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Further Notes on the Stieltjes Integral.

By J. HYSLOP.

NOTE 1.—ON YOUNG'S CONDITION.

(Received 3rd April 1929. Bead 8th June 1929.)

§ 1. Preliminary Definition.

The definition here used of the Stieltjes Integral is the same as
that of a previous note,1 viz.:—

Let f(x), <f> (x) be two real functions defined in (a, b) a finite
interval on the axis of the real variable x. Let Ax, A2, . . . . , Ant

be a finite set of sub-intervals which together make up (a, b). Ar<f>
denotes the increment of <j> (x) in Ar. Let gr be any point of Ar, and
form the sum

(1)

Suppose that, given e, we can assign an 77, such that every sum
like £ differs from a fixed constant / by less than <=, provided only
that, for all values of r concerned, Ar < 77. Then / is defined to be

the value of the Stieltjes Integral f(x)d<f> (x).
Ja

For further information on the Stieltjes Integral, including
bibliography, the reader is referred to:

HOBSON, Functions of a Real Variable, Vol. I (1927), 538-561, 662-668.

POLLARD, Quarterly Jo., 49 (1923), 73.

HILDEBKANDT, Bull. Amer. Math. Soc, 24 (1918), 177.

§ 2. Introductory.

In an important paper2 W. H. Young gave the following
criterion for the existence of the Stieltjes Integral, which is now
known by his name:

- l Proc. Edin. Math. Soc, 44 (1926), 79.
2 Proc. Lond. Math. Soc, 13 (1913), 113.
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/ / <f> (x) is of bounded variation, the necessary and sufficient condi-

f6tion for the existence of the integral I f(x)d<j>{x) is that the variation of

<f> (x) over the set of points at which f (x) is discontinuous be zero.

This theorem was proved by Young for the case in which <f> (x)
is monotone non-decreasing—the case in which he was primarily
interested. He also gave a definition of the integral with respect to
•a function <f> (x) of bounded variation, namely:

If P(x), N (x) are the positive and negative variations of <f> (x)
in (a, x),

[bf(x)d<f>(x)= \f(x)dP(*)- \f(x)dN{x), (2)

provided the right side of the equality has a meaning.

With this definition it is clear that Young's theorem holds when
</> (x) is of bounded variation. But several authors have assumed
that equation (2) is true whenever the left side of the equation has a
meaning in accordance with the definition of §1. This point has
been noted by Miss R. C. Young, who has proved the validity of
Young's criterion1 in the case of the ^-dimensional Stieltjes Integral,
when the function <j> (P), with respect to which integration is carried
out, is of bounded variation, and has in addition certain pro-
perties of continuity.

The question had, however, engaged the attention of the author
about two years before the publication of Miss Young's results; in
fact most of the present note contains work done then, which he was
prevented by ill-health from publishing.

In the present note, a condition is used which is equivalent to
Young's condition, but which does not assume any knowledge of the
theory of Sets of Points.2 It is proved that the condition is necessary
in all cases for the existence of the Stieltjes Integral, and that it is
sufficient if </> (x) is of bounded variation.

1 Math. Zeitschr., 29 (1928), 217. See also additional note at the end of the
present paper.

- It seems to me that the Theory of the Riemann and Stieltjes Integrals is essentially
concerned with intervals rather than with sets, and that it is of interest to develop it so
far as possible without recourse to the theory of sets.
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§ 3. General Conditions.
We shall assume, to begin with, that

-^M for a <̂  x <̂  b.

Later, in § 6, we shall be able to dispense with this condition.
In (1) we take any fixed set of subintervals of (a, 6), and consider

the different values of S obtained by varying £r in Ar. Let Fr.fr be
the upper and lower bounds respectively of f(x) in Ar. The upper
bound 8 of all sums like S is then obtained by replacing /(£>) by Fr

when Ar </> >̂ 0, and by fr when Ar <j> < 0.
The lower bound s of the sums is similarly formed.
Then £ > 2 > s .

f6Suppose now f(x)d<f>(x) exists, and has the value / ; then by

definition, \I — 8\, | / — s | <̂  e if Ar < -q (3)

whence 8 — s = 2 (Fr — fr) | Ar <f> j < 2e if A, < -q (4)

We have thus shown that:

Theorem 1. A necessary condition for the existence of I f(x)d<f>{x) is

that, given 8, we can assign rj, such that, for every mode of subdividing
(a, b) into a finite set of subintervals A,, of length not exceeding 77,

X(Fr-fr)\Ar<f>\<.8 (4a)
A consequence is:

Theorem 2. / / the condition of the last theorem is satisfied, and in
f6particular if I f(x)d<f>(x) exists, the functions f(x), <f>{x) have no
Ja

common points of discontinuity.
In fact the condition of Theorem 1 is equivalent to Young's

condition, which clearly includes Theorem 2. A separate proof of
Theorem 2 may be given as follows:

Let y be a point of discontinuity of f(x), the saltus1 of f(x) at y
being 2k; then for all intervals A containing y as an interior point
F-f>2k.

and so by hypothesis, | A <f> \ < —y- if A < rj. Since 8 is arbitrarily

1 Hobson: loc. cit., pp. 295-303, in particular p. 301.
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small, all four limiting values of </> (x) at y are equal. Again if y be
made a point of subdivision of (a, b), then for all pairs of subintervals
Aj, A2 with y as common end point, either Ft — fx ^> k or Fs — f i^k;
and hence, if A], A2 be sufficiently small, either

A, i < -r- or A2 4> I < ~r •k k

Thus <f> (y) is equal either to the limiting values of <j> (x) on the right
at y or to those on the left.
Thus </> (a;) is continuous at y.

§4. Functions of Bounded Variation.

Theorem 3. / / </> (x) is monotone, the condition of Theorem 1 is sufficient
for the existence of the Stieltjes Integral.

This Theorem is now classical, and need not be proved here.1

Theorem 4. / / </> (x) is of bounded variation, and O (x) is the total
rb

variation of <f>(x) in (a, x), then, in order that f(x)d<f>(x) exist, it is
J a

necessary and sufficient that I / ( x ) d $ (x) exist.
J a

Suppose that <f> (x) has external saltus2 only at the points

ylt y2. . . . , yu, . . . of (a, b). We assume that these points are infinite
in number; the reasoning is simplified if this is not so. They are
necessarily enumerable.3 being included in the discontinuities of </> (a;).
The external saltus a (y) at y is defined to be the smaller of the
two quantities | <f> (y + 0) — 6 (y) j , \<f>(y — 0) — <f>[y)\- The series

S o{yic) converges to a sum not exceeding \ <$> (b). Thus, given 6,

we can choose K so great that S a (yt) < 6-
K+\

rb

Suppose then that f(x) d</> (x) exists, and let (a, b) be divided
J a

in any way into subintervals, each of length less than rj, where -q is
chosen to satisfy condition (4a).

1 Cf. W. H. YOUNG, loc. cit., pp. 133-134.
2 HOBSON : loc. cit., p. 301, 334.

8 Ibid., p. 325.
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From Theorem 2 we deduce that -q may be taken so small, that,
in addition to restrictions already laid on it, F,•— fr < S /O (b), in
each of the subintervals, at most 2K in number, which contain
yl, y2, . . . , yn as interior or end points.

Let SC) denote summation over these subintervals, and S(2'
summation over the remaining intervals of (a, b).
Then 2(D (Fr-fr)Ar® < 8.

Now we may suppose -q chosen so small that1

SO [A,. <E> - | A, <f> j J < 2 I a {yk) + 6 < 39 (5)
K+l

Then S<2) (Fr - / , ) Ar $ < Ŝ 2) (Fr - / , ) | A, ^ j + 3^ (if - m)
< 23 if 0 be chosen so that 30 (M — m) < 8.

Here, as previously, m, M denote the bounds oif(x) in (a, 6).
Hence, summing over (a, 6) if A,, is sufficiently small,

S ( J t
r - / , ) A , O < 3 8 .

f6
Thus, by Theorem 3, f(x)d<!>(x) exists.

J a

This proves necessity of the condition.
Now let P (x), N (x) be the positive and negative variations of

(j> (x) in (a, x),

so that 2 P (x) = O (x) + 0 (x) — 0 (a)

2 iV(z)=<I>(x)-<£(*) + <£(«).

Then P (x), N (x) are monotone increasing functions, and

X-P(x), A,.Y(x)<A,O(x).

j-6 rb

Hence, by Theorem 3, if f(x)d<$>(x) exists, so do f(x)dP(x),
J a J a

[ /(z)<ZiV(:r); and clearly [Jf(x)d6 (x) = [ f(x) dP (x) - ["/(«) dN(x).

Thus the condition is proved sufficient.
In the first part of the above proof, the only use made of the

p
existence of f{x)d<f> (x) is to ensure that the condition of Theorem 1

^ a

is satisfied.
The following may therefore be deduced as a corollary:

1 See additional note at the end of this paper.
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Theorem 5. / / <f> (x) is of bounded variation, the condition of Theorem 1
is sufficient as well as necessary.

§ 5. A Deduction.
rb

Theorem 6. / / <f> (x) is of bounded variation, and f(x)dcf>(x) exists,
J a

then I f / (x) | d O (x) also exists, and is the total variation in (a, x) of
J a

\Xf(x)d<f>(x). [ « < * < & ] .
J a

[h
To prove the existence of \f(x)\d<$>(x) we use Theorem 3,

a

noting that if Mr, mr are the upper and lower bounds of \f{x) | in A,-,
then

Mr _ m , < . F , . - / , .

The remaining part of the Theorem has already been dealt with
in the author's previous note.1

§ 6. The Boundedness of f(x).

In all the above working it has been assumed that f(x) is
bounded. It is however clear, that if y is a point in the neighbour-

ed
hood of which f (x) is unbounded, and if f(x)d<f>(x) exists, or any

of our hypotheses is fulfilled, then there must exist an interval
with y as interior point, in which <f> (x) is constant. Such an interval
contributes nothing to the approximating sums, to the integral, or to
the other sums used above. Hence the existence of the various
integrals concerned, and the fulfilment of the conditions laid down
are unaffected by the behaviour of f(x) in any such interval. We
may therefore dispense with this restriction in the statement of the
theorems.

Note added 22nd April 1929. (See footnote p. 235.)

Miss Young's condition of continuity of <b (2) is unnecessarily
stringent. Her proof of Theorem IV, p. 229 of her paper, remains
valid if, for every mode of subdividing the range of integration into

1 Lot. cit., p. 84.
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elements A of sufficiently small diameter, 2 | A </> j differs from the
variation of <f> (2) by an arbitrarily small amount. The class of
functions <j> (2) which satisfy this condition includes, and is wider
than, the class of continuous functions of bounded variation. Thus
in one dimension it includes all functions of bounded variation
without external saltus.

Note added 26th April 1929, re Inequality (5), p. 238.

If 4> (x) is a function of bounded variation in (a, b) with external
saltus a(yk) at the points yk, the lower limit, as Max. A,-->0, of

I6
2 | A,-(j> | is Var. <f>(x) — 2 2u(|/i.). Thus in particular, given 6, we

a

can choose r/ so that if A,. < rj

2 A,. 6 > Var. <f> (x) - 2 2 a {yk) - 9.

A proof of this theorem may readily be constructed on the lines
of Hobson, p. 332-335. Professor Hobson's enunciation of the theorem
[p. 335, § 247] differs slightly from the above, but his proof requires
but little alteration to justify the more stringent statement.

https://doi.org/10.1017/S0013091500013626 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500013626

