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A CONDITION FOR ARTINIAN RINGS 
TO BE NOETHERIAN 

ICHIRO MURASE 

1. Introduction. Throughout this paper the word "Artinian (Noetherian) 
ring" means an associative ring with minimum (maximum) condition on left 
ideals. According to C. Hopkins, an Artinian ring is Noetherian if it contains 
a left or right identity [3, p. 728]. However we shall consider Artinian rings 
without the assumption of existence of such an identity, and the theorem of 
Hopkins will be reproved. 

Let A be an Artinian ring, and N its Jacobson radical. As is well known, 
L. Fuchs proved that A is Noetherian if and only if the additive group of A 
contains no subgroup of type C(pœ) [2, p. 285]. Recently Y. -H. Xù obtained 
another theorem [6, p. 274], and H. Tominaga reproved and restated it as 
follows: A is Noetherian if and only if the factor module N/AN is finite [5]. 
We shall investigate relation between these theorems and show that the 
theorem of Fuchs is connected with that of Xu-Tominaga by the following 
theorem: In case A is nilpotent, A is Noetherian if and only if A is finite. 
In case A is nonnilpotent, consider an idempotent e of A lifted from the 
identity of the semisimple ring A/N. Let Re be the right annihilators of e in A. 
Then A is Noetherian if and only if Re is finite. The connection is based on the 
fact that the additive group of Re is an Artinian torsion group. 

In the way of investigation or as an application we shall get some related 
theorems which are as follows. First, let A be a nonnilpotent Artinian ring. 
Then for every left ideal M of A one has M = AM if and only if A contains 
a left identity. Also for every right ideal M of A one has M = MA if and only 
if A contains a right identity. Next, if an algebra A over an infinite field is a 
nonnilpotent Artinian ring, then A contains a left identity. Further, there 
does not exist an algebra over a field of characteristic 0 which is a nilpotent 
Artinian ring. 

2. Theorem of Xu-Tominaga. Let A be an Artinian ring and N its 
Jacobson radical. We observe the following series. 

(1) A 3 N 3 AN 3 N2 3 . • . 3 AN^1 3 JV' = 0. 

As is well known, A is Noetherian if and only if this series can be refined to a 
composition series for the left ideals of A. We begin by reproving anew the 
following theorems. 

Received May 12, 1977 and in revised form, November 8, 1977. 

830 

https://doi.org/10.4153/CJM-1978-071-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-071-5


ARTINIAN RINGS 831 

T H E O R E M 1. (Xu) . An Artinian ring A is Noetherian if and only if kiN1 C 
AN1 for some positive integer kt{i = 1, 2, • • • p — 1), where kiN1 = {fe*a|a G iV'} 
and fe^a = a + a + • • • + a (kt summands). 

T H E O R E M 2 (Tominaga) . An Artinian ring A is Noetherian if and only if 
the factor module N/AN is finite. 

Note t ha t the factor module N/AN is considered merely as an addit ive 
group, because it is trivial as a left A -module. First we show the equivalence of 
the conditions in Theorem 1 and Theorem 2. 

L E M M A 1. If an additive Abelian group G of bounded order satisfies the mini­
mum condition on subgroups, then G is finite. 

Proof. As is well known, an addit ive Abelian group of bounded order is a 
direct sum of cyclic groups [2, p. 44]. Since G moreover satisfies the minimum 
condition, G is a direct sum of a finite number of cyclic subgroups. Hence 
clearly G is finite. 

Proof of the equivalence. Assume kN C AN for some positive integer k. Then 
the orders of the elements of N/AN is bounded. Moreover the addit ive group 
N/AN satisfies the minimum condition on subgroups, because every subgroup 
of N/AN is a homomorphic image of a left ideal of A and the left ideals of A 
obey the minimum condition. Hence N/AN is finite by Lemma 1. 

Assume conversely t ha t N/AN is finite. Then kN C AN for some positive 
integer k. Therefore clearly kN1 C AN1 for every i = 1, 2, • • • p — 1. By the 
same argument as above, then every Ni/ANl is finite. 

LEMMA 2. / / an Artinian ring A with radical N is Noetherian, then every 
factor module Nl / AN1 is finite (i = 1,2, • • -p — 1). 

Proof. Let G = Nl/AN\ Then the addit ive group G satisfies both maximum 
condition and minimum condition on subgroups. By the maximum condition 
G is finitely generated. Recall the fundamental theorem of finitely generated 
Abelian groups. Then by the minimum condition G is a direct sum of a finite 
number of cyclic subgroups. Hence G is finite. 

Proof of Theorem 2. Assume tha t A is Noetherian. Then N/AN is finite 
by Lemma 2. 

Assume conversely tha t N/AN is finite. Then first, every Nl/ANl is finite, 
as previously noted. Next , every left A -module ANl/Ni+l is completely re­
ducible. I t can be shown by the classical a rgument as follows. 

Let Â = A/N. Then Â is a semisimple ring. As can be easily seen, the left 
A -module ANl/Ni+l can be regarded as a unital left Z-module . Moreover it 
satisfies the minimum condition on submodules. Hence it is completely re­
ducible. 

Therefore the series (1) can be refined to a composition series for the left 
ideals of A. Hence A is Noetherian. 
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THEOREM 3. A nilpotent Artinian ring A is Noetherian if and only if A is finite. 

Proof. By assumption we have A = N, and so the series (1) becomes 

A = N D N2 D • • • D N?-1 D N*> = 0. 

If A is Noetherian, then every Nf/Ni+1 is finite by Lemma 2. Hence A is 
finite. The converse is trivial. 

THEOREM 4 (Hopkins). / / an Artinian ring A contains a left identity, then A 
is Noetherian. 

Proof. In this case we have N = AN. Therefore the series (1) for this case is 

A D N D N2 D • • • D N^1 D N? = 0, 

because Ni = AN1 for all i = 1, 2, • • • p — 1. Hence every Nl/Ni+l is com­
pletely reducible. 

3. A condition for existence of a left (right) identity. Assume that an 
Artinian ring A is nonnilpotent, and let e be any nonzero idempotent element 
of A. Then we have the Peirce decompositions: 

(2) A = Ae + Le and A = eA + Re, 

where Le = {x £ A\xe = 0} andi? e = {x £ A\ex = 0}. 
Lift the identity element of A/N to an idempotent of A, and let this idem-

potent be e. Then both Le and Re are contained in the radical N. Therefore 
we have further 

(3) N = Ne + Le and N = eN + i?e. 

This idempotent e will be called a principal idempotent. 

THEOREM 5. Let A be a nonnilpotent Artinian ring with radical N. Then 
N = AN if and only if A contains a left identity. Also N = NA if and only if 
A contains a right identity. 

Proof. Let e be a principal idempotent of A. Then by (2) 

AN = (eA + Re)N = eAN + ReN. 

Since eAN = eN, it can be rewritten as 

(4) AN = eN + ReN. 

Compare this with N = eN + Re. Then it follows that N = AN if and only if 
Re = ReN. It implies that 

Re = ReN = ReN
2 = • • • = ReN» = 0. 

Then A = eA, and so e is a left identity of A. 
Similarly, N = NA if and only if Le = 0, i.e. e is a right identity. 
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Clearly this theorem can be restated as follows. 

THEOREM 6. Let Abe a nonnilpotent Artinian ring. Then for every left ideal M 
of A one has M = AM if and only if A contains a left identity. Also, for every 
right ideal M of A one has M = MA if and only if A contains a right identity. 

4. A condition for Artinian rings to be Noetherian. Let A be a non­
nilpotent Artinian ring with radical N, and e be a principal idempotent of A. 
Consider a mapping <p: Re —> N/AN defined by 

X(p = x + AN for x 6 Re. 

Then the mapping ç yields a homomorphism on the additive group of Re, and 
it induces an isomorphism on the factor group Re/Ker <p. Recall (4) and (3). 
Then it can be easily seen that Ker ç = ReN and Im <p = N/AN. Hence 
we have 

(5) N/AN^Re/ReN. 

Generally also for i = 2, 3, • • • p — 1, we have 

•N* = (eN + Re)N
i~1 = eNl + ReN'-1, 

(6) AN1 = (eA + Re)N
i = eN1 + ReN\ 

Nt/AN^ReW-i/ReN*. 

THEOREM 7. A nonnilpotent Artinian ring A is Noetherian if and only if Re 

is finite. 

Proof. If Re is finite, then N/AN is finite, as is clear by (5). Therefore A is 
Noetherian by Theorem 2. 

Assume conversely that A is Noetherian. Then Nl/ANl for every i is finite 
by Lemma 2. Now consider the series 

(7) Re D ReN 2 ReN
2 2 • • • 2 -R^ ' " 1 = 0. 

Looking through this series from the left to the right, let ReN4-1 Z) ReN
j be 

the last proper inclusion. Then we have 

[Re: 0] = [Re: ReN][ReN: ReN*] • • • [ReN^: 0] 

= [N: AN][N2: AN2] • • • [Nj: AN3} 

This is equal to the number of elements of Re, and so Re is finite. 

5. Some properties of Re. 

PROPOSITION 8. The additive group of Re satisfies the minimum condition on 
subgroups. 

Proof. Any module with minimum condition on submodules is said to be 
Artinian. We claim that Re is an Artinian module. Consider again (7) and (6). 
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Then ReN
i~l/ReN

i is an Artinian module, because Nl/ANf is so. We first 
consider ReN

p~2. Every submodule M of ReN
p~2 is a left ideal of A, because 

AM = (Ae + Le)M = LeM Ç Np = 0. 

Therefore RCNP~2 is an Artinian module. Now, recall the well-known theorem: 
Let B be a submodule of a module A. Then A is Artinian if and only if B and 
A/B are Artinian [4, p. 22]. Then it follows at once that every module ReN

l 

and Re are Artinian modules. 

Remark. The critérium is applied to Z-modules. The above proof goes 
through—by dropping Re—if A = N. That is, if A = N, then the additive 
group of A is Artinian. 

PROPOSITION 9. The additive group of Re is a torsion group. 

Proof. Let u be a nonzero element of Re. We claim that ku = 0 for some 
positive integer k. 

Consider a set 5 of left ideals of A generated by a multiple of u. Then by 
the minimum condition there exists a minimal ideal in S. Let us write it as 
(mZ)u + Au. Then for every positive integer r we have 

(rmZ)u + Au = (mZ)u + Au. 

It implies that for some positive integer s we have mu — (rms)u Ç Au. Let 
mi = (rs — l)m. Then 

If m\U 9^- 0, then we apply the same argument to U\ = m\U and find a positive 

integer m2 such that 

m2Ui Ç ^4^1 = (̂ 4̂  + Le)wi = Leui Q N3. 

By a repetition of this argument we can find a positive integer k such that 
to = 0. 

PROPOSITION 10 (Hopkins [3, p. 727]). The number of the elements of Ree 
is finite. 

Proof. Decompose Ae into a direct sum of indecomposable left ideals. Let it 
be Ae = L\ + L2 + • • • + Ln. Then we have mutually orthogonal primitive 
idempotents e\, e2 - - • en such that e = e\ + e2 + • • • + en and Lt = Aet for 
all i = 1, 2, • • • n. Accordingly 

Ree = Reei + Ree2 + • • • + Reen, 

and Reet = Re(etAei) for all i = 1, 2, • • • n. 
Note that every etAei is a completely primary ring. Therefore every element 

of exAet not belonging to ejslei has a multiplicative inverse [1, p. 97]. 

https://doi.org/10.4153/CJM-1978-071-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-071-5


ARTINIAN RINGS 835 

We first prove that if Reet 9* 0 then ni^R^i) = 0 for some positive integer 
mt. We need only show that m ^ = 0, because then we have mtx = m^xei) = 
x ( r a ^ ) = 0 for all elements x of Ree{. 

Let u be a nonzero element of Reet. Since the additive group of Reei is a 
torsion group, mu — 0 for some positive integer m. If met ^ 0 and met (? 
etNeu then there is an element v of etAei such that {me^v = ef. Then 

« = wet- = tt{(mei)v} = {u(mei)\v = (mu)v = 0, 

contradictory to the assumption u v6- 0. Therefore we^ = 0 or mei £ etNei. 
But if W<?Ï Ç eiNeu then {me^)ù = mùei = 0 for some positive integer j . In any 
case there is a positive integer mt such that ra^ = 0. 

Therefore we have a positive integer k such that k(Ree) = 0. Hence the 
additive group of RPe is of bounded order. Moreover it satisfies the minimum 
condition on subgroups. Therefore Ree is finite by Lemma 1. 

THEOREM 11 (Hopkins). / / an Artinian ring A contains a right identity, then 
A is Noetherian. 

Proof. Let e be the right identity. Then e is clearly a principal idempotent. 
We have Re = Ree. Hence Re is finite, and so A is Noetherian by Theorem 7. 

6. The theorem of Fuchs. 

THEOREM 12 (Szele-Fuchs [2, p. 280]). / / an Artinian ring A is nilpotent, 
then the additive group of A is an Artinian torsion module. 

Proof. By assumption A = N. First, the additive group of N satisfies the 
minimum condition on subgroups. It is remarked at the end of the proof of 
Proposition 8. Next, the additive group of N is a torsion group. It can be 
proved similarly to Proposition 9. 

THEOREM 13 (Fuchs). An Artinian ring A is Noetherian if and only if the 
additive group of A contains no subgroup of type C(^œ). 

Proof 1. The case where A is nilpotent. By Theorem 3, A is Noetherian if and 
only if A is finite. Therefore we claim that A is finite if and only if A contains 
no subgroup of type C(pœ), i.e. no quasicyclic subgroup. 

Recall the theorem of Kuros which is as follows. The subgroups of an addi­
tive Abelian group G satisfy the minimum condition if and only if G is a direct 
sum of a finite number of quasicyclic and/or cyclic ^-groups [2, p. 65]. 

Note that our additive group A satisfies the minimum condition by Theorem 
12. Then the theorem of Kuros completes the proof. 

Proof 2. The case where A is nonnilpotent. Let e be any principal idempotent 
and consider Re. Then by Theorem 7, A is Noetherian if and only if Re is finite. 
Therefore we claim that Re is finite if and only if A contains no quasicyclic 
subgroup. 
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Assume that A contains no quasicyclic subgroup. Then of course Re contains 
no quasicyclic subgroup. By Proposition 8 the additive group of Re satisfies 
the minimum condition on subgroups. Hence by the theorem of Kuros Re is 
finite. 

Assume conversely that Re is finite. Then Re contains no quasicyclic sub­
group by the theorem of Kuros. Here we have to cite the theorem of Fuchs that 
every quasicyclic subgroup belongs to the annihilator of A [2, p. 281]. Then 
any quasicyclic subgroup of A must be contained in Re. However Re contains 
no quasicyclic subgroup. Hence A also contains no such subgroup. 

7. Application to algebras. In this section we consider an algebra A over 
a field K merely as a ring. Then a left ideal L of A need not satisfy the condi­
tion: 

(8) if a 6 L and y 6 K, then ya G L. 

This condition is imposed upon A only. 

THEOREM 14. Let A be an algebra over any infinite field K. If A is a nonnilpotent 
Artinian ring, then A contains a left identity. 

Proof. Consider first the case where the characteristic of K is 0. Let e be a 
principal idempotent of A. Then the additive group of Re is a torsion group by 
Proposition 9. However, in this case A clearly contains no torsion element. 
Hence Re = 0, and so e is a left identity. 

Consider next the case where the characteristic of K is p ^ 0. Then pRe = 0, 
i.e. the additive group of Re is of bounded order. Besides, the additive group Re 

satisfies the minimum condition on subgroups. Hence by Lemma 1 Re is finite. 
Suppose Re 9e 0, and let v be a nonzero element of Re. Let 7 be a nonzero 

element of K. Then yv 7^ 0 and yv Ç Re, because e(yv) = y(ev) = 0. Therefore 
Re must contain an infinite number of elements. This is a contradiction. Hence 
Re = 0, and e is a left identity. 

THEOREM 15. Let A be an algebra of finite rank over any infinite field K. Then 
A is a nonnilpotent Artinian ring if and only if A contains a left identity. 

Proof. Because of Theorem 14, it remains only to prove the "if" part. Assume 
that A contains a left identity e. Let L be any left ideal of A. Then the condi­
tion (8) is necessarily satisfied, because 

ya = y(ea) = (ye)a € AL C L. 

Therefore L is a left i^-module. Since A is a left i^-module of finite rank, it is 
obvious that A satisfies the minimum condition on left ideals. 

THEOREM 16. Let K be a field of characteristic 0. Then there does not exist an 
algebra over K which is a nilpotent Artinian ring. 
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Proof. Suppose that an algebra A over the field K is a nilpotent Artinian 
ring. Then the additive group of A is a torsion group by Theorem 12. However, 
A clearly contains no torsion element. This is a contradiction. 
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