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ON THE NON-VANISHING OF A CERTAIN CLASS
OF DIRICHLET SERIES

SRIDHAR NARAYANAN

ABSTRACT. In this paper, we consider Dirichlet series with Euler products of the

form F(s) ≥
Q

p

�
1 +

ap
ps

�
in <(s) Ù 1, and which are regular in <(s) ½ 1 except for

a pole of order m at s ≥ 1. We establish criteria for such a Dirichlet series to be non-
vanishing on the line of convergence. We also show that our results can be applied to
yield non-vanishing results for a subclass of the Selberg class and the Sato-Tate con-
jecture.

1. Introduction. The non-vanishing of L-functions on the line <(s) ≥ 1 has played
a central role in many problems of number theory. The prime number theorem, the Sato-
Tate conjecture and the Tchebotarev density theorem are some of the significant con-
sequences of such non-vanishing of L-functions. The Euler product expansion of such
L-functions in the half-plane of convergence has always played an important role in es-
tablishing their non-vanishing on the line of convergence. In this paper we consider such
Euler products and establish criteria under which the Euler product does not vanish on
the line of convergence. We also show that our results can be applied to the Selberg class
[see S] and the Sato-Tate conjecture.

We shall be considering Dirichlet series which can be written as a product of the form,

(1) F(s) ≥
Y
p

�
1 +

ap

ps

�

where ap − 1 and F(s) is regular in <(s) ½ 1 except possibly for a pole of order m at
s ≥ 1.

From (1), we can define in <(s) Ù 1,

(2) F(s) ≥
Y
p

�
1 +

ap

ps

�
.

Then it is clear the F(s) is also regular in <(s) ½ 1 except possibly for a pole of order m
at s ≥ 1. Our goal is to prove

THEOREM 1. Given, F as in (1), suppose that,
(a) F(s) is regular at <(s) ½ 1, and
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(b)
Q

p

�
1 + japj

2

ps

�
is regular for <(s) ½ 1 except for a simple pole at s ≥ 1,

then F(1 + it) Â≥ 0 except possibly for t ≥ 0.
(c) If (a) and (b) are true in <(s) ½ 1Û2, then we also have, F(1) Â≥ 0.
The hypothesis (c) of Theorem 1 is essential, for consider the example:

F(s) ≥ ê(2s)
ê(s)

≥
Y
p

�
1 +

1
ps

�
.

In this case, the Euler product in hypothesis (b) has a simple pole at s ≥ 1Û2, and
F(1) ≥ 0.

In our next result we modify condition (c) required in Theorem 1. We prove,

THEOREM 2. Given, F as in (1), suppose that
(a) F(s) is regular for <(s) ½ 1, except for a pole of order m at s ≥ 1,

(b)
Q

p

�
1 + japj2

ps

�
is regular for <(s) ½ 1 except for a simple pole at s ≥ 1 and,

(c)
Q

p

�
1 + ap

2

ps

�
is regular for <(s) ½ 1,

then F(1 + it) Â≥ 0, 8t real.
We note that our results are motivated by Rankin’s work in [R]. It would be clear

in Section 5, that Selberg’s conjectures predict that any function F satisfying the above
hypothesis, cannot have a simple pole at s ≥ 1. We consider our results to be a step in
that direction.

2. Lemmas.

LEMMA 1. Let f be a function satisfying the following hypothesis:
(1) f is holomorphic and non-zero for <(s) Ù 1.
(2) On the line <(s) ≥ 1, f is holomorphic except for a pole of order e at s ≥ 1.
(3)

log f (s) ≥
1X

n≥1

bn

ns
, bn ½ 0.

Then any zero of f on the line <(s) ≥ 1 has order eÛ2.

PROOF. For the proof of this lemma we refer the reader to [KM].

LEMMA 2. Given F as in (1), suppose that
Q

p

�
1 + japj

2

ps

�
is regular for <(s) ½ 1

except for a simple pole at s ≥ 1. Then, F has at most a simple pole at s ≥ 1.

PROOF. If F is regular at s ≥ 1, then there is nothing to prove. So suppose that F has
a pole of order m at s ≥ 1. Let s be real and s 7! 1+. Then

(3) log F(s) ≥
1X

n≥1

bn

ns
¾ m log

1
s� 1

.
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But as s 7! 1+,
1X

n≥1

bn

ns ≥
X

p

ap

ps + O(1)

so that

(4)
X

p

ap

ps
¾ m log

1
s� 1

, s 7! 1+.

Similarly, from the hypothesis, we have,

(5)
X

p

japj2
ps

+ O(1) ¾ log
1

s� 1
.

Using Cauchy’s inequality, from (2) and (3) as s 7! 1+ we have,

þþþþX
p

ap

ps

þþþþ �X
p

japj
ps

�
�X

p

japj2
ps

�1Û2�X
p

1
ps

�1Û2

so that m ≥ 1 (since
P

p
1
ps ¾ log 1

s�1 ).

3. Proof of Theorem 1. If F has no zeroes on the line <(s) ≥ 1 there is nothing to
prove. So assume without loss of generality that F has a zero at s ≥ 1. Consider,

G(s) ≥ ê(s)F(s)F̄(s)
Y
p

�
1 +

japj2
ps

�
.

Then it is clear that G(s) satisfies the conditions of the above Lemma 1. Hence,
F(1 + it) Â≥ 0 for all t Â≥ 0. Suppose now that the hypothesis (a) and (b) can be extended
to <(s) ½ 1Û2. Then, G(s) is analytic in <(s) ½ 1Û2. Since,

(6) log G(s) ≥
1X

n≥1

bn

ns
, bn ½ 0,

by Landau’s theorem the abscissa of convergence is a real singularity õ0(say). Since ê(s)
has zeroes in <(s) ½ 1Û2, õ0 ½ 1Û2. From (6), we have log G(õ0) ½ 0 for õ ½ õ0. By
continuity, G(õ0) ½ 1. However G(õ0) ≥ 0. This contradiction proves that F(1) Â≥ 0 and
hence F(1 + it) Â≥ 0 for all t Â≥ 0.

4. Proof of Theorem 2. Suppose that F(1 + iã) ≥ 0 for some real ã. Then let
G(s) ≥ F(s + iã). Note that G(1) ≥ 0. From (1) and (2) we can write F in the form,

(7) F(s) ≥
Y
p

exp
 1X

k≥1

rpk eiípk

kpks

!
.

We then have õ Ù 1,

(8) G(õ) ≥
Y
p

exp
 1X

k≥1

rpk e�iã log pk+iípk

kpkõ

!
.
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Consider the product

(9)
Y
p

exp
 1X

k≥1

r2
pk e

�2iã log pk+2iípk

kpkõ

!
≥ H(õ) (say).

Using the inequality:

(10) 2(1 + r cos í)2 ≥ 2 + r2 + 4r cos í + r2 cos 2í ½ 0,

it follows from (8), (9) and (10) that for õ Ù 1,

2 log ê(õ) + log
 Y

p

�
1 +

japj2
põ

�!
+ 4< log G(õ) +< log H(õ) ½ 0

so that

(11) ê2(õ)
Y
p

�
1 +

japj2
põ

�
jG4(õ)H(õ)j ½ 1.

By hypothesis the product in (11) has a zero at s ≥ 1 (by hypothesis (c), H(õ) is analytic
at s ≥ 1) so that as õ 7! 1+ it is O(õ � 1), but this contradicts (4).

5. Applications. We first show the application of our results to the Selberg class.
The Selberg class S consists of functions of complex variable s satisfying the follow-

ing properties:
(i) (Dirichlet Series) For <(s) Ù 1,

F(s) ≥
1X

n≥1

an

ns

where a1 ≥ 1 and we shall write an(F) ≥ an for the coefficients of Dirichlet
Series of F;

(ii) (Analytic Continuation) F(s) extends to a meromorphic function so that (s �
1)mF(s) is an entire function of finite order for some integer m ½ 0;

(iii) (Functional Equation) 9 numbers Q Ù 0, ãi ½ 0 and åi 2 C with <(åi) ½ 0 such
that the function

û(s) ≥ èQs
dY

i≥1
Γ(ãis + åi)F(s)

satisfies the functional equation

û(s) ≥ û̄(1� s)

where û̄(s) ≥ û(1 � s̄) and è is a complex number of absolute value 1;
(iv) (Euler Product)

F(s) ≥
Y
p

Fp(s)
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where

log Fp(s) ≥
1X

n≥1

bpk (F)

pks

where bpk (F) ≥ O(pkí) for some í Ú 1Û2, p denotes a prime number (here and
throughout this paper);

(v) (Ramanujan Hypothesis) an ≥ O(nè) for any fixed è Ù 0.
For further details on the Selberg class the reader may refer to [C-G], [RM] and [S].

It has been shown that Selberg’s conjectures imply the non-vanishing of functions in S
on the line <(s) ≥ 1.

We shall prove that the non-vanishing property for a certain subclass of S follows
from Theorem 1 and Theorem 2.
Given F and G in S we define

F
G(s) ≥
Y
p

Hp(s)

where

Hp(s) ≥ exp
 1X

k≥1

cpk (F)cpk (G)

kpks

!

and

bpk (F) ≥
cpk (F)

k
, bpk (G) ≥

cpk (G)

k
.

It is clear that F
G(s) converges absolutely for <(s) Ù 1.
We shall call F
G(s) as the tensor product of F and G.
Then, from Theorem 1 we obtain,

THEOREM 3. If F 2 S is entire, and F 
 F̄ is regular in <(s) ½ 1Û2 except for a
simple pole at s ≥ 1, then F(1 + it) Â≥ 0, for all t real.

Similarly from Theorem 2 we obtain

THEOREM 4. If F 2 S has a pole of order m at s ≥ 1 and
(a) F
 F̄ is regular in <(s) ½ 1 except for a simple pole at s ≥ 1, and
(b) F
F has analytic continuation to line <(s) ≥ 1, then F(1 + it) Â≥ 0 for all t real.

It is clear that the non-vanishing property of the Riemann-zeta function, the Dirichlet
L-functions attached to a primitive character ü and the Artin L-functions attached to
irreducible characters of a Galois extension over Q can all be deduced from Theorems 3
and 4.

We now show that Theorem 1 can be applied to the Sate-Tate conjecture. We first,
describe the Sato-Tate conjecture. Let E be an elliptic curve defined over Q. For each
prime p, we consider the reduction Ep of E modulo p. Let ap ≥ p + 1� jEp(Fp)j where
jEp(Fp)j is the cardinality of set Ep(Fp) of projective solutions over Fp, the finite field of
p-elements (see [2] p. 297). We then have Hasse’s inequality, japj � 2

p
p. Let us write

ap ≥
p

p(eiíp + e�iíp) ≥ 2
p

p cos íp.
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Sato and Tate conjectured (independently) that if the elliptic curve is not of CM type,
then the íp’s are uniformly distributed with respect to the measure

2
ô sin2 í dí.

Serre (see [5]) reformulated the above conjecture as follows. Let ãp ≥ eiíp and åp ≥
e�iíp. For each m, define the L-series

Lm(s) ≥
Y
p

mY
j≥0

 
1� ãm�j

p åj
p

ps

!
.

Each Lm(s) converges for <(s) Ù 1. Serre [Se] showed that if each Lm(s) extends to an
entire function and Lm(1 + it) Â≥ 0 for all real t then íp’s are uniformly distributed with
respect to the (Sato-Tate) measure 2

ô sin2 í dí. Hence we have the following corollary of
Theorem 1.

COROLLARY 1. If each Lm(s) has an analytic continuation to <(s) ½ 1Û2 then íp’s
are uniformly distributed with respect to measure 2

ô sin2 í dí.

Note that K. Murty in his paper [KM] proves a stronger result namely that the analytic
continuation of each Lm(s) to <(s) ≥ 1 alone suffices to imply the Sato-Tate conjecture.
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