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Abstract. We review correlations of spectral accretion diagnostics in
young binary star systems. Hydrogen emission lines at visual (Ha) and
near-infrared (Br-v) wavelengths indicate the presence of active accretion
flows onto young stars. We examine the simultaneity of this process in
both components of close binaries (separations 100-1500 AU) and find
that active accretion is not a random process in these systems: the two
stars are typically both active or both inactive. Only 19% of our sample
consists of mixed pairs in which just one component -displays evidence
of accretion, usually the primary. In systems with two active stars, the
equivalent width and in particular the line flux of the primary star is
generally dominant, indicating stronger accretion activity. We discuss
accretion and disk dissipation processes in close binaries and propose
that a circumbinary envelope model accounts for the correlated evolution
of circumstellar disks around young binaries.

1. Introduction

With the completion of several binary frequency surveys in the first half of the
last decade, the predominance of multiples in the nearby star forming regions
(SFRs) was well established (Ghez et al. 1993; Leinert et al. 1993; Simon et al.
1995). From this result there naturally arises a variety of questions regarding
the circumstellar (CS) disks in these systems, since CS disks are the presumed
sites of planet formation and stellar multiplicity could impact their formation
and evolution. Do both stars in young binaries have CS disks? If not, which
is lacking, the primary or secondary disk? Do both disks accrete and evolve at
similar rates? The study of CS disks and accretion in pre-main-sequence (PMS)
binary systems addresses these issues, providing insight into the evolution, co-
evality, disk dissipation timescales and formation models of young multiple stars.

To study accretion activity in young stars, we observed Ho and Br-y hy-
drogen emission lines, which are produced in accretion column flows (Shu et al.
1994; Hartmann et al. 1994). Although these lines are variable (e.g., Basri &
Bertout 1993), they are well correlated with other accretion diagnostics, such
as optical veiling, forbidden [01] line emission and near-infrared color excesses
(Hartigan et al. 1990; Edwards et al. 1993, hereafter E93). Ho emission at
6563A is also produced in energetic winds from young stellar objects (YSOs),
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however, such winds are correlated with active accretion. The Br-y 2.167{Lm line
is a particularly robust diagnostic, and is useful for the study of embedded, red
objects (Prato & Simon 1997, hereafter PS97; Muzerolle et al. 1998).

The separation distribution of PMS binaries in Taurus peaks at rv40AU
(Simon et al. 1995), corresponding to an angular separation of 0.3". Thus,
high spatial resolution is a requirement for observing spectral features in both
components of close systems if we wish to study the stellar properties of the
majority of these pairs. The technological advances in spectroscopy at large
ground-based facilities in the last decade have enabled this research. Tip-tilt
and adaptive optics systems, such as exist at the University of Hawaii 88" and
the CFHT 3.6m telescopes, were required for the observations of the individual
stars in the closest binaries (separations rv100 AU). The advent of sensitive array
spectrometers in the near-infrared (IR) has also facilitated this work.

In §2 we describe the data samples on which we base our analysis, define
the criteria for active accretion and present the results. We discuss correlations
of accretion signatures in §3. Our interpretations of the results appear in §4.
We list some observational predictions in §5.

2. Data

2.1. Samples

The observations which we analyze here are from several sources. In their 1994
paper, Hartigan et al. (hereafter H94) published a study of the characteristics
of a sample of 39 PMS binary pairs with separations from 400-6000 AU. They
obtained spatially resolved, i.e. for each component, Ho spectra for 28 systems
in the Taurus and Orion SFRs. PS97 examined similar questions as those posed
in this review (§1) for a sample of 12 close binaries with separations of 40-360
AU. Four of these, from the Taurus, Corona Australis and Ophiuchus SFRs,
were resolved individually in the hydrogen Br-y line (separations of 180-360
AU). An additional unique 15 BrT systems, from the Lupus and Ophiuchus
SFRs, appeared in Prato (1998) (separations 210-1000 AU). Data from a com-
parable sample of 15 systems in the Taurus SFR, separations 100-490 AU,
are in preparation for publication (Prato et al. 2000). Brandner and Zinnecker
(1997) studied accretion using the Ho diagnostic for a sample of 14 binaries
(80-240 AU) in the southern SFRs Chameleon, Lupus and Ophiuchus. Monin
et al. (1998; hereafter M98) and Duchene et al. (1999; hereafter D99) performed
similar studies on 15 systems in the Taurus SFR (130-830 AU).

2.2. Criteria

We distinguish actively accreting classical T Tauri stars (CTTs) from the weak-
lined T Tauris (WTTs) using the criteria described by Martin (1998) and Walter
(1999). In place of the traditional loA Ho cutoff, these authors propose that
the emission line strength which defines a CTT is a function of spectral type.
Thus, the limit for K stars is 5A, for MO-M2 type stars is loA and for later
spectral type stars is 20A. For systems observed in the Bf'Y line, we adopt the
criterion of rv1A.
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To ensure a homogeneous sample of comparable binaries in our analysis, we
eliminated, to the best of our knowledge, all higher order multiple systems with
unresolved components. In order to avoid chance projections, we include only
systems with separations <II" (separations of the final sample were therefore
100-1500 AU at the rv140pc distance to the SFRs studied). In some cases
systems were eliminated because they are not considered to be true binaries,
such as GK Tau (H94; Prato et al. 2000). HBC 356/357 was discarded because
it is probably not PMS (Martin 1998).

2.3. Results

In Figures 1 and 2 we present the Ho spectral line data in graphic form. The
left panel of Figure 1 shows the secondary versus primary Ho equivalent widths
from H94, M98 and D99 for objects primarily in the Taurus SFR. These data
are converted to line fluxes and plotted in the right panel of Figure 1. There
is a strong trend towards more active primary stars, particularly evident in
the plots of line flux. The one object with the relatively large secondary line
flux (rv5xl0-16Wm-2 ) , DK Tau, is possibly a triple, a hypothesis supported
by polarization observations presented by Jensen et al. (2000). RW Aur is
included in this sample, although it does not appear in the right hand panel of
Figure 1 or in Figure 2 since the primary and secondary line fluxes are relatively
large, respectively, 120 x 10-16 and 1.2 x 10-16 Wm-2 . However, this system
emphatically supports the trend towards dominant primaries. Figure 2 shows
the secondary/primary line flux ratio as a function of the primary line flux. For
systems with weak primary fluxes, significant scatter is present in the ratios.
This may be understood as the result of division by a small number. The weak-
lined system J4872 has a ratio greater than unity which may only reflect that
neither of the stars in this system is accreting. On the other hand, DK Tau
again stands out in Figure 2 with a ratio '"'-'0.8 and a large primary flux. Either
this system is a triple, and the plotted ratio has to be refined by further higher
angular resolution observations, or the secondary is significantly accreting in DK
Tau, contrary to most of the other systems studied.

The Br-ydata are plotted in Figures 3 and 4; the results are similar to those
shown in Figures 1 and 2, i.e, the primary star equivalent widths and line fluxes
tend to dominate. The right hand panel of Figure 4 is a blowup of part of the
left hand panel. The only target with an appreciable secondary Br-y line flux is
Haro 6-37, a triple which was intentionally included in this plot (although not in
the analysis discussed below) for illustration. Four systems appear to have Br-y
emission in the secondaries only; these are all mixed systems, discussed below
(see Table 1).

The CTT and WTT nature of the binary components studied is summarized
in Table 1. The Taurus sample includes a majority of pairs from the Taurus SFR
and three systems from Orion. The Southern sample is composed of targets from
Ophiuchus, Lupus, Corona Australis and Chameleon. We list the uncorrected
and corrected percentages of mixed systems; one set of corrections were made
in the classification of mixed pairs on the basis of the Ho or Br-y emission line
for the CTT component being very close to the fiducial cutoffs described above.
Such systems were reclassified as two WTTs, i.e, WW. Other corrections were
made for two systems with optically thick K- L colors associated with both
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Figure 1. Left: Secondary versus primary Ho equivalent widths for
the sample of Taurus objects from H94, M98 and D99. The dotted line
indicates the location of objects for which the primary and secondary
equivalent widths are equal.
Right: Secondary versus primary Ho line fluxes for the same sample
of objects in the left panel. The dotted line indicates the location of
objects for which the primary and secondary line fluxes are equal.

Table 1. Component Star Characterization
Taurus Sample:

7WW
12 CC

4 CW (2 marginal)
1 we

Souther~. Sample:
9·WW
10 CC

4 ew (1 marginal)
6 we (2 CC from colors)

21% mixed uncorrected
13% mixed corrected

Total sample (Taurus+Southern): 53 systems
28% mixed uncorrected

35% mixed uncorrected
24% mixed corrected

19% mixed corrected

components, although the binaries appear to have mixed spectral signatures.
These were reclassified as two CTTs, i.e. CC (E93; PS97).

3. Correlations

The total number of systems in the sample we analyze here is 53, 24 from the
Taurus SFR and 29 from the southern SFRs. In Table 1 we present the statistics
for these regions separately. The southern regions have a higher fraction of mixed
pairs. Given the small numbers in the samples, this may simply be a random
fluctuation. However, it may also reflect physical differences in the properties of
the different SFRs, such as stellar density and age. Much larger samples would
be required to study this distinction at a high level of confidence.

The data presented in Table 1 show that only 28% of the systems in the
uncorrected sample are mixed we or ew pairs. This suggests that the com-
ponent stars in PMS binaries in the separation range studied do not evolve
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Figure 2. Ho secondary to primary line flux ratio as a function of
the primary line flux. The scatter observed for small primary fluxes
probably results from small number division, thus it is likely that nei-
ther component in the system J4872, with a ratio of rv1.7, is accreting.
DK Tau appears out of place in the center of the plot; we speculate
that this system may be a triple. The dotted line indicates the location
of objects for which the primary and secondary line fluxes are equal.

independently of each other, consistent with the results of PS97 and D99. It
appears that both stars in young, close binary systems accrete simultaneously.
At some point, accretion ceases at nearly the same time in both components
and the CS disks dissipate on relatively short time scales (see Simon & Prato
1995). Modelling of random pairing between CTT and WTT stars has shown
that stochastic processes do not account for the large number of pure WW and
CC systems (PS97); rather, a shared physical environment seems to regulate the
evolution of these binaries.

In the corrected sample, less than one fifth of the pairs are mixed, further
strengthening our conclusions. The first corrections described in §2.3 shift pairs
with one CTT member into the pure WW category, based on a borderline CTT
equivalent width [i.e, within a few A of the cutoff). The other correction de-
scribed in §2.3, which shifts mixed pairs into the pure CC category on the basis
of an optically thick near-IR color observed in the WTT component, introduces
a qualitatively different diagnostic based on photometry. YSOs with weak-lined
hydrogen emission and optically thick near-IR colors suggest passive CS disks
which have ceased accreting and are evolving into WWs. Since line emission
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Figure 3. Secondary versus primary Br-yequivalent widths for a sam-
ple of Taurus and southern SFR systems. The dotted line indicates
the location of objects for which the primary and secondary equivalent
widths are equal.
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attributable to accretion onto the central star is a highly variable process, it
could also be that WTT components with optically thick passive disks are in a
quiescent accretion state. However, in mixed systems, the CTT component typ-
ically displays relatively weak emission in comparison to the components in pure
CCs, supporting the scenario in which mixed pairs are likely to be in transition
to WWs, rather than CC systems with one star in a dormant state.

Figure 5, adapted from PS97, shows the near-IR K-L versus mid-IR K-N
color plane. Both single and (spatially unresolved) binary systems are plotted,
as circles and triangles, respectively; the symbol size is proportional to the Ho:
equivalent width, W(Ha). WTT singles and doubles have optically thin colors
and occupy the lower left-hand corner of the diagram, as expected. However,
a number of WW binary systems, as well as some single WTTs, are located
in the upper right-hand area of the plot, characteristic of stars with near and
mid-IR optically thick colors, implying the presence of a disk. The data plotted,
for objects in the Taurus SFR, are from H94, Simon & Prato (1995), Kenyon
& Hartmann (1995) and Herbig & Bell (1988); the binaries included have a
separation range of rv40-400 AU. Kenyon et al. (1996) and Armitage et al.
(1999) have modelled the evolution of stars in K-L / K-N space. In the models
of Kenyon et al., as the CS disks begin to dissipate, outwards from an inner gap,
the objects appear redder. Following the Kenyon et al. evolutionary tracks in
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Figure 4. Left: Secondary versus primary Br-yline fluxes for the same
sample of objects in Figure 3. The dotted line indicates the location of
objects for which the primary and secondary line fluxes are equal.
Right: A blowup of the lower left-hand corner of the left panel. Haro
6-37, the object with the largest secondary line flux, is a triple. We
include it here to show how a triple system contrasts with the simple
doubles.

Figure 5, the system first tends to move diagonally towards the upper right of
the diagram, then down to the lower right-hand sectors, then horizontally left to
the WTT region. Thus, in this model, we expect to see some very red systems
with little or no hydrogen emission, as observed, because the warm material in
the inner disk has dissipated.

4. Interpretation

We propose that a tenuous, optically thin circumbinary (CB) envelope surrounds
both objects in a close CC binary, analogous to CS envelopes around single stars
(Calvet et al. 1994). Such an envelope could feed and simultaneously maintain
the disks of both stars. Accretion from the disks onto the central stars gives
rise to the emission lines associated with both stars. Since the average angular
momentum of an envelope is low, material falls at least equally onto both disks
or, more probably, preferentially onto the disk of the primary (Bate 2000), in
which case we expect case the primary star's CS disk to be more massive than the
secondary's. Consequently, if the rate of accretion from a disk onto a central star
is proportional to the disk mass, then the primary stars should experience larger
accretion rates, as observed. Once the envelope material has been depleted, the
remaining accretion lifetime of both the circumprimary and circumsecondary
disks would be similar, since Tdisk = Mdisk/M, where M is the accretion rate of
the disk onto the central star (D99). Simon & Prato (1995) show that the disk
dissipation times may be as short as ~105 years, indicating that the disks do not
survive long once the reservoir of supply material, the envelope, is gone. We base
our interpretation on systems with separations of 100-1500 AU. The fraction
of mixed systems is higher in wider pairs (H94; PS97), thus, it is unlikely that
this envelope model holds for wide binaries, as discussed in PS97.

A CB (or CS) envelope model accounts for the fact that a comparison of
measured disk masses and observed accretion rates indicates that most observed
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Figure 5. The K- L versus K- N plane. Circles are single stars and
triangles are (unresolved) binaries. The dotted lines delineate the opti-
cally thick / optically thin cutoffs for the two colors, 0.4 mag for K- L
and 1-2 for K-N. The symbol size is proportional to the W.(Ha).

disks ought to have accreted and dissipated long ago, given the stellar ages (e.g.
Strom et al. 1989; PS97). Thus, a mechanism that accounts for disk feeding is
critical. The presence of a disk is not a strong function of age in PMS systems
(e.g., Simon & Prato 1995). We propose that the disk lifetimes depend on the
amount of material originally contained in the envelope. Millimeter observations
have not detected these envelopes in large numbers, at hough there is some indi-
cation that complex CS and CB environments exist and may harbor structures
which perform an equivalent function (see Stapelfeldt & Menard 2000). Based
on the parameters given in Calvet et al. (1994), a rough estimate suggests that
sufficient material to feed the disks may be present in an envelope, but may lie
below the sensitivity limits of most millimeter observations to date. Further-
more, a number of CS envelopes have been detected, indicating that they are at
least more common than rare structures such as CB disks. Bate (2000) argues
that a CB disk has high angular momentum, and would preferentially accrete
onto the secondary stars, contrary to the trend of the observations discussed
here.
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5. Observational Predictions
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We conclude by listing several predictions, consistent with the model we have
discussed, which may be tested observationally.

=> If Mdisk oeM explains the similar accretion timescales in primaries and
secondaries, then this should hold for single stars as well as for binaries. This
correlation is currently difficult to explore because of the uncertainties in the
young star parameters required to derive the accretion rates. Improved mass
estimates for T Tauri stars based on dynamical observations and the next gen-
eration of theoretical models should help to establish or disprove such a relation.

=> The few systems with very strong accretion signatures in the secondaries,
yet none or only weak signatures in the primaries, could be surveyed for CB rings,
as predicted by Bate (2000). Alternatively, these may not be physically related
binaries. .

=> If mixed systems are in the process of dissipation and have only just
stopped or are stopping final accretion, then both stars in such binaries should
have near and mid-IR optically thick colors indicative of passive CS disks. The
same should be true for all CC systems.
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