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1. Introduction 

Perhaps the most challenging problem confronting a cosmologist is to reconcile the 
observed large-scale structure of the Universe with the Friedmann-Lemaitre cosmo­
logical models that have gained such widespread acceptance in recent years (cf. how­
ever the alternative viewpoint, as exemplified in this Symposium by Arp and others). 
In this review, I shall look anew at the spectrum of density inhomogeneities that 
survive decoupling of matter and radiation at z ~ 1 0 0 0 and provide the primordial 
fluctuations that can eventually generate galaxies. A closely related matter, that of 
the associated fluctuations in the background radiation, is discussed elsewhere in 
this volume by Doroshkevich, Sunyaev and Zel'dovich. 

It is apparent from the observed ages, mean densities, and spatial separations of 
galaxies that we are inevitably confronted with the problem of forming galaxies in 
the expanding universe, and moreover, that galaxies could not have existed at epochs 
earlier than those corresponding to a redshift z~ 100-1000. For the purpose of the 
following discussion, I shall define the initial epoch as tt ~ 1 yr or zt ~ 10 8 , correspond­
ing roughly to when the mass of a galaxy is first contained within the particle horizon. 
Since no instability has been found that can produce large fluctuations from an ini­
tially uniform state (Lifshitz, 1946), one must necessarily consider finite amplitude 
initial conditions. 

The various possibilities that arise can be broadly classified into three categories 
of initial conditions. It is convenient to introduce the parameter 5Q/Q, the relative 
fluctuation in matter density, as a measure of the degree of inhomogeneity on any 
specified scale. Note incidentally that one must have \8Q/Q\<>1 at z> 1000, otherwise 
premature formation would occur of gravitationally bound systems that can bear 
little relation to the observed galaxies. Presumably such objects, if present at z> 1000, 
would collapse to dense nuclei, and ultimately perhaps form black holes. 

1.1. EMPIRICAL INITIAL CONDITIONS 

The most direct approach is to postulate an initial amplitude for the density fluctu­
ations that is just adequate to have formed galaxies by the present epoch. One can 
generalize these conditions somewhat by assuming such fluctuations to be present 
on all scales. The initial vorticity is taken to be zero. 
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1.2. TURBULENT INITIAL CONDITIONS 

Here, one postulates an initial velocity field with non-zero vorticity on all scales, such 
that <Vw>, = 0. The associated density fluctuations are initially zero, although tu-
bulence is generated on sufficiently small scales (< v0t) where dynamical interaction 
can occur between different eddies. The density fluctuations associated with the tu-
bulence remain small provided that the turbulence is subsonic, or v0<^c. This ap­
proach has been explored in detail in recent years (e.g., see the papers in this volume 
by Nariai and Ozernoi). 

1.3. CHAOTIC INITIAL CONDITIONS 

Finally, one can hypothesize initial conditions of the form \8Q/Q\~1 and (v?)l/2~c. 
The complexity of this situation lies in the fact it is inherently non-linear, and conse­
quently this approach has not hitherto been developed in any detail (cf. however 
Misner, 1 9 6 7 ; Rees, 1972) . 

The aim with any set of initial conditions is always to infer the residual spectrum 
of primordial fluctuations that emerges after decoupling and that will eventually 
generate galaxies. In the bulk of the ensuing discussion, I shall discuss the conse­
quences of the assumption of empirical initial conditions. This is a phenomenological 
hypothesis, which appears to provide the simplest and most direct approach to the 
problem of galaxy formation. 

The present discussion is organized as follows. In the following section, the basic 
dynamical equations are established that govern the evolution of perturbations in a 
Friedmann-Lemaitre universe. I shall work throughout with equations that are es­
sentially post-Newtonian, in order to concentrate in this review on deriving certain 
physical results. This formalism is appropriate for Friedmann-Lemaitre models of 
arbitrary spatial curvature, provided that one restricts the validity of the discussion 
to length-scales short compared to the particle horizon. 

In Section 3 , general solutions are given that describe the evolution of adiabatic 
perturbations in the matter density, and in Section 4,1 study the choice of appropriate 
initial conditions. The various perturbation modes are compared in Section 5, and 
Section 6 is devoted to a study of the effect of decoupling on the perturbation spec­
trum. The scheme that I use for following the evolution of density perturbations 
through decoupling is based on an extension of the Eddington approximation to the 
radiative transfer equation, and is strictly valid in both the optically thick and thin 
limits. A final section summarizes the preceding results, and describes the emergent 
spectrum at decoupling. Various physical effects that can affect the form of the final 
spectrum are examined, including the effects of shock formation and Thomson drag. 

2. Dynamical Equations 

I shall consider a two-fluid system containing matter and radiation, in which the 
principal coupling is via Thomson scattering by free electrons. The unperturbed fluid 
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is taken to be the spatially flat Einsteiri-de Sitter universe, which satisfies the Fried­
mann equations 

d2 _8TCG 

7 2 = ~ T 
£GT=cons t ; = —— (Q + Qr). (1) 

/? is the pressure of both matter and radiation, Q the matter density and gr the radi­
ation mass density. The scale factor a accordingly varies as t 2 / 3 if Q$>Qr, and as t 1 / 2 

if Q<Qr (since grcca~4). 

In the comoving coordinate system the perturbed velocity v is of first-order, as also 
are the perturbed density of matter (=dg) and pressure px. The linearized field 
equations that describe small perturbations of an arbitrary metric tensor htj relative 
to a Friedmann universe reduce in lowest order to 

W--™61%, (2) 
c 

where T) is the perturbed energy-momentum tensor*. In obtaining this result, a gen­
eralized de Donder gauge condition (Lanczos, 1925) has been used, and a slow-motion 
and weak field approximation utilized (cf. Irvine, 1965; Silk, 1966; Layzer, 1968). The 
perturbed equation of baryon conservation yields 

dvx ds , v 

dxk dt 

where we have introduced the quantity 

S = QJQ. 

One now utilizes the conservation equations 

r : j = o (4) 

in order to derive an equation for s. 
It is necessary, however, to discuss first the present method for incorporating the 

radiation field into Equations (2) and (4). One of the principal aims in this discussion 
will be to follow perturbations through the decoupling era. Hence it is necessary to 
develop a formalism for incorporating the radiation explicity into the perturbation 
equation that remains valid for arbitrary optical depths. Earlier treatment of this 
problem have been given by Peebles and Yu (1970) and by Bardeen (1968). Peebles 
and Yu chose to numerically integrate the Boltzmann equation for the photon distribu­
tion, whereas Bardeen took some 20 moments of the radiative transfer equation. The 
complexity of these methods, and in particular their lack of susceptibility to a simple 
analytical approach, has obscured much of the relevant physics. 

Accordingly, I shall develop a somewhat more direct approach to the problem. 

* Repeated Latin indices /, /, k etc. are summed over the four coordinates .v,, v 2 , x3 and t: repeated Greek 
indices are summed over three spatial coordinates. 
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The radiative transfer equation can in fact be solved by use of a modified version of the 
Eddington approximation, an approximation that is valid in both optically thick and 
thin limits for a radiation field that does not deviate greatly from isotropy (Unno and 
Spiegel, 1966; Anderson and Spiegel, 1972). At intermediate optical depths, this 
approximation should be adequate for the present purpose. 

To develop an equation for the perturbed mean intensity, one proceeds as follows. 
The specific radiation intensity I(fih xh t) satisfies the radiative transfer equation 

1 dl 4 a dl 
- _ + —j + + = 5 
c ot c a dXi 

This equation is valid in the comoving frame for wavelengths short compared to the 
particle horizon and for a gray opacity coefficient K (in c m " ̂ 'J is the total emissivity 
(including scattered radiation) and ju, the direction cosine vector for the angle between 
x, and the direction of the radiation beam. The radiation field is anisotropic because 
of the perturbed velocity field, and to lowest order in v/c, the transformation proper­
ties lead to the relations (Thomas, 1930) 

/ =j (1 - 3 / W c ) ; K' = K(1 + iifljc); f = J- 2vtHJc, (6) 

where the primes denote quantities measured in the frame of the perturbed motion. 
The mean intensity and radiation flux are defined by 

4nJ 4nJ (?) 

Note that in the unperturbed system, there is no net radiation flux, and 4nJ =grc3 

For opacity due solely to Thomson scattering by free electrons, 

K = neoT, (8) 

and 

f = K'J', (9) 

where for simplicity we assume that the scattering is isotropic in the rest frame of the 
electrons. Consequently, one obtains from Equation (6) and (9), to first order in the 
perturbed quantities, 

j = K J ( l + 4 / W c ) . (10) 

The procedure is now to expand the mean intensity in spherical harmonics, bearing 
in mind that for small perturbations in an anisotropic universe, this provides an 
adequate representation at arbitrary optical depths. One writes 

/ = /<o» + / J j / <i) + ( | ^ j _ i ) / ( 2 » + . . . ) 

neglecting the higher order terms in the expansion, and takes the first three moments 
of the transfer Equation (5). 

As emphasized by Anderson and Spiegel (1972), it is necessary to proceed to one 
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higher order in the moments of the transfer equation than in the conventional Edding-
ton approximation in order to obtain the correct solution at large optical depths as 
given by Thomas (1930). For clarity, I write the moments out explicitly: 

dHt 1 dJ 1 4d 
cx{ c dt c a 

1 dHt 1 4d dKu 4vt 

-—- + H i + —* + KHi = --±KJ; (13) 
c dt c a dXj 3 c 

and 
1 8KU 1 4a d . e 

- - r ^ + KtJ+— Q^ + KK^KJStj, (14) 
c dt c a dxk 

where 
I f I f 

K 0 = — J IfiifijdQ and Qijk = — j Ifi^dQ. (15) 

The definitions (7) and (15), together with the expansion (11), lead to the consistency 
relations * 

J = /<°>; H,=W, (16) 

K o = ( ^ ( 0 , + ^ ( 2 V , v ; Qm= W%>- (1 7 ) 

Since I{i) = I{2) = 0 in the unperturbed system, one can now carry through a perturba­
tion of Equations (12), (13) and (14). The net result is that by combining relations (17) 
with Equations (12), (13) and (14), one obtains a single equation relating the perturbed 
mean intensity J x to v. After making use of Equation (3), one obtains 

d 4d \fd 4d \ / d 4d\ , f , 7 / 5 4d\ 

dt a ) \8t a J \dt a J \8t a J 

,,Kc3l 4 / 3 4a \ 

A Fourier transform has been performed over the spatial dependence of the perturbed 
quantities, k being the wave number. 

One can derive a second equation relating s to the perturbed radiation field from 
the conservation Equation (4). The radiation stress tensor can be written in the form 

4TZ 
= ~c (Juluj + ulHJ+uJHl + KiJ) (19) 

and the energy-momentum tensor of the matter is 

TZt= - p ( a i j + u V ) + ^ V , (20) 

* Parentheses around indices imply summation over all permutations of the indices, and division by the 
number of permutations; Su=\ (/'=/) and is otherwise zero. 
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iQk — (1 + x) d- \n(TQ-2") = 4Qrc2neaTck (24) 
mp dt mecz 

where x is the fractional hydrogen ionization and Tr is the radiation temperature. 
Carrying through a perturbation of Equation (24), with the requirement that T=Tr 

in the unperturbed system, leads to the equation 

d 2m p \ T r = mpKc^ Jx Ids 
dt me(l+x) 7 T 2me(l+x)J 3 dt' 1 1 

Equations (18), (23), and (25) describe the evolution of matter and radiation perturba­
tions in an Einstein-de Sitter universe at arbitrary optical depths to the radiation field. 

3. Adiabatic Fluctuations 

The purpose of this section is to summarize for subsequent application the solutions 
that describe the evolution of adiabatic fluctuations: further details can be found in 
the review by Field (1971a). 

where ul is the velocity four-vector, normalized so that 

and the background metric is 

dS2 = dt2- a2 {dr2 + r2 s in 2 G d&2 + r2 d<9 2). (21) 

The conservation Equations (4) yield to first order in the perturbed quantities 

dvx dvk -1 . c2 , . dh°0 . 1 d 
— + if— = — ( l + f £ ) ^ « - - — 22 

0 X a £ CXa 2 tfXa Q dx a 

where 

Z = 4Qr/3Q. 
Taking the divergence of Equation (22), and using Equations (2) and (3) to eliminate 
and v, one obtains the result 

d2s / £ \ d d s l fc2c£ / TA 47i/ck"kfi 

dT2+\ $VdaJt)+S(i^){S+T) + a2

e(\+tt) K"~ 

- e W ) ? U + 7 ) 7 H - = 4 , l G 4 s + 3 { 7 ) - ( 2 3» 
The matter sound velocity cm and perturbed matter temperature Ti have been intro­
duced in deriving this result. 

In order to specify the matter temperature it is necessary to introduce the energy 
equation. Only energy transfer by electron scattering (Weymann, 1966) need be 
considered, and one has 
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It is convenient to divide the discussion of perturbations into two regimes, corre­
sponding to scales that are either opaque or transparent to the ambient radiation field. 
I consider fluctuations that are also adiabatic, in the sense that the perturbations are 
isentropic. In the limit of high optical depth (k/K<41), the flux Ha is of higher order in 
k/K than the mean intensity, and can be neglected in Equation (23). Moreover, the 
second moment coefficient that enters into the Eddington approximation for KaP in 
Equation (17) can similarly be neglected in Equation (23), which now reduces to 

d2s ( £ \dds k2 c2s£ , 

In deriving this equation, use has been made of the optically thick limit of Equation (18), 

7 - T - ( 2 7 ) 

I also choose to neglect the fluctuation in the matter temperature: because of the 
overwhelming contribution of radiation pressure compared to matter pressure, this 
term never becomes significant prior to the decoupling epoch. 

Solutions to Equation (26) can best be studied by considering separately the radia­
tion and matter-dominated epochs. Note that the mass densities of matter and radia­
tion are equal at £ = f , or 

l + z = 1 . 0 4 x l 0 4 G f c 2 , (28) 

where h = (H0/50 km s " 1 Mpc" 1 ) , Q = 8TZGQ0/3H2

), and g0 is the mean density of 
matter and radiation in the Universe at the present epoch. 

3.1. RADIATION-DOMINATED EPOCHS { £ > \ ) 

Equation (26) reduces to 

d2s ads 4k2c2s \6nGprs 
1 1 = 

dt2 adt 9 a2 3 

For a Friedmann universe at 1, aocr 1 / 2 , and the solutions to Equation (28) are 

MA (4kct\ 
scct^J±3f2^-—j. (30) 

This solution has the expected form (Lifshitz, 1946): if a critical wave number is defined 
by 

> (31) a Act v ' 

then for /c>/c c r, the solution is a sound wave of constant amplitude, and for k<^kCT, 
there are two unstable modes, a growing mode sect, and a decaying mode, scct~1/2. 
Equation (29) is strictly valid only for wavelengths short compared to the particle 

+ + T~ = TT^- 29 
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horizon, and is accordingly not accurate in the long wavelength limit at radiation-
dominated epochs. 

3.2. MATTER-DOMINATED EPOCHS <̂  1) 

In general, if y is the adiabatic index, Equation (26) takes the form 

T A \ 2 ( y - l / 3 ) j ~ 

5 + ̂ + 1 ^ , ( 7 ) - ^ 1 - 0 . (32) 
where we have used the result that aocf 2 / 3 . The epoch t, is arbitrary, and is introduced 
in order to remove the explicit dependence on the scale-factor a. c s t is the sound velo­
city at t,. Prior to decoupling of matter and radiation, cs is given by 

c s = ^ ( l + £ ) - 1 / 2 , (33) 
V 3 

and subsequently 

f k T \ 1 / 2 

cs = cm = [ , (34) 

where \i is the mean molecular weight. 
Equation (32) can be solved for y = f and y=f , appropriate to epochs before and 

subsequent to decoupling. 

(0 y = t -
The solution for s is socr m ± , where 

™ ± = i ± f ( i - 8 * 2 ) 1 / 2 . (35) 
and 

(f = kcStiti. (36) 

a is identified as the ratio of Jeans length csjtt at epoch t{ to wavelength, and the 
criteria 1 or <J> 1 divide the solution respectively into an unstable regime, where 
s o c t 2 / 3 or t~ \ and into a damped oscillatory regime, where 5 0 c t ~ 1 / 6 exp(i<r In?). 

( " ) y = f 

In this regime, the perturbations are adiabatic, provided that all coupling with the 
radiation is neglected. The solutions to Equation (32) are Bessel functions of order f, 
that can be written in the explicit form 

/ 3 \ . 3 
soc — r — 1 I s i n x — cosx , 

\ x z ) X 

and (37) 

3 \ 3 
soc( 1 — z - c o s x — sinx, 

x 2 / X 
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where 

1/3 

(38) 

Here again, there are two regimes to the solution: 

x > 1, corresponding to damped oscillations, and 
x<^ 1, corresponding to growth according to sect213 or decay sect - 1 

4. Initial Conditions 

The question of appropriate critical conditions for the density perturbations described 
in the previous section is extremely perplexing. What is self-evident is that the domi­
nant modes increase algebraically with time (~t or ~ t 2 l 3 \ and consequently, initial 
conditions must be specified at some finite time in the past. Extreme difficulties arise 
in attempting to account for the origin of initial fluctuations of finite amplitude, as 
already emphasised in Section 1 (cf. also Layzer, 1964). 

Consequently, I shall subsequently develop the empirical or phenomenological 
approach, whereby the presence is postulated of sizable initial fluctuations distributed 
over all length-scales. One then seeks in various physical processes that occur the 
dissipation of fluctuations of various scales, and the consequent development of a 
spectrum that bears some relation to the observed large-scale distribution of matter 
in the Universe. Various authors have espoused this philosophy, and it is the results 
of this considerable effort that I intend to review. 

First, however, it is important to establish the manner of adiabatic evolution of a 
spectrum of density perturbations. Formally, one proceeds by postulating appropriate 
initial conditions on the Fourier-transform of the density perturbation, of the form 

contains two arbitrary constants that can now be evaluated, and the required spec­
trum is given by 

Some insight into this procedure can be attained by studying a particular example 
that allows an analytic treatment. I shall adopt the initial constraints 

s(k, ti) = Si(k, tt) 

s(k, f iHs^k, f,). 
(39) 

The general solution for s, 

s(k, t) = AlSl(k, t) + A2s2(k,t), (40) 

(41) 

s(/c, ti) = s0k 

s(/c, tt) = 0. 
(42) 
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These are chosen because of their simplicity: no cut-off in k need be specified for 
convergence properties. Moreover, the Fourier-transformed initial spectrum has a 
fairly plausible behavior with scale: 

s(r, ti) = 2n2s0r-1. (43) 

However, it must be emphasized that this is purely an illustrative example. 
The transform (41) can be performed exactly for the solution given in the previous 

section corresponding to radiation-dominated eras prior to decoupling, or to matter-
dominated eras subsequent to decoupling. For the y = f case, where s(k, t) is given 
in Equation (37), s(r, t) has the form 

y-l 

s(r, t) = 

n2\^3{y-\f 2 0 , - 1 ) 3 , 6 0,-1)1 
s 0 — 2H r 1 — for r><x 

r L y r 5 y3 J 
a |_ \ y y J a 10 « J 

y-l 
r<oi , 

y 
(44) 

where y = (t/ti)l/3 and a = 3c s 

The asymptotic form of the solution (44) at long times (yp 1) is 

5 - f w 2 5 0 y 2 r _ 1 . (45) 

Solutions s(r, r) have been evaluated graphically for expression (44), and are shown 
in Figure 1. 

The relaxation of s(r, t) from the initial perturbation occurs as gravitational effects 
dominate. At long wavelengths, where pressure effects are negligible, the final state is 
that of homologous growth as t2/3, preserving a spatial dependence of the form (45). 
Peebles (1971) has given numerical solutions to a related problem. 

This result demonstrates the fundamental principle, apparent from inspection of 
Equation (32), that large wavelength (/c->0) and/or long-time solutions (r -»oo) for 
y > f grow at a rate independent of wavelength. The y = f solutions show a similar 
behavior at large wavelengths 

k/a<cst. (46) 

Note that k/a is a comoving wavenumber, and refers to a fixed number of particles. 
A more realistic spatial dependence for density fluctuations may be obtained by 
computing the auto-correlation function. For a white-noise power spectrum, the 
asymptotic dependence is <s(r, t ) 2 > 1 / 2 o c r " 3 / 2 . 

5. Photon Dissipation and Non-Adiabatic Modes 

In order to examine the effects on s(r, t) of dissipation by interaction between matter 
and radiation, it is necessary to use the full Equation (18) for Jx derived from radiative 
transfer theory rather than the adiabatic limit (27). 

One can simplify matters somewhat by neglecting higher order radiative terms in 
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|_ S (k,t. ) = k"2 ( q 0 = £ ) Zj = 1000 
" r q 

A W ) 

T=25 Jk 

L T=I25^//J 
T=625 y / 

1 

1 I 0 3 I 0 6 

LOG ( C O - M O V I N G C O O R D I N A T E ) ( p c x r _ 2 / 3 ) 
Fig. 1. Density perturbation SQ/Q as a function of comoving coordinate x at various times T = f/f,-^l. 
The assumed initial conditions at z = 1000 are defined by Equation (42). The subscript 'J, f denotes the 
initial value of the Jeans length. The lower part of the ordinate is labeled to indicate negative values of 

SQ/Q; the normalization is arbitrary. 

Equation (23), which can then be expressed as 

k2cl d2s / { \ads 

K~2 + \ ¥TdaJt + 

= I ATIGQ, -
4a2 (1 +10/ J 

- 4TIGQ I s = 

k2c2 
(47) 

Equations (47) and (18) must now be solved simultaneously to provide the desired 
solutions. To proceed further, it is instructive to neglect the gravitational terms, and 
analyze modes of wavelength small compared to ct. 

Since in general, one seeks modes that vary on a much more rapid time-scale than 
the background, one can replace each time derivative by a frequency q that describes 
the time dependence of the perturbation ~eq\ and ignore all terms of order (qt)~1 or 
higher. One can then obtain a dispersion relation for q and k that can be written in 
the form 

(co2 + co£ + 2a 2</ 2) (co+1) 2 co + fa 2eo + •Z(02((0+\). (48) 
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Dimensionless parameters have been introduced, defined by 

^lc; a=^; and rf=^ (49) 

The scattering coefficient K is identified as 

K = nE(7T; (50) 

consequently the dimensionless wavenumber a is inversely proportional to the optical 
depth across a fluctuation. 

At this point, it is convenient to divide our discussion into two regimes, correspond­
ing to opaque (a<^ 1) or transparent (a|> 1) fluctuations. 

5.1. OPAQUE FLUCTUATIONS (a <̂  1) 

This regime has been treated for a static medium by Field (1971b), whose dispersion 
relation in this limit is almost identical to Equation (48). The modes can be analyzed 
by expanding co in powers of a: note that oo/(x = q/kc = qt(kct)~l, and will be small 
compared with unity for wavelength satisfying kctp 1. The result of this calculation 
is that two principal damping modes appear: 

-a2d2 , x 

«"'tT>f <51) 

ia (t + 3d2V<2 « 2 { . 4g 3(l+2j-3frP) | 

" 2 = 7 i a ^ " 6 ( n ^ t 1 + y ( 1 + { ) — d | -
(52) 

Mode cox corresponds to the damped isothermal mode of Zel'dovich (1966) for a 
matter fluctuation in a uniform radiation field. One can see this directly by applying 
the moment Equations (12) and (13) to Equation (23), and taking the isothermal limit 
J j^O. The resulting equation is 

82s fid £ d Kc£\ds ( k2c2

m \ , x 

Upon applying a similar analysis to that given above to the general case, one obtains 
the result that the principal mode of Equation (53) is 

c o = - a 2 r f 2 / £ . (54) 

The net effect of the damping of the isothermal mode is that the amplitude is frozen 
prior to decoupling, the self-gravity of the perturbation being in balance with the 
radiation drag force. 

The second mode (52) is an acoustic wave, propagating at the adiabatic sound 
velocity c s, and damped by photon diffusion. The existence of this damping was 
established by Silk (1967, 1968), and independently in unpublished work by Michie 

and 
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(1967) and Peebles (1967). The general expression for the damping rate (52) differs 
slightly, but not significantly, from that given by Field (1971b): the rates agree if 
^ = 0 for arbitrary or if £<^1. Note that expression (52) is applicable for arbitrary 
ratios of matter to radiation. 

5.2. TRANSPARENT FLUCTUATIONS (a> 1) 

Consider next the limiting solutions to the dispersion relation (48) at large a. One can 
readily establish that, when 

the principal modes are given by 

u= r - ^ r or — . (56) 
5 1 + f a 2 1 + f a 2 v ; 

The modes in Equation (56) are due to damping by radiation drag, occurring pre­
dominantly at an optical depth of order unity through the fluctuation. 

Since the preceding analysis is valid in general for arbitrary optical depths, it is a 
straightforward matter to evaluate the damping rates before, during and after the 
decoupling era at z ~ 1000. Although Equations (18) and (47) can in principle be solved 
numerically, it is adequate for the present purpose to use the dispersion relation (48) 
in order to study the evolution of density perturbations over comoving length-scales 
short compared to the particle horizon. One can therefore apply the asymptotic forms 
of the dispersion relation (52) and (46), and interpolate between them as necessary. 
The results of such a calculation are shown in Figure 2 where the exponential damping 
factor y is plotted as a function of time through decoupling for various comoving 
mass-scales of interest in two different cosmological models, corresponding to a 
spatially flat (Q=\) and to a low density (Q = 0.02) universe. The definition of y is such 
that the amplitude of an initially adiabatic density perturbation is damped by a factor 
expy at any given epoch. Consequently the maximum value of y for any specified mass-
scale gives the final damping for that scale. 

The mass-scales chosen are intended to span the range of significant damping. The 
comoving mass-scale is defined by 

(55) 

6. Damping During the Decoupling Epoch 

(57) 

Numerically, one obtains 

X = 2na/k = 
4.35 x 10: 

(Qh2)~ 1/3 (58) 
1 + z cm, 

where M ^ M / 1 0 1 1 M Q . 
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The main results are consistent with those found by Peebles and Yu (1970). Mass-
scales of up to 1 0 1 2 M Q are severely damped in an Q= 1 universe, and up to 1 0 1 5 M© 
if 0 = 0.02. The Hubble constant H0 has been set equal to 50 km (s Mpc)" 1 . The 
run of ionization used in the present calculation is taken from the work of Peebles 
(1968) and Zel'dovich et al (1969), and is shown in Figure 2. 

3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0 

Z 
Fig. 2. Exponential damping factor y evaluated as a function of time for several comoving mass scales, 

in Q= 1 and (2 = 0.02 cosmological models. The variation of x(t) is also shown as a 
dashed line for each model. 

It is apparent that the bulk of the damping occurs when the hydrogen ionization 
level has already fallen considerably. As previously indicated, the relatively dominant 
peaks in the damping rates are primarily due to radiation drag when the optical depth 
across the fluctuation is of order unity. 

To examine further the physical basis of this mechanism, one can define the optical 
depth over scale A , 

T A = neoTX = 6.9 x 10" 6 (1 + z) 2 xM{{3(Qh2)213. (59) 
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The epoch at which xx = 1 can be expressed in the form * 

4.37 x 10 4 

and it is apparent from Figure 2 that the peak damping occurs in the vicinity of z | t A = r 

An important feature of the solutions exhibited in Figure 2 is that radiation drag 
effectively damps much of the amplitude jump that adiabatic fluctuations initially 
below the Jeans mass would otherwise experience at decoupling, apparently contrary 
to the assertion of Sunyaev and Zeldovich (1970). One can investigate this result in 
more detail by considering the amplitude of a fluctuation that is Jeans-stable prior to 
decoupling, but is subsequently Jeans-unstable when the sound velocity has dropped 
from cs to cm. Denoting quantities evaluated immediately prior to decoupling with a 
minus sign and subsequent to decoupling with a plus sign, one has from the perturbed 
continuity equation that 

v+_l X ds+ _A A 7.8 1 0 W \ 1 / 2 

v. 3 c c 

1 .36 , I D - ( l + Z^1)" 2
 2 . « „ , 3 ( Q ( , r . 

(62) 
If, as Sunyaev and Zel'dovich argue, there can be no discontinuity in velocity, one 
would therefore have to have an amplitude increase amounting to a factor 

s + / s _ = 14A/ 1" 1

1 / 3 for Q=l or s+/s_ = 3 8 0 M ; Y / 3 for 0 = 0.02. 

In fact, as has already been shown, radiation drag does produce a severe reduction in 
velocity: only at large mass-scales is it effective, and here the magnitude of a possible 
amplitude jump is proportionately diminished according to (62). 

To further establish this result, one can define a characteristic time-scale for radia­
tion drag, 

mpc _ 1 . 8 5 x l 0 2 3 s 
tdrag" ^chc" x ( l + z ) 4 * ( 6 3 ) 

At z|T A = 1 appropriate for M = 1 0 1 2 M Q ( z = 1350), one has tAraLg = 2>.?> x 1 0 1 1 s. An ap­
propriate time for comparison is that fraction of an expansion time Atexp evaluated 
at z | T A = 1 over which x does not decrease by an appreciable factor. One can estimate 
such a time-scale by defining 

^ i ' A d t o ) 9 ( 6 4 ) 

where r e x p = 4.1 x 1 0 1 7 ( O f t 2 ) " 1 / 2 z _ 3 / 2 s at z> 1. 
One obtains Atexp(z= 1350) = 6.3 x 1 0 1 1 s, if Q = h= 1. 

* In deriving this expression, a simple analytical expression is used for the fractional ionization, 
1 1 x 10 7 

-v= zQll2fj e x p ( - 1.458 x l 0 * / z ) , (61) 

which is valid over 1 5 0 0 > - £ 9 0 0 (Sunyaev and Zel'dovich, 1970). 
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An estimate of the predicted damping by radiation drag is given by setting y = 
= z l r e x p / r d r a g , and one obtains a damping factor in agreement with the results shown 
in Figure 1 for M = 1 0 1 2 M Q , 0 = 1 . Note that the amplitude decrease amounts to 
a factor 7, which is just adequate to reduce v+/v_ to unity and entirely remove any 
amplitude jump effect that could otherwise occur. 

Similarly for a perturbation containing a mass M = 1 0 1 4 M o in an 0 = 0.02 uni­
verse, one obtains zj T A = 1 = 1140 and Atexp/td = S.3, again consistent with Figure 2. 
More generally, a simple analytic expression for the damping factor y can be derived 
by utilizing expression (61) for x(t). One obtains 

y = 8.4 x 1 0 4 j T 5 / 2 (Qh2)-1 exp(-10.8)8), (65) 

where 

P = 1 + 0.03 In [ M j 2 (Qh2)'1/2] (66) 

and 

M 1 2 = M / 1 0 1 2 M o . 

The velocity overshoot effect does give rise to a density amplitude jump for fluctu­
ations of larger mass; however the effect is necessarily small in view of the mass de­
pendence of Equation (62). 

7. Conclusions 

The principal aim of this paper has been to establish the spectrum of primordial 
adiabatic density fluctuations. Damping before and during decoupling imposes a 
lower bound on the surviving mass-scales, of from M D = 1 0 1 2 to 1 0 1 5 M Q for 0 = 1 
to 0.01 respectively, with h=l. The critical mass-scale for damping MD is defined by 

y m a x ( ^ D ) = l -

The preceding results on adiabatic fluctuations can be combined in a single ex­
pression that approximately represents the spectrum of primordial adiabatic density 
fluctuations immediately after decoupling. For any mass-scale M, this spectrum, and 
its subsequent evolution at epochs z > 0 _ 1 , is given by 

((SQ/Q)2}1/2X3 x 1 0 " 3 ( r A d ) 2 / 3 (MD/M)1/2 e x p ( - ( M D / M ) 2 / 3 ] . 

The asymptotic behaviour of this spectrum is determined at short wavelengths by 
dissipative processes, and at long wavelengths by the adoption of a white noise 
power spectrum for the initial distribution of density fluctuations. This latter as­
sumption can be justified in a phenomenological way because of the success one 
consequently achieves when the resulting spectrum of gravitationally bound systems 
is compared with observational data on the distribution of galaxies (Balko, 1971; 
Peebles, 1973). 

Such a spectrum would suffice to generate the formation of bound systems on the 
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scale of galaxies or small galaxy clusters by z > 1 if Q~» 0.1-1. The initial conditions 
required for this to occur are |<5£/£|;~ 1 0 ~ 3 at z , ~ 1 0 6 . Extrapolation of the initial 
conditions to earlier epochs requires a fully general relativistic treatment and the re­
sulting time-dependence of SQ/Q on scales > ct is coordinate gauge-dependent. 

Two other characteristic mass-scales emerge from the theory that has been de­
scribed here. Scales larger than the Jeans mass immediately prior to decoupling have 
never passed through an oscillatory phase, and have undergone uninterrupted growth 
(Field and Shepley, 1968). The minimum mass for this to occur is about 5 x 1 0 1 6 M 0 

(Peebles and Yu, 1970). 
Isothermal fluctuations remain frozen in until decoupling, when they become un­

stable to the growing mode if above the Jeans mass My After decoupling 

MJ = 2.9 x 10 5 (T/TD)3/2(Qh2)-l/2 M Q , 

where T is the matter temperature, and T D ~ 4 0 0 0 K is its value at decoupling. 
On the other hand, prior to decoupling, the radiation pressure maintains a high 

sound speed c s , and 

CHARACTERISTIC MASS SCALES 

I07 I0 6 105 I0 4 I0 3 

Z 
Fig. 3. The evolution of the characteristic mass-scales of density perturbations in an Einstein-de Sitter 

universe. The variation of the Jeans mass with redshift is shown as a dashed line. 
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M, = 2 x 1 0 2 3 ( G / i 2 ) - 1 / 2 ( l + z ) " 3 / 2 £ 3 / 2 ( l + £ ) 

where 

i=-^=l.29xlO-*(Qh2)-l(l+z). 
3Q 

(69) 

The radiation temperature has been set equal to 2.7 K at the present epoch. Equations 
(67) and (68) give the two additional critical masses, if evaluated at decoupling. 

These results are summarized in Figure 3, where the evolution is depicted of three 
characteristic mass-scales in an Q=l universe. The amplitude scale has been nor­
malized to allow formation of bound systems prior to the present epoch. 

The question remains unanswered of the origin of the assumed initial conditions. 
However the fact that galaxies, which appear to be a basic primordial constituent of 
the Universe, roughly coincide in mass with the damping limit (MD) in a dense universe 
is perhaps the most encouraging result to have emerged from the theory. The forma­
tion of dwarf galaxies can presumably be accounted for by non-linear interactions 
and subsequent fragmentation of larger systems. 

Some additional remarks can be made about consequences of assuming finite am­
plitude perturbations. This must necessarily involve the break-down of the linear 
theory, as evidenced in all probability by the formation of shocks. There are at least 
two ways in which shock formation can be envisaged. An acoustic wave of amplitude 
S steepens into a shock after S " 1 periods. This result would be most relevant for 
mass-scales of interest prior to decoupling. On the other hand, a growing mode of 
wavelength will develop into a shock over length scales 

where its motion becomes supersonic. This effect could be significant after decoupling. 
Shock formation offers the possibility of a considerable amplification factor, since 

once the non-linear regime is entered, gravitational collapse can readily be initiated. 
Shocks can also provide a mechanism for generating entropy fluctuations from ini­
tially purely adiabatic perturbations, as does also the occurrence of dissipation of 
acoustic waves by radiation damping. 

I wish to thank Drs J. Bardeen, G. B. Field, and P. J. E. Peebles for stimulating dis­
cussions on topics relevant to this research. It is a pleasure to thank Susan Lea for 
preparing Figure 1. 

This work has been supported in part by NASA grant NGR 05-003-453. 

X>cstS-l=XjS-\ (70) 
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D I S C U S S I O N 

Ozernoy: A similar analytical method of investigating the damping of acoustic perturbations during and 
after the decoupling epoch was elaborated by G. V. Chibisov of our group at the Lebedev Institute of 
Physics (see Astron. Zh. 49, 74, 1972). His results are very similar to those obtained independently by 
Dr Silk. One difference may be mentioned. For Q = 1 the damped mass, according to Chibisov, is approxi­
mately one order of magnitude greater than that given by Silk. This difference is significant for the problem 
of whether the isolation of galaxies occurs independently of the formation of clusters of galaxies or whether 
it is closely related to them. The isolation of protogalaxies from reasonable inhomogeneities may occur 
independently of the formation of clusters of galaxies (which could form by means of clustering) only if 
MD is as small as 1 0 1 2 MQ. However, if MD is of the order of or greater than 1 0 1 3 MQ, then the picture of 
the birth of galaxies must be drastically different: galaxies will form more or less simultaneously with the 
isolation of protoclusters by means of the fragmentation of the latter. 

Silk:. The analytical results of Chibisov appear to be based on an over-simplification of the relevant 
physics involved in matter-radiation interaction during decoupling, and are in serious disagreement with 
the calculations by Peebles and Yu and myself for Q £ 0.1. 

Zel'dovich: The mass A / D « ^ A j where kD is the dissipation scale, determines the minimum mass of 
fluctuations which survive the radiation dominated era but it is not necessarily the minimum mass for 
galaxies. The non-linear theory of the origin of galaxies (see the contribution by Doroshkevich, Zel'dovich 
and Sunyaev) permits much smaller masses because this theory contains characteristic scales much smaller 
than kD. 

Silk: The theory that I have described is a linear theory. Provided that the amplitude of the density 
fluctuations remains sufficiently small, non-linear effects are unimportant. For example, a co-moving mass 
scale of 1 0 1 2 M0 must have amplitude \SQ/Q\ < 10" 2 in the oscillatory phase prior to decoupling. 
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