt (1996), the crucial Lemma

10.1 does not hold – see Frauendiener and Szabados (2001) – and the desired

conclusion cannot be obtained.

A more detailed description

To obtain a more detailed description of the peeling behaviour, it is necessary

to introduce further structure. In what follows, consider a null geodesic γ in

(M, g) reaching I at a point p and let γ̃ denote the corresponding null geodesic

on (M̃, g̃). At a point q ∈ γ̃ one can choose a spin dyad {õ, ι̃} such that the

tangent to γ̃ is given by the vector l̃ with spinorial counterpart l̃AA′
= õA ¯̃oA

′
.

The spin dyad can be naturally propagated along γ̃ by requiring

D̃õA = 0, D̃ι̃A = 0, (10.17)

where D̃ ≡ l̃a∇̃a = õA ¯̃oA
′∇̃AA′ in standard Newman-Penrose (NP) notation.

Now, let r̃ denote an affine parameter along γ̃. It follows that D̃ = d/dr̃. In

order to rewrite the above expressions in terms of quantities defined on the

unphysical spacetime (M, g) it is convenient to consider the transformation

oA = õA, oA = Ξ−1õA, ιA = Ξι̃A, ιA = ι̃A; (10.18)

compare Equations (5.31a)–(5.31c) in Chapter 5. Using the transformation laws

under conformal transformations for the covariant derivatives it follows from

(10.17) that

DoA = 0, DιA =
(
Ξ−1δ̄Ξ

)
oA,

where δ̄ ≡ m̄a∇a = ιAōA
′∇AA′ . The second of the above expressions is

potentially singular at I – observe, however, that as Ξ � 0, it follows that

δ̄Ξ � 0 as m̄ is intrinsic to I . Thus, the spin dyad {o, ι} is well defined and

regular at I . Now, from DoA = 0 it follows that the null geodesic γ is affinely

parametrised. Let r denote a possible affine parameter. Its origin and scaling can

be chosen so that

r = 0, and DΞ =
dΞ

dr
= −1 at p ∈ I .

From Remark (c) in Section 7.1 it follows that

dr̃

dr
=

1

Ξ2
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where r̃ is an affine parameter in the physical spacetime (M̃, g̃). Hence, one

concludes that

r̃ = O(Ξ−1) near I . (10.19)

Making use of the above relations one obtains the following, more detailed,

version of the peeling behaviour:

Theorem 10.4 (Peeling theorem) Let (M̃, g̃) denote an asymptotically

simple spacetime with λ = 0 for which the hypotheses of Theorem 10.3 hold.

Moreover, let

ψ̃0 ≡ ΨABCDõAõB õC õD, ψ̃1 ≡ ΨABCD ι̃AõB õC õD, ψ̃2 ≡ ΨABCD ι̃Aι̃B õC õD,

ψ̃3 ≡ ΨABCD ι̃Aι̃B ι̃C õD, ψ̃4 ≡ ΨABCD ι̃Aι̃B ι̃C ι̃D,

then

ψ̃0 = O(r̃−5), ψ̃1 = O(r̃−4), ψ̃2 = O(r̃−3)

ψ̃3 = O(r̃−2), ψ̃4 = O(r̃−1).

Proof Let

ψ0 ≡ ΨABCDoAoBoCoD, . . . ψ4 ≡ ΨABCDιAιBιCιD.

It follows from Theorem 10.3 that ψk = O(Ξ). Now, using the transformation

rules (10.18) one has that

ψ̃k = Ξ4−kψk.

Thus, recalling (10.19), one finds the desired result.

Combining the definitions of the fields ψ̃k with the corresponding decays given

by Theorem 10.4 one obtains a detailed expression for the asymptotic behaviour

of the Weyl spinor. It can be written schematically as

ΨABCD =
[N ]ABCD

r̃
+

[III]ABCD

r̃2
+

[II]ABCD

r̃3
+

[I]ABCD

r̃4
+O(r̃−5), (10.20)

where [N ]ABCD, [III]ABCD, [II]ABCD and [I]ABCD represent, respectively,

totally symmetric spinors of Petrov type N , III, II and I; for a concise

discussion of the Petrov classification of the Weyl tensor using spinors,

see Stewart (1991). For Petrov type N Weyl tensors the spinor ΨABCD has

four repeated principal null directions. They are associated to gravitational

plane waves. Similarly, a spacetime with a Weyl spinor of Petrov type III has

three repeated principal null directions; one of Petrov type II has two principal

directions, while one of Petrov type I is algebraically general. The observation

that a repeated principal null direction is lost at each order in the expansion

(10.20) justifies the name of peeling in analogy to the peeling of a fruit; see

Figure 10.1.
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10.3 The Newman-Penrose gauge 231

Figure 10.1 Schematic representation of the Peeling theorem: the leading
behaviour of the Weyl tensor corresponds to that of a plane wave (Petrov
type N). More general behaviour is observed as one looks into higher order
terms.

Remark. The key assumption in the derivation of the peeling behaviour is the

smoothness of the Weyl tensor at I +. A careful inspection of the arguments in

the previous sections shows that the smoothness requirement can be relaxed and

that the conclusions of Theorems 10.3 and 10.4 can be recovered if it is assumed

that ΨABCD is of class Ck∗ at I + for some positive integer k∗. A determination

of a sharp value of k∗ will not be pursued here. One of the challenges in the

construction of spacetimes satisfying the peeling behaviour or, more generally,

spacetimes which are asymptotically simple is to ensure that their Weyl tensor

has the required regularity at the conformal boundary. The latter will be a

recurrent idea in the remainder of this book. The analysis of the non-linear

stability of the Minkowski spacetime in Christodoulou and Klainerman (1993)

renders a Weyl tensor with a limited regularity at I + for which only a partial

peeling behaviour of the form

ψ̃0 = O(r̃−1), ψ̃1 = O(r̃−2), ψ̃2 = O(r̃−3),

ψ̃3 = O(r̃−7/2), ψ̃4 = O(r̃−7/2),

can be recovered; see, for example, Friedrich (1992) for a discussion.

10.3 The Newman-Penrose gauge

The analysis leading to the Peeling theorem shows the advantages of using a

gauge which is adapted to the geometry of null infinity. In this section this idea

is further elaborated. The resulting Newman-Penrose gauge allows one to

obtain further insights into the properties of asymptotically simple spacetimes.

10.3.1 The construction of the gauge

As in the previous section let (M, g,Ξ) denote a conformal extension of an

asymptotically simple spacetime (M̃, g̃) with λ = 0. For conciseness, the

subsequent discussion will be restricted to future null infinity I +. An analogous

discussion can be readily adapted for I −.

https://doi.org/10.1017/9781009291347.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.013
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Figure 10.2 Schematic representation of the setting for the construction of
the NP gauge. The NP gauge is based on a fiduciary cut C� on I + and is
valid in a neighbourhood U of the conformal boundary. The vector e11′ is
tangent to the generators of null infinity, while e00′ generates the outgoing
null hypersurfaces Nu• . See the main text for further details.

In what follows, let {eAA′} be a frame satisfying g(eAA′ , eBB′) = εABεA′B′

defined in a neighbourhood U of I +. The frame will be said to be adapted to

I + if – see Figure 10.2:

(i) The vector e11′ is tangent to I + and is parallely propagated along its

generators; that is, one has

∇11′e11′ � 0.

(ii) On U there exists a function u (a retarded time) which can be regarded

as an affine parameter of the generators of I + such that e11′(u) � 1.

The retarded time is constant on null hypersurfaces transverse to I + and

satisfies e00 = g�(du, ·). It follows that e00 is tangent to the hypersurfaces

Nu• = {p ∈ U |u(p) = u•},

where u• is a constant. Moreover, e00′ is tangent to the null generators of

Nu• .

(iii) The fields {eAA′} are tangent to the cuts Cu• ≡ Nu• ∩ I + and parallely

propagated along the direction of e00′ . That is, one has

∇00′eAA′ = 0 on Nu• .

Using the definition of the spin-connection coefficients it follows from the above

requirements that

Γ10′11 � 0, Γ11′11 � 0, (10.21a)

Γ10′00 = Γ̄1′00′0′ , Γ11′00 = Γ̄1′00′1′ + Γ01′01 on U , (10.21b)

Γ00′AB = 0 on U . (10.21c)
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The condition Γ10′11 � 0 is, in fact, another way of expressing the fact that the

congruence of null generators of I + is shear free. This can be seen by evaluating

the conformal field Equation (8.35c)

∇AA′∇BB′Ξ = −ΞLAA′BB′ + sεABεA′B′ (10.22)

at I + for AA′ BB′ = 10′10′ . It follows that Γ10′11e00′(Ξ) � 0, but e00′(Ξ) �� 0

so that one concludes Γ10′11 � 0 as claimed.

Remark. The discussion of the previous sections shows that an adapted frame

can always be obtained in a neighbourhood U of I +. The key observation is

that N = g�(dΞ, ·) is tangent to the null generators of I + so that one can set

e11′ proportional to N . A suitable choice of affine parameter for N renders the

retarded time u and hence the frame vector e00′ . The rest of the frame is then

naturally completed by looking at a basis on the tangent bundle of the cuts Cu• .

Following the ideas of Section 10.1.2, the gauge can be further specialised by

considering a suitable conformal rescaling. Accordingly, consider

g �→ g′ = ϑ2g, Ξ �→ Ξ′ = ϑΞ. (10.23)

The above rescaling will be used to obtain an improved adapted frame {e′AA′}.
For an arbitrary conformal factor ϑ > 0 and an arbitrary function κ > 0 which

is constant along the generators of I + set

e′11′ � ϑ−2κe11′ ; (10.24)

compare the discussion in Section 10.1.2. In addition, define a further parameter

u′ = u′(u) such that du′/du = κ−1ϑ2. Integrating along the generators of null

infinity one finds that

u′ =
1

κ

∫ u

u�

ϑ2(s)ds + u′
�.

The real constants u� and u′
� are fixed so that they identify a certain fiduciary

cut C� ≡ Cu�
. In what follows, for convenience, the symbol

�� is used to denote

equality at C�. It can be verified that e′11′ is parallely propagated and that

e′11′(u′) = 1. The transformation rule (10.24) is supplemented at C� by

e′00′
�� κ−1e00′ , e′01′

�� ϑ−1e01′ . (10.25)

It can be verified that g′(e′AA′ , e′BB′) = εABεA′B′ on C�.

As seen in Section 10.1.2, C� ≈ S2 so that the metric k� induced by g′ on C�

is conformal to the standard metric σ of S2. Accordingly, the conformal factor

ϑ can be chosen on C� so that k�
�� σ. A calculation using the transformation

laws of Chapter 5 shows that the rescaling (10.23) and the conditions (10.24)

and (10.25) imply on C�

Γ′
10′00 = κ−1

(
Γ10′00 − ϑ−1e00′(ϑ)

)
, (10.26a)

Γ′
01′11 = κϑ−2

(
Γ01′11 + ϑ−1e11′(ϑ)

)
. (10.26b)
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Hence, by a suitable choice of dϑ and κ it is possible to ensure that

Γ′
10′00

�� 0, Γ′
01′11

�� 0, e′00′(Ξ′)
�� constant �= 0. (10.27)

A convenient way of prescribing the conformal factor ϑ off C� follows from

the transformation law for the trace-free part of the Ricci tensor Φab under the

rescaling (10.23):

Φ′
ab −Φab =− 2ϑ−1

(
(∇a∇bϑ− 2ϑ−1∇aϑ∇bϑ)−

1

4
gab(∇c∇c)ϑ− 2ϑ−1∇cϑ∇cϑ)

)
;

see Equation (5.6a). Transvecting this last equation with e11′ ⊗ e11′ it follows

that if ϑ satisfies the equation

e11′(e11′(ϑ))− 2ϑ−1
(
e11′(ϑ)

)2 � ϑΦ22, (10.28)

then Φ′
22 � 0. By means of the substitution z = ϑ−1, Equation (10.28) can

be read as a second-order linear ordinary differential equation for ϑ−1 along

the generators of I +. Thus, this equation can always be solved, at least in a

neighbourhood of C� on I + to ensure that

Φ′
22 � 0. (10.29)

This last construction also fixes the value of e′01′(ϑ) on I +.

The initial data for Equation (10.28) on the fiduciary cut C� is chosen so that

e11′(ϑ)
�� −Γ01′11 consistent with Equation (10.27); compare Equation (10.26b).

Now, taking into account Equations (10.21a) and (10.29), one has that the

Ricci identity – compare the conformal field Equation (8.35b) of Chapter 8 –

gives for the values AA′ = 11′ , BB′ = 01′ and CD = 11 that

e11′(Γ′
01′11) +

(
Γ′
01′11

)2
+ Γ′

01′11Γ̄
′
1′10′1′ = 0.

The latter equation can be interpreted as a homogeneous differential equation

along the generators of I + for the reduced spin connection coefficient Γ′
01′11. As

a consequence of the initial condition (10.27) on C�, it follows that Γ
′
01′11 � 0.

The construction described in the previous paragraphs provides a specification

of the conformal factor ϑ and of the function κ which fixes the frame vector e′11′

completely on I +. Notice, however, that the vectors e′01′ and e′10′ (tangent to

the cuts Cu•) are determined up to a rotation of the form

e′01′ �→ eice′01′ , e′10′ �→ e−ice′10′ , (10.30)

with c a real phase on I +. A rotation on T (Cu•) can be exploited to obtain

additional simplifications in the spin connection coefficients. A calculation using

the definition of the spin connection coefficients and taking into account that

∇11′e′11 � 0 gives that

Γ′
11′01 � −1

2
〈ω′10,∇′

11′e′10′〉.
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Under the rotation (10.30) the above relation transforms as

Γ′
11′01 �→ i

2
e′11′(c)− 1

2
Γ′
11′01, on I +.

Thus, given a particular choice of vectors e′01′ and e′10′ on I +, by solving the

equation

e′11′(c) � − i

2
Γ′
11′01, with c

�� 0,

along the generators of I +, it is always possible to rotate the basis according

to (10.30) so as to ensure that Γ′
11′01 � 0. In the following, it will be assumed

that e′01′ and e′10′ have been chosen so that the latter is the case.

The choice of vectors e′01′ and e′10′ has some further consequences. Evaluating

the primed version of Equation (10.22) at I + for AA′ = 01′ and BB′ = 10′ one

finds that ∇′
01′∇′

10′Ξ′ � −s′. Now, as Ξ′ = 0 on I + and e′01 is tangent to I +,

it follows from ∇′
01′∇′

10′Ξ′ = ∇′
01′e′10′(Ξ′) � 0 that s′ � 0 and that

∇′
AA′∇′

BB′Ξ′ � 0. (10.31)

This last expression can be regarded as a strengthened version of the asymptotic

Einstein condition (10.4). In particular, for AA′ = 11′ and BB′ = 00′ Equation

(10.31) implies that ∇′
11′
(
e00′(Ξ′)

)
� 0 so that e00′(Ξ′) is constant along the

generators of I +. Moreover, setting AA′ = 00′ and BB′ = 01′ and using that

e01′(Ξ′) � 0 one finds that

Γ′
01′

Q
0e

′
Q0′(Ξ′) + Γ̄′

1′0
Q′

0′e′0Q′(Ξ′) � 0.

Expanding and using, again, that e01′(Ξ′) � 0 and recalling (10.21b) one finds

that Γ′
11′00e

′
00′(Ξ′) � 0. However, e′00′(Ξ′) �� 0 so that one concludes that

Γ′
11′00 � 0.

To conclude, it is observed that although Equation (10.28) fixed the derivative

e′11′(ϑ) along I +, the derivative e′00′(ϑ) still remains free. A convenient way of

fixing e′00′(ϑ) can be obtained from the transformation law for the Ricci scalar

– see Equation (5.6c) – which, in the present context, takes the form

R[g′] = ϑ−2R[g] + 12ϑ−2∇′
aϑ∇′aϑ− 6ϑ−1∇′

a∇′aϑ.

A natural requirement is to set R[g′] = 0 on I + so that along the generators of

I + one obtains the equation

e′11′
(
e′00′(ϑ)

)
− 2ϑ−1e′11′(ϑ)e′00′(ϑ) � F ′, (10.32)

where

F ′ ≡ Re

(
e′01′

(
e′10′(ϑ)

)
− 2Γ′

01′01e
′
10(ϑ)− 2ϑ−1e′01′(ϑ)e′10(ϑ) +

1

12
ϑ−1R[g]

)
.

Equation (10.32) can be regarded as a linear differential equation for e′00′(ϑ)

along the generators of I + with a non-homogeneous term F ′ which consists of
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quantities which are already known along I +. Equation (10.32) is supplemented

by the condition e′00′(ϑ) = κ−1ϑΓ10′00
�� 0 consistent with Equation (10.27). It

follows that

R[g′] � 0. (10.33)

Using the Ricci identity, Equation (8.35b), taking into account the conformal

gauge condition (10.33) and the conditions on the spin connection coefficients,

gives for the values AA′ = 11′ , BB′ = 10′ and CD = 00 a homogeneous ordinary

differential equation for Γ′
10′00 along the generators of I +. Observing the initial

condition (10.27) the latter implies that Γ′
10′00 � 0. Finally, a further use of the

Ricci identities gives Φ′
12 = Φ21 � 0.

The construction of the previous paragraphs is rounded up with the introduc-

tion of adapted coordinates. On the fiduciary cut C� ≈ S2 one chooses some

coordinates θ = (θA) A = 2, 3 and extends them along I + by requiring them

to be constant along the null generators. On the hypersurfaces Nu′ transverse

to I + it is natural to identify an affine parameter r′ of the null generators of

these hypersurfaces in such a way that e′00′(r′) = 1 and r′ � 0. The coordinates

θ = (θA) are propagated off I + in such a way that they are constant along

the generators of Nu′ . As a result of this construction one obtains Bondi

coordinates x = (u′, r′, θA) in the neighbourhood U of I +.

Summary of the construction

The lengthy construction in this section can be summarised in the following

proposition (for ease of presentation the ′ in the objects associated to the

improved adapted frame has been dropped from the expressions):

Proposition 10.1 (the NP gauge at I +) Let (M̃, g̃) denote an asymptoti-

cally simple spacetime. Locally, it is always possible to find a conformal extension

(M, g,Ξ) for which

R[g] � 0

and an adapted frame {eAA′} such that the associated spin connection coeffi-

cients ΓAA′BC satisfy

Γ00′BC � 0, Γ11′BC � 0,

Γ01′11 � 0, Γ10′00 � 0, Γ10′11 � 0

Γ̄1′00′1′ + Γ01′01 � 0.

In addition, one has that

Φ12 � 0, Φ22 � 0,

and e00′(Ξ) is constant on I +.
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A quick inspection reveals that in the gauge associated to Proposition 10.1

the only non-zero spin connection coefficients on I + are given by Γ01′00, Γ00′01

and Γ10′01 which in standard NP notation correspond, respectively, to σ, α, β.

On I + the connection coefficients α and β satisfy α + β̄ � 0 and describe,

essentially, the connection of the intrinsic metric of the cuts of I +; that is,

the connection of the standard metric of S2, σ. The remaining spin connection

coefficient, σ = Γ01′00, encodes the (non-trivial) dynamical degrees of freedom

in the set up. Its relation with the notion of gravitational radiation will be

briefly explored in the next subsection.

10.3.2 The radiation field and the news function

To explore the relation between the spin connection coefficient σ and the notion

of gravitational radiation it is convenient to expand the Ricci, Cotton and Bianchi

identities – that is, the conformal field Equations (8.35b), (8.37a) and (8.37b) – in

terms of the gauge given by Proposition 10.1. An inspection of the components

of the Ricci identity not used in the derivation of the NP gauge, taking into

account that ΨABCD � 0, provides the relations

Φ00 � −σσ̄, Φ01 � −ð̄σ, Φ02 � −σ̇,

where ˙ denotes differentiation with respect to the retarded time u. In addition,

one also finds

Φ11 � δα− δ̄β + 4αβ.

As α and β describe the Levi-Civita connection of the standard metric of S2, it

can be readily verified that Φ11 corresponds, essentially, to the curvature of S2 –

recall that in two-dimensional manifolds the curvature is encoded in the Ricci

scalar.

The relation between σ and the components of the rescaled Weyl tensor can

be established by inspection of the Bianchi identity (8.37b) at I +. Choosing,

for convenience Ξ so that e00′(Ξ) � −1, one finds that

φ4 � −¨̄σ, φ3 � −ð ˙̄σ.

Moreover, one also obtains the constraint

φ2 + σ ˙̄σ + ð2σ̄ � φ̄2 + σ̄σ̇ + ð̄2σ.

In view of the Peeling theorem, Theorem 10.4, the component φ4 describes

the leading term of the gravitational field – the so-called radiation field or

outgoing field . In particular, if ˙̄σ is constant along I + one has that φ4 � 0,

φ3 � 0, and one interprets this situation as describing the absence of gravitational

radiation – that is why ˙̄σ is sometimes called the news function . The

component φ2 is interpreted as describing the Coulomb part of the gravitational

field while φ1 and φ0 are associated with incoming radiation ; see Szekeres

(1965).
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10.4 Other aspects of asymptotics

The present chapter provides a minimalistic account of the theory of asymptotics

of the gravitational field. A detailed account would go beyond the scope of this

book. It is, nevertheless, of interest to briefly highlight certain topics.

10.4.1 The Bondi mass

The analysis of the asymptotics of the gravitational field allows one to describe

in a rigorous manner the loss of energy of an isolated system due to gravitational

radiation. This physical process is described in terms of the so-called Bondi mass;

see Trautman (1958), Bondi et al. (1962), Sachs (1962b) and also Penrose (1965).

In terms of the notation introduced in this chapter, the Bondi mass mB over

a cut C of I + is given by the surface integral

mB ≡ −1

2

∫
C

(
φ2 + σ ˙̄σ

)
dS.

A concise deduction of the above expression can be found in Stewart (1991).

Moreover, it can be shown that under suitable assumptions mB ≥ 0; see

Ludvigsen and Vickers (1981, 1982). A further calculation renders that

ṁB = −1

2

∫
C

|σ̇|2dS ≤ 0.

The above inequality is called the Bondi mass-loss formula and encodes the

loss of mass of an isolated system due to the energy that is carried away by

(outgoing) gravitational radiation.

10.4.2 The Bondi-Metzner-Sachs group

As already mentioned, one of the central objectives of the theory of asymptotics

of the gravitational field is to identify universal structures in a wide class of

spacetimes and, in turn, use these to extract physical insight into the behaviour

of isolated systems in general relativity. An example of this type of universal

structures is given by the so-called Bondi-Metzner-Sachs (BMS) group;

see Sachs (1962a), Bondi et al. (1962)and Newman and Penrose (1966).

In what follows let (u, r, θA) denote a Bondi coordinate system defined in

a neighbourhood of the future null infinity I + of an asymptotically simple

spacetime. The BMS group is defined by the following transformations on the u

and θ = (θA) coordinates:

u′ = K(θ)
(
u− α(θ)

)
, (10.34a)

θ′A = θ′A(θ2, θ3), (10.34b)

where the map (θA) �→ (θ′A) is a conformal transformation of S2 onto itself, and

K(θ) is the associated conformal factor so that

σ′ = K2σ,
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and where α(θ) is an arbitrary smooth real function on S2. The particular

BMS transformations for which θ′A = θA are called supertranslations. Under

a supertranslation, the system of null hypersurfaces Nu• with u• constant is

transformed into a different system Nu′
• . Expanding the function α(θ) in terms

of spherical harmonics Ylm – see the Appendix to this chapter – one finds that

α(θ) =
∞∑
l=0

l∑
m=−l

alm Ylm,

with alm ∈ C. Thus, the supertranslations are an infinite-dimensional subgroup

of the BMS group. The particular (four-dimensional) case for which alm = 0 for

l > 2 is called the translations subgroup.

Generic asymptotically simple spacetimes do not possess Killing vectors – in

the conformal picture Killing vectors of the physical spacetime correspond to

conformal Killing vectors . The BMS group arises from a notion of asymptotic

symmetries which ensures the existence of non-trivial solutions for generic

spacetimes, that is, a diffeomorphism ϕ : I + → I + satisfying the conditions

ϕ∗q = ϑ2q, ϕ∗N = ϑ−1N , (10.35)

for some function ϑ > 0 and where the tensor fields q and N are as given

in Section 10.1.2. It can be verified that the BMS transformations (10.34a)

and (10.34b) satisfy the conditions in (10.35) with K = ϑ. A particular type

of asymptotic symmetries corresponds to those generated by an asymptotic

Killing vector , that is, a field ξ on I + satisfying the conditions

£ξq = 2ϑq, £ξN = −ϑN .

Given an asymptotically simple spacetime (M̃, g̃) endowed with a Killing

vector ξ̃, let (M, g,Ξ) denote a conformal extension thereof. Given that 0 =

£ξ̃g̃ = £ξ̃(Ξ
−2g), it follows that

£ξ̃ g = 2
(
Ξ−1ξ̃(Ξ)

)
g, (10.36)

for Ξ �= 0, so that ξ̃ is a conformal Killing vector of g on M̃. Since this vector

is determined by the smooth metric g, it extends smoothly to I + as a vector

ξ. Now, the left-hand side of Equation (10.36) extends smoothly to I +, and,

therefore, the right-hand side does so too. It follows that

ξ(Ξ) = α′Ξ, (10.37)

with α′ a smooth function such that α = O(Ξ0) so that ξ is tangent to I +.

From Equation (10.36) one concludes that

£ξq = 2α′q, £ξN = −α′N .

Accordingly, any Killing vector of (M̃, g̃) admits a unique extension to a

vector on I + and which defines an asymptotic Killing vector. The maximum
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number of linearly independent Killing vectors in a four-dimensional manifold

is 10. Accordingly, Killing vectors can give rise, at most, to 10 asymptotic

Killing vectors. By means of a direct calculation, it is possible to show that

the function α′ in Equation (10.37) and the function α appearing in (10.34a)

are the same. Thus, the BMS transformations (10.34a) and (10.34b) are

asymptotic symmetries. In particular, the translations subgroup can be put in

correspondence with the asymptotic Killing vectors arising from translations in

the Minkowski spacetime.

For further details on the structure and properties of the BMS group, see, for

example, Penrose and Rindler (1986) and Schmidt et al. (1975). A discussion

of the properties of Killing vectors in asymptotically simple spacetimes can be

found in Ashtekar and Xanthopoulos (1978) and Ashtekar and Schmidt (1980).

10.4.3 Newman-Penrose constants

In Newman and Penrose (1965) – see also Newman and Penrose (1968) and

Penrose and Rindler (1986) – it has been shown that in an asymptotically simple

spacetime (M̃, g̃) there exists a set of ten quantities defined as integrals over

cuts of null infinity which are absolutely conserved in the sense that their value

is independent of the particular cut C on which they are evaluated – the so-

called Newman-Penrose constants. In terms of the adapted frame {eAA′}
of Proposition 10.1 these constants are given by

Gm ≡
∫

C
2Ȳ2me00(φ0)dS, m = −2, . . . , 2,

where 2Y2m is a spin-weighted spherical harmonic; see the Appendix to

this chapter. A discussion of the relation between the above expression and the

original formula of Newman and Penrose can be found in Friedrich and Kánnár

(2000a).

There exists no general consensus about the physical meaning or interpretation

of the Newman-Penrose constants. An explicit computation for stationary

spacetimes shows that they are of the form

(mass)× (quadrupole)− (dipole)2;

see, for example, Bäckdahl (2009). Evaluations of the Newman-Penrose space-

times for dynamic spacetimes can be found in Friedrich and Schmidt (1987) and

Friedrich and Kánnár (2000a). In particular, in the former reference it is shown

that for spacetimes possessing a conformal extension which includes the points

i+ and i− the Newman-Penrose constants correspond, essentially, to the value of

the rescaled Weyl spinor φABCD at those points. Electrovacuum asymptotically

simple spacetimes have a suitable generalisation of these absolutely conserved

constants; see Exton et al. (1969).
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10.5 Further reading

An excellent introduction to the theory of asymptotics of the gravitational field

is given in Stewart (1991) where the subject is called “asymptopia”. A related

account can be found in Penrose and Rindler (1986). A convenient entry point to

the extensive literature on the subject can be found in the review of Frauendiener

(2004). A detailed discussion of the ideas and general philosophy behind the

treatment of the asymptotics of the gravitational field by means of conformal

methods can be found in Geroch (1976). Accounts similar in spirit to the latter

can be found in Ashtekar (1980, 1987). A slightly different perspective on the

subject can be found in Friedrich (1992); see also Friedrich (1998a, 1999). A

recent review on the subject of asymptotics is given in Ashtekar (2014).

Appendix: spin-weighted functions

Let {o, ι} denote a spinorial dyad defined on a spacetime (M, g) and let

{l,n,m, m̄} denote the associated null tetrad. As discussed in Section 3.1.10, the

null vectors m and m̄ span a spacelike subspace of T (M) which is orthogonal to

both l and n. Of particular interest is the case when this subspace corresponds

to the tangent bundle of a compact two-dimensional submanifold C of M. In

the following it is assumed that this is the case. From the expression

g = l⊗ n+ n⊗ l−m⊗ m̄− m̄⊗m

of the metric g in terms of the null tetrad, it follows that the intrinsic metric σ

induced by g on C is given by

σ = −m⊗ m̄− m̄⊗m.

There is a certain gauge freedom in the above expression since spin-boosts of

the form

o �→ e
1
2 ico, ι �→ e−

1
2 icι, (10.38)

with arbitrary c ∈ R which imply the transition

m �→ eicm, m̄ �→ e−icm̄,

leave the metric σ unchanged.

Given a spinor ηA1···AnA′
1···A′

m
of valence n +m, it is natural to consider the

behaviour of its components with respect to the dyad {o, ι} under the spin boost

(10.38). For example, given p, q, r, t ∈ N such that p + q = n, r + t = m, the

scalar

η ≡ ηA1···ApB1···BqA′
1···A′

rB
′
1···B′

t
oA1 · · · oApιB1 · · · ιBq ōA

′
1 · · · ōA′

r ῑB
′
1 · · · ῑB′

t

(10.39)

has a transformation given by

η �→ e
1
2 i(p+t−q−r)ϑη.
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One says, then, that η has spin weight s = 1
2 (p+t−q−r). The spin weight of all

the possible components of ηA1···AnA′
1···A′

m
lies in the range −m−n ≤ s ≤ m+n.

In what follows, we adopt the standard Newman-Penrose conventions to denote

the directional covariant derivatives with respect to m and m̄ and let δ ≡ ma∇a,

δ̄ ≡ m̄a∇a. Generically, the directional derivatives δ and δ̄ acting on a spin-

weighted scalar do not give rise to scalars with a well-defined spin weight. To

amend this deficiency it is convenient to define operators ð and ð̄ which, acting

on scalars with a given spin weight, give rise to new scalars with a well-defined

spin weight. Given the spin-weighted scalar η of Equation (10.39), the action of

ð and ð̄ is defined to be

ðη ≡ oA1 · · · oApιB1 · · · ιBq ōA
′
1 · · · ōA′

r ῑB
′
1 · · · ῑB′

t

× δ(η ιA1
· · · ιAp

oB1
· · · oBq

ῑA′
1
· · · ῑA′

r
ōB′

1
· · · ōB′

t
), (10.40a)

ð̄η ≡ oA1 · · · oApιB1 · · · ιBq ōA
′
1 · · · ōA′

r ῑB
′
1 · · · ῑB′

t

× δ̄(η ιA1
· · · ιAp

oB1
· · · oBq

ῑA′
1
· · · ῑA′

r
ōB′

1
· · · ōB′

t
). (10.40b)

The operators ð and ð̄ are complex conjugates of each other in the sense that

ðη = ð̄η̄. If the scalar η has spin weight s, one can verify that ðη and ð̄η have,

respectively, spin weights s + 1 and s − 1. Furthermore, ðη and ð̄η satisfy the

Leibnitz rule. In order to obtain alternative expressions for ðη and ð̄η let

α ≡ oAδ̄ιA = ιAδ̄oA, β ≡ oAδιA = ιAδoA,

consistent with standard Newman-Penrose notation. Expanding (10.40a) and

(10.40b) and using the above definitions one obtains

ðη = (−1)p+r (δη + ((q − p)β + (t− r)ᾱ) η) ,

ð̄η = (−1)p+r
(
δ̄η +

(
(q − p)β̄ + (t− r)α

)
η
)
.

A computation with the above expressions shows that

(ð̄ð− ðð̄)η = sη.

The above expressions are convenient for the discussion of spin-weighted

harmonics. In terms of standard spherical harmonics Ylm, these are given by

0Ylm ≡ Ylm,

and for s �= 0

sYlm ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)s

√
2s(l − s)!

(l + s)!
ðsYlm 0 < s ≤ l√

(l + s)!

2s(l − s)!
ð̄−sYlm −l ≤ s < 0

0 otherwise;

see, for example, Stewart (1991) for further discussion.

Of special relevance for Theorem 10.3 is the following result:
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Lemma 10.1 Assume C to be diffeomorphic to S2 and let η denote a smooth

scalar on C having spin weight s. If ðη = 0 and s < 0, then η = 0. Similarly, if

ð̄η = 0 and s > 0, then η = 0.

Proofs of this result can be found in Penrose and Rindler (1984) and Stewart

(1991). Remarkably, the result depends on the topology (genus) of C ; see

Frauendiener and Szabados (2001). For example, the above result is not valid

for surfaces diffeomorphic to the 2-torus S × S. It is of interest to point out

that Lemma 10.1 is equivalent to the statement that there exist no non-zero

symmetric trace-free, divergence-free, rank 2 tensor fields on S2; see Beig (1985)

and Frauendiener and Szabados (2001).

https://doi.org/10.1017/9781009291347.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.013


https://doi.org/10.1017/9781009291347.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.013

